Math 178 Notes on Symbolic Dynamics

References: Text Sections 10.4-10.6
$\mathcal{B}=$ the set of all binary sequences;

$$
\mathcal{B}=\left\{\vec{a}=\left[. a_{1} a_{2} a_{3} \ldots\right] \text { where } a_{i} \text { is } 0 \text { or } 1\right\}
$$

If $x \in[0,1]$, then $[x]_{2}=. a_{1} a_{2} a_{3} \ldots$ is the binary (base 2) representation of x. Since

$$
x=\frac{a_{1}}{2}+\frac{a_{2}}{2^{2}}+\frac{a_{3}}{2^{3}}+\cdots
$$

we see that if x and y have binary representations that agree for the first k places (i.e., $\left.[x]_{2}=. a_{1} a_{2} \ldots a_{k} b_{k+1} b_{k+2} \ldots, \quad[y]_{2}=. a_{1} a_{2} \ldots a_{k} c_{k+1} c_{k+2} \ldots\right)$, then $|x-y| \leq(1 / 2)^{k}$. Note also that if $[x]_{2}=. a_{1} a_{2} a_{3} \ldots$, then $[2 x]_{2}=a_{1} \cdot a_{2} a_{3} \ldots,\left[2^{2} x\right]_{2}=a_{1} a_{2} \cdot a_{3} a_{4} \ldots$, etc., and $\left[\frac{1}{2} x\right]_{2}=.0 a_{1} a_{2} a_{3} \ldots$ etc. (multiplying by 2 shifts the binary representation to the left, dividing by 2 shifts it to the right).

The saw tooth transformation;

$$
S(x)= \begin{cases}2 x & \text { if } 0 \leq x \leq \frac{1}{2} \\ 2 x-1 & \text { if } \frac{1}{2}<x \leq 1\end{cases}
$$

The representation \tilde{S} of S on \mathcal{B};

$$
\tilde{S}\left(. a_{1} a_{2} a_{2} \ldots\right)=. a_{2} a_{3} a_{4} \ldots \quad \text { shift left and drop } a_{1}
$$

So, the saw tooth transformation acts on numbers by shifting their binary sequences to the left (and dropping a_{1}).

The tent transformation;

$$
T(x)=\left\{\begin{array}{cc}
2 x & 0 \leq x \leq \frac{1}{2} \\
2-2 x & \frac{1}{2}<x \leq 1
\end{array}\right.
$$

The representation \tilde{T} of T on \mathcal{B};

$$
\tilde{T}\left(. a_{1} a_{2} a_{2} \ldots\right)=\left\{\begin{array}{lll}
. a_{2} a_{3} a_{4} \ldots & a_{1}=0 \\
. a_{2}^{\star} a_{3}^{\star} a_{4}^{\star} \ldots & a_{1}=1
\end{array} \quad \text { shift } \quad\right. \text { shift and conjugate }
$$

Here,

$$
a_{i}^{\star}= \begin{cases}1 & \text { if } a_{i}=0 \\ 0 & \text { if } a_{i}=1\end{cases}
$$

The coordinate transformation $h(x)$;

$$
h(x)=\sin ^{2}\left(\frac{\pi x}{2}\right)
$$

Fixed points for Logistic

Steps 1 and 2: Fixed points for \tilde{T} and T
Suppose $\tilde{T}(\vec{a})=\vec{a}$. Then,

$$
\tilde{T}\left(a_{1} a_{2} a_{3} \ldots\right)=a_{1} a_{2} a_{3} \ldots
$$

Case 1: $a_{1}=0$. Then $\tilde{T}\left(a_{1} a_{2} a_{3} \ldots\right)=a_{2} a_{3} a_{4} \ldots$. Comparing the left and right sides, $a_{1}=a_{2} \rightarrow a_{2}=0$ (since $a_{1}=0$). So then since $a_{2}=a_{3}$, we must have that $a_{3}=0$. Continuing in this way we see that all $a_{i}=0$. Thus, if $\tilde{T}(\vec{a})=\vec{a}$ and $a_{1}=0$, then $\vec{a}=000 \ldots$. So the number x with $[x]_{2}=000 \ldots$ is a fixed point of $T(x)$. This x is clearly 0 . Check; $T(0)=2(0)=0$. Also, $h(0)=0$ so 0 is a fixed point of $f(x)=4 x(1-x)$.

Case 2: $a_{1}=1$. Then $\tilde{T}\left(a_{1} a_{2} a_{3} \ldots\right)=a_{2}^{\star} a_{3}^{\star} a_{4}^{\star} \ldots$. Comparing the left and right sides, $a_{1}=a_{2}^{\star} \rightarrow a_{2}=1$ (since $a_{1}=0$). So then since $a_{2}=a_{3}$, we must have that $a_{3}^{\star}=1 \rightarrow a_{3}=0$. Continuing in this way we see that $\vec{a}=\overline{1010}$. Thus, if $\tilde{T}(\vec{a})=\vec{a}$ and $a_{1}=1$, then $\vec{a}=\overline{1010}$. So the number x with $[x]_{2}=\overline{1010}$ is a fixed point of $T(x)$.

Now, if x is such that $[x]_{2}=\overline{1010}$, then $x-\frac{1}{2}+\frac{1}{2^{3}}+\frac{1}{2^{5}}+\cdots=2\left(\frac{1}{4}+\frac{1}{4^{2}}+\frac{1}{4^{3}}+\cdots\right)=$ $2\left(\frac{1 / 4}{1-1 / 4}\right)=2 / 3$. (Note how we found this by summing a geometric series; whenever the binary representation (or in any base) of a number repeats, we can determine that number by summing a geometric series.) Thus, $2 / 3$ is a fixed point of $T(x)$;

$$
T(2 / 3)=2-2(2 / 3)=2-4 / 3=2 / 3
$$

Step 3: Convert to fixed point for Logistic

$$
\begin{gathered}
\text { And so } \tilde{x}=h(2 / 3)=\sin ^{2}\left(\frac{1}{2} \frac{2}{3} \pi\right)=\sin ^{2}\left(\frac{\pi}{3}\right)=\frac{3}{4} \text { is a fixed point of } f(x)=4 x(1-x) ; \\
\qquad f(3 / 4)=4(3 / 4)(1-3 / 4)=3 / 4
\end{gathered}
$$

