Math 178 Notes on Symbolic Dynamics

<u>References</u>: Text Sections 10.4 - 10.6

 \mathcal{B} = the set of all binary sequences;

$$\mathcal{B} = \{ \vec{a} = [.a_1 a_2 a_3 \dots] \text{ where } a_i \text{ is } 0 \text{ or } 1 \}$$

If $x \in [0, 1]$, then $[x]_2 = .a_1 a_2 a_3 \dots$ is the binary (base 2) representation of x. Since

$$x = \frac{a_1}{2} + \frac{a_2}{2^2} + \frac{a_3}{2^3} + \cdots$$

we see that if x and y have binary representations that agree for the first k places (i.e., $[x]_2 = .a_1a_2...a_kb_{k+1}b_{k+2}..., [y]_2 = .a_1a_2...a_kc_{k+1}c_{k+2}...)$, then $|x - y| \leq (1/2)^k$. Note also that if $[x]_2 = .a_1a_2a_3...$, then $[2x]_2 = a_1.a_2a_3..., [2^2x]_2 = a_1a_2.a_3a_4...$, etc., and $[\frac{1}{2}x]_2 = .0a_1a_2a_3...$ etc. (multiplying by 2 shifts the binary representation to the left, dividing by 2 shifts it to the right).

The saw tooth transformation;

$$S(x) = \begin{cases} 2x & \text{if } 0 \le x \le \frac{1}{2} \\ 2x - 1 & \text{if } \frac{1}{2} < x \le 1 \end{cases}$$

The representation \tilde{S} of S on \mathcal{B} ;

$$S(.a_1a_2a_2...) = .a_2a_3a_4...$$
 shift left and drop a_1

So, the saw tooth transformation acts on numbers by shifting their binary sequences to the left (and dropping a_1).

The tent transformation;

$$T(x) = \begin{cases} 2x & 0 \le x \le \frac{1}{2} \\ 2 - 2x & \frac{1}{2} < x \le 1 \end{cases}$$

The representation \tilde{T} of T on \mathcal{B} ;

$$\tilde{T}(.a_1a_2a_2\ldots) = \begin{cases} .a_2a_3a_4\ldots & a_1 = 0 & \text{shift} \\ .a_2^{\star}a_3^{\star}a_4^{\star}\ldots & a_1 = 1 & \text{shift and conjugate} \end{cases}$$

Here,

$$a_i^{\star} = \begin{cases} 1 & \text{if } a_i = 0\\ 0 & \text{if } a_i = 1 \end{cases}$$

The coordinate transformation h(x);

$$h(x) = \sin^2\left(\frac{\pi x}{2}\right)$$

Over \longrightarrow

Fixed points for Logistic

Steps 1 and 2: Fixed points for T and T

Suppose $\tilde{T}(\vec{a}) = \vec{a}$. Then,

 $\tilde{T}(a_1 a_2 a_3 \ldots) = a_1 a_2 a_3 \ldots$

<u>Case 1</u>: $a_1 = 0$. Then $\tilde{T}(a_1 a_2 a_3 \ldots) = a_2 a_3 a_4 \ldots$ Comparing the left and right sides, $a_1 = a_2 \rightarrow a_2 = 0$ (since $a_1 = 0$). So then since $a_2 = a_3$, we must have that $a_3 = 0$. Continuing in this way we see that all $a_i = 0$. Thus, if $\tilde{T}(\vec{a}) = \vec{a}$ and $a_1 = 0$, then $\vec{a} = 000 \ldots$ So the number x with $[x]_2 = 000 \ldots$ is a fixed point of T(x). This x is clearly 0. Check; T(0) = 2(0) = 0. Also, h(0) = 0 so 0 is a fixed point of f(x) = 4x(1-x).

<u>Case 2</u>: $a_1 = 1$. Then $\tilde{T}(a_1 a_2 a_3 \dots) = a_2^* a_3^* a_4^* \dots$ Comparing the left and right sides, $a_1 = a_2^* \to a_2 = 1$ (since $a_1 = 0$). So then since $a_2 = a_3$, we must have that $a_3^* = 1 \to a_3 = 0$. Continuing in this way we see that $\vec{a} = \overline{1010}$. Thus, if $\tilde{T}(\vec{a}) = \vec{a}$ and $a_1 = 1$, then $\vec{a} = \overline{1010}$. So the number x with $[x]_2 = \overline{1010}$ is a fixed point of T(x).

Now, if x is such that $[x]_2 = \overline{1010}$, then $x - \frac{1}{2} + \frac{1}{2^3} + \frac{1}{2^5} + \cdots = 2(\frac{1}{4} + \frac{1}{4^2} + \frac{1}{4^3} + \cdots) = 2(\frac{1/4}{1 - 1/4}) = 2/3$. (Note how we found this by summing a geometric series; whenever the binary representation (or in any base) of a number repeats, we can determine that number by summing a geometric series.) Thus, 2/3 is a fixed point of T(x);

$$T(2/3) = 2 - 2(2/3) = 2 - 4/3 = 2/3$$

Step 3: Convert to fixed point for Logistic

And so
$$\tilde{x} = h(2/3) = \sin^2(\frac{1}{2}\frac{2}{3}\pi) = \sin^2(\frac{\pi}{3}) = \frac{3}{4}$$
 is a fixed point of $f(x) = 4x(1-x)$;
 $f(3/4) = 4(3/4)(1 - 3/4) = 3/4$