
The Chaos game rules in ‘plain English’

We want to translate the mathematical chaos game, namely the rule zk+1 = wsi
(zk) for

going from one game point to the next, into ‘plain English’. To do this we first find a conve-

nient expression for zk+1. Let wi = Ai + vi. If qi is the fixed point of wi, then qi = wi(qi) =

Aiqi + vi → vi = qi − Aiqi. So we can write zk+1 = wi(zk) = Aizk + vi = Aizk + qi − Aiqi.

Thus, zk+1 = qi + Ai(zk − qi) , or

zk+1 = zk + (I − Ai)(qi − zk) = zk + (Ai − I)(zk − qi) . Note that zk−qi is the vector point-

ing in the direction from qi towards zk, and if v is any vector, qi + v is that vector translated

so that its tail is at the point qi; see Figure 1 below. Thus, the formula zk+1 = qi +Ai(zk−qi)

says,“Stand on the fixed point qi and apply the transformation Ai to the vector pointing

from you to the current game point zk. The end point of this new vector is the next game

point zk+1”. Here, Ai is applied to vectors whose tails are at qi (if Bi(v) = Ai(v − qi), then

Bi(qi) = 0). Alternatively, zk+1 = zk + (I − Ai)(qi − zk) says, “ Stand on the current game

point zk and apply (I − Ai) to the vector qi − zk that points from you to the fixed point qi.

The end point of this new vector is the next game point zk+1”.

For example, if Ai =

 r 0

0 r

 = Dr is dilation by r, then zk+1 = zk + (Ai − I)(zk − qi)

says, “Standing on the game point zk, to obtain the next game point move towards the fixed

point qi a distance r − 1 times the distance from the current game point to qi”. If Ai is

rotation counterclockwise by θ; Rθ =

 cos θ − sin θ

sin θ cos θ

, then the rule (if an i appears in

the game sequence) zk+1 = qi + Ai(zk − qi) is, “ Rotate the line joining the fixed point qi

to the current game point clockwise by θ about the fixed point to obtain the next game

point”. And if Ai is dilation by r followed by a rotation by θ, Ai = Rθ ◦Dr, then the rule is,

“Move towards the fixed point qi a distance 1− r times the distance from the current game

point to qi and then rotate by θ counterclockwise about the fixed point”. In general, the

game rule is the action of the transformation Ai with respect to the fixed point qi. Unless the

transformation Ai is a ‘simple’ one, the game rule may be rather complicated to describe.
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Figure 1

Some chaos games

1. Sierpinski (Triangle)

• three black pins 1, 2, 3, arranged at vertices of equilateral triangle

• choose random number si from {1, 2, 3}

• actions; move 1/2 distance from current game point to black pin labelled si

2. Square

• four black pins at the corners of a square
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• choose random number si from {1, 2, 3, 4}

• actions; move 2/3 distance to pin labelled si

3. Pentagon

• five black pins at the corners of a pentagon

• choose random number si from {1, 2, 3, 4, 5}

• actions; move 1/2 distance to pin labelled si

4. Full Square

• four black pins at the corners of a square

• choose random number si from {1, 2, 3, 4}

• actions; move 1/2 distance to pin labelled si

5. Sierpinski variation #1

• three black pins 1, 2, 3, arranged as in Sierpinski, but place pin 3

directly above pin 2

• choose random number si from {1, 2, 3}

• actions; move 1/2 distance to black pin labelled si

6. Sierpinski variation #2

• three black pins 1, 2, 3, arranged as in variation #1

• choose random number si from {1, 2, 3}

• actions;

– si = 1; move 1/2 distance to black pin labelled 1

– si = 2; move 1/2 distance to black pin labelled 2

– si = 3; move 1/2 distance to pin 3 and then rotate counterclockwise

about pin 3 by 90 degrees

7. Spiral
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• two black pins, aligned vertically

• choose random number si from {1, 2}

• actions;

– si = 1; move 8/10 distance to pin 1 and then rotate counterclockwise about pin 1

by 20 degrees

– si = 2; move 1/2 distance to pin 2 and then rotate counterclockwise about pin 2

by 30 degrees

8. Christmas Tree

• three black pins, 1 and 2 along a horizontal line, 3 directly above midpoint between 1

and 2

• choose random number si from {1, 2, 3}

• actions;

– si = 1; move 1/2 distance to pin 1 and then rotate counterclockwise about pin 1

by 90 degrees

– si = 2; move 1/2 distance to pin 1 and then rotate clockwise about pin 2 by 90

degrees

– si = 3; move 1/2 distance to pin 3

Computing the number of points in address regions

Suppose the chaos game for the IFS W = wi ∪ w2 ∪ · · · ∪ wk is played with probabilities

p1, p2, . . . , pk, and {s1, s2, . . . sN} is a game sequence for these probabilities. Let’s imagine that

this finite game sequence is the beginning part of the infinite random sequence {s1, s2, . . .}. If

sjsj−1 . . . sj−r is a sequence of the integers {1, 2, . . . , k}, then this sequence will appear with fre-

quency psjpsj−1 · · · psj−r in {s1, s2, . . .}. So we expect approximately (psjpsj−1 · · · psj−r)N occur-

rences of this sequence in {s1, s2, . . . , sN}. Each time this sequence occurs in the game sequence,

a game point lands in the region with address sj−r . . . sj−1sj . Therefore, we expect approximately

(psjpsj−1 · · · psj−r) ·N game points in this region.
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This leads us to estimate how many game points would be needed to draw a fractal using

the chaos game. Let’s look again at the Sierpinski triangle. We know that to draw the fractal

completely on our computer screen, we need to generate all detail down to the size of a pixel, and

the length of the addresses of these address regions is 9. Thus, we would need at least one game

point in every address regions whose address length is 9, which means we need a game sequence

{s1, s2, . . . , sN} that contains every subsequence of 1
′s, 2

′s and 3
′s of length 9. If the probabilities

are all equal, pi = 1
3 , then the frequency of appearance of any one of these sequences in a random

sequence {s1, s2, . . .} generated with these probabilities is (1
3)9 ≈ 1

20,000 , which means we would

need a game sequence of length about 20, 000. You can check these numbers out for yourself. The

sizes (in pixels) of the canvases that contain the image produced by the chaos game applet are;

version of applet canvas size (pixels)

640 × 480 (VGA) 304 × 304

800 × 600 (SVGA) 380 × 380

1024 × 768 (XVGA) 500 × 500

1280 × 1024 (UVGA) 645 × 645

1400 × 1050 800 × 800
Varying the probabilities

Suppose we play the chaos game with the Sierpinski IFS, but instead of using equal probabilities

p1 = p2 = p3 = 1
3 , we use the probabilities p1 = p2 = 1

5 , p3 = 3
5 to generate the game sequence.

Then the digit 3 will occur in the game sequence 3 times as often as a 1 or a 2. Consequently, game

points will land in the region with address 3 (the top part of the triangle) 3 times more often as

they will land in the regions with address 2 or 3. So playing the chaos game with these probabilities

will result in the top part of the Sierpinski triangle filling out more quickly than the bottom parts

(try the applets). We know that since the probabilities are all non-zero, this chaos game will draw

the Sierpinski triangle, but it will take longer (a lot longer) to draw it with these probabilities than

with equal probabilities. For example, the string 121212121 will occur in the random sequence with

frequency (1
5)9 ≈ (2× 106)−1 so you will need a game sequence with length approximately 2× 106

to draw the fractal to level 9 (compare this to the 20, 000 game points we estimated when we use

equal probabilities).

We can go on. The string 13 will occur 3 times as often in the game sequence as the string 12, so

3 times as many game points will land in the region will address 31 than in the region with address
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21. The string 133 will occur 9 times as often as the string 122, so 9 times as many games points

will land in the region with address 331 than in the region with address 221, etc. This explains

why in the chaos game that is played with these probabilities, you see a greater density of game

points in the upper parts of all the sub-triangles than in the lower parts.

An even more interesting pattern emerges when we play the chaos game for the full square

IFS with non-equal probabilities. We know that if we play the chaos game with any non-zero

probabilities the resulting image will (eventually) be a solid square. But you see vastly different

patterns emerging (different ways of convergence to the solid square) with non-equal probabilities.

For example, choosing the probabilities p1 = p2 = 2
5 , p3 = p4 = 1

10 will result in the appearance

of a series of vertical lines; Figure 2. We can understand what causes this pattern when we realize

that most of the time the game sequence is just 1
′s and 2

′s (in fact 80% of the time) so points will

be attracted towards the fixed point of the IFS made with just lenses 1 and 2 which is the vertical

line along the left edge of the square joining the corners that are the fixed points of w1 and w2.

But whenever a 3 or a 4 appears in the game sequence, the game point (which is most likely lying

near that vertical line) will jump towards one of the corners along the right edge of the square

(the fixed points of w3 and w4). They will move 1
2 the distance towards them, in fact. Thus, they

will lie along the vertical line at x = 1
2 , which is clearly visible in the figure. The vertical line at

x = 3
4 is caused by game points near the line x = 1

2 being moved under w3 or w4 (which again

moves them 1
2 the distance to one of the corners on the right side). This is how the vertical lines

at x = 1
2 , x = 3

4 , x = 7
8 , x = 15

16 , . . . appear.

We can also estimate the relative density of points on the various vertical lines (and hence

explain why they don’t all appear equally dark). To do this it simplifies the problem if we consider

the game beginning with not a single game point but a uniform distribution of points along the

vertical line at the left edge of the square (x = 0) with density ρ0 (this is reasonable because most

of the time the game sequence will be 1
′s and 2

′s so the game points will just be moving very near

this line back and forth between the two corners). Points on the vertical line at x = 1
2 come from

the line x = 0 under one of the transformations w3 or w4. A 3 or a 4 appear in the game sequence

20% of the time, so the density ρ 1
2

of points on the line x = 1
2 is ρ 1

2
= 0.2ρ0. Similarly, the points

on the line at x = 1
4 come from points originating on the line x = 1

2 and then moving towards

either of the fixed points q1 or q2 by the transformations w1 or w2. Thus, these points have to first

move to the line x = 1
2 from the line x = 0, and then back to the line x = 1

4 . We know that there’s
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a 20% probability of points moving from the line x = 0 to x = 1
2 . Then there’s an 80% probability

that once on x = 1
2 they will move back to x = 1

4 , so the total probability for a point to move from

x = 0 to x = 1
2 and then to x = 1

4 is 0.2× 0.8 = 0.16. Thus, we expect the line at x = 1
4 to be 16%

as dark as the line x = 0, and 80% as dark as the line x = 1
2 ; ρ 1

4
= 0.16ρ0 = 0.8ρ 1

2
.

See Figure 3 for a variation of this problem (here the adjacent diagonal fixed points have the

different probabilities).

Figure 2 Figure 3

Finding the best probabilities

Let’s consider the Fern IFS W = w1 ∪ w2 ∪ w3 ∪ w4. If we play the chaos game using equal

probabilities pi = 1
4 , we see that it is not possible to obtain a good image of the fractal, no matter

how long we play the game. We notice that the ends of the fern and all the sub-ferns do not have

many points in them.

The tops or ends of the sub-ferns have addresses that begin with a 3 and end with a tail of 1’s

(see Figure 30). The address of the nth branch up along the main stem is 11....13 where there are

(n − 1) 1
′s. Say you want to see game points in the 15th branch of the fern. The probability of

seeing a point here is p14
1 p3 = (1

4)15 ≈ 10−9, so you need 109 steps in the game to get a point up

here! I think it would take a very long time for your computer to plot a billion game points. So if

we only have 100,000 points, we wouldn’t expect any points to lie above the eighth branch. This is

why the fern looks incomplete when we play the chaos game with equal probabilities (Figure 31)

We can obtain a much better result (i.e., a much better image of the fern) by adjusting the

probabilities. Roughly speaking, the problem with uniform probabilities is that too many of the

game points end up on the lower branches of the fern. After a while those lower branches get
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saturated with points while the upper parts of the branches are lacking points. What we need to

do is to move some of the points that go to the lower branches up to higher branches. This can be

accomplished if we assign a greater probability to those transformations that move game points to

the higher branches. To this end we change the probabilities so that p1 is much greater than the

other probabilities (recall that w1 is responsible for building the higher branches of the fern). In

fact, if p1 = .85 and p2 = p3 = p4 = .05, then we will expect about 500 game points to fall in the

15th branch of the fern. Thus, with these (nonuniform) probabilities we obtain a good image of

the fern using a modest number of game points (see Figure 31.

How can we find the optimal probabilities? That is, a set of probabilities that allow us to draw

the fractal with as few game points as possible. One can find a good set of probabilities by arguing

as follows. What we want in a well-drawn fractal is an equal density of points in each address region,

not (necessarily) an equal number of points in each address region. Let ao be the area of the outline

Fo of the fern, ci = |det Ai| (so c2 = 0.096, c3 = 0.078, c4 = 0.578), and Fi denote the address region

with address i; Fi = wi(Fo). Then the density of game points ρi in region Fi is (approximately)

ρi = # of game points
area of Fi

= pi·N
c1·ao

, where N is the total number of game points (length of the game

sequence). As a first approximation to a better set of probabilities, we ask that the density of game

points in each address region with address length 1 be equal; ρ1 = ρ2 = ρ3 = ρ4. Since the factor
N
ao

occurs in each ρi, these equalities become pi
c1

= p2

c2
= p3

c3
= p4

c4
. In addition to these equalities,

we require p1 + p2 + p3 + p4 = 1. For the fern, c1 = 0, so we set (arbitrarily) p1 = 0.02 (so that

we get some game points in those regions; we can change the value of p1 later and see if we obtain

a better set of probabilities). Now we solve p2

c2
= p3

c3
= p4

c4
, p2 + p3 + p4 = 0.98 (three equations

in three unknowns). Taking the first two we obtain p2 = c2p3

c3
, so that p4 = 0.98 − p2 − p3 =

0.98 − ( c2
c3

+ 1)p3 = 0.98 − 2.23p3. From p3

c3
= p4

c4
we obtain p3 = c3p4

c4
, and substituting this into

p4 = 0.98− 2.2p3 we find p4 = 0.75. And so p2 = 0.12 and p3 = 0.11 (rounded off). One can check

that playing the chaos game with these probabilities for the fern results in a good image of the fern

fairly quickly; ≈ 50, 000 game points.

‘Pseudo Fractals’

Let’s take a random sequence of 1
′s, 2

′s and 3
′s with probabilities p1 = p2 = p3 = 1

3 . Call this

sequence s. We know this game sequence will draw the Sierpinski triangle in the chaos game very

quickly. Now let’s remove all the 1
′s that appear in this sequence, and call this new game sequence

s′ What image will result if we use this new game sequence in the chaos game? Well, since no 1
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appears in this sequence, no 1 will appear in the address of any game point, so no game point will

lie in region D1, nor will there be any game points in region D21, nor in D331, etc. So there will be

many more ‘holes’ in the fractal compared to the Sierpinski triangle, and all the holes correspond

to the small triangles in the lower right hand corners of every triangle in the Sierpinski triangle. If

you think about it, this will result in just a line joining the lower right and top verticies of the large

triangle. We can also predict the outcome by realizing that the new game sequence s′ is simply

a random sequence of 1
′s and 2

′s with equal probabilities. If you use the Sierpinski IFS with this

sequence, the transformation w1 is never used, so in effect you are using the IFS W = w2 ∩ w3,

whose fixed point is the line joinging the fixed points of w2 and w3, which are the two vertices of

the triangle.

Consider the Full Triangle IFS - this is the IFS which has the three transformations as the

Sierpinski triangle, but with a fourth ‘filling’ the missing centre triangle of the Sierpinski IFS. Thus,

the fixed point of this IFS is simply a solid triangle. Now take a random sequence s of 1
′s, 2

′s, 3
′s

and 4
′s, and this time remove all occurrences of the string 12. Call this new game sequence s′′.

Notice that s′′ is not a random sequence. That is, it is not generated by randomly picking the

digits 1,2,3 and 4 according to some probabilities p1, p2, p3 and p4 (because, for example, the string

12 never appears!). If we play the chaos game for the Full Triangle IFS with this sequence, then

a game point will never land in an address region with an address containing the string 21. So for

example, the sub-triangle D21 will have no points in it. Also the sub-triangle D121, etc. Since all

the transformations wi are used in this chaos game, the final image is not a trivial line. In fact it

looks like a fractal, but technically it is not because it is not self-similar; see Figure 33. In general,

if we remove strings of length > 1 from any random sequence and use this to play the chaos game, a

fractal-like image will result. ‘Pseudo fractals’ such as this one can be generated with the Modified

Chaos Game Applet.
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