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Abstract. Donoho and Johnstone introduced an algorithm and supporting
inequality that allows the selection of an orthonormal basis for optimal denois-
ing. The present paper concentrates in extending and improving this result,
the main contribution is to incorporate a wider class of noise vectors. The
class of strict sub-Gaussian random vectors allow us to obtain large deviation
inequalities in a uniform way over all basis in a given library. The results are
obtained maintaining the algorithmic properties of the original results.
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1. Introduction

The subject of this paper is oracle based denoising. Let s be a signal embedded
in noise, we are interested in estimators ŝ, for the signal s, obtained by thresholding
coefficients in an orthonormal basis B of Rn. We consider the problem of optimal
basis selection when there is available a library L of such bases from which to choose
from. We will look for estimators which satisfy the following oracle-type inequality
with high probability

(1) ||ŝ− s||22 ≤ c minB∈L R(s,B).

R(s,B) is the oracle risk for the basis B, this last quantity is the average quadratic
error incurred by an oracle estimator (see (2)). This last estimator makes use of
knowledge of s and is of excellent quality but unavailable in practice. After proper
re-scaling, it can be argued that an inequality of the above type is asymptotically
optimal (in the number of samples) as the oracle risk decays in a best possible
manner. Therefore, this type of inequality gives an apriori measure for the quality
of the algorithm associated to estimators satisfying (1). We refer the reader to the
bibliography (for example [1] and [3]) for background information.

In [1] Donoho and Johnstone introduced an algorithm that allows the selection
of an orthonormal basis from a library of such bases. Their result concentrates on
proving an inequality like the one described above. Their assumption on the noise
vector is that its coordinates are independent identically distributed (i.i.d.) Gauss-
ian random variables. The technique employed in [1] uses a general concentration
inequality which they borrow from [6]. Other accounts of these results as well as
improvements can be found in [3] and [5].

The main point of the present article is to extend the results of Donoho and
Johnstone to a wider class of noise vectors. We borrow the noise set-up and re-
lated background results from [4]. We generalize the Gaussian hypothesis and
only require the noise vector to satisfy a strict sub-Gaussian hypothesis (see Theo-
rem 3). This set-up generalizes the main result from [1]; Theorem 2 characterizes
sub-Gaussian random variables and gives an indication for the wider scope of our
theorems (see Definition 6 for the precise set-up). For example, noise coordinates
with the uniform distribution are included in our setting. Our results have been
carefully crafted so that the algorithmic content of the original results have been
preserved, in particular the thresholding parameters used are the ones used in the
Gaussian case. We also take the opportunity to improve on the value of some of
the key parameters appearing in the main inequality in [1]. Our proof follows the
one in [1] but uses a classical argument to derive a more specific, relative to our
noise vector, concentration inequality.

Let us comment on the essence of our approach. As a consequence of the way
that risk is defined, it is easy to see that the oracle risk appearing in (1) uses very
little knowledge about the noise distribution; it actually only uses the variances
of the noise coordinates. In fact our results show that the key aspect of the noise
distribution is the existence of an exponential second moment inequality. This
result only depends on the tail decay of the Gaussian distribution. The effect of a
change of coordinates has also to be considered. These observations lead us into
the wide class of strict sub-Gaussian random vectors as a natural class were results
of the type (1) can be proven.
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The paper is organized as follows, Section 2 summarizes the main results from
[1]. Section 3 describes the set-up of strict sub-Gaussian noise vectors. Our main
result, Theorem 3, is then proved in Section 4. Section 5 briefly discusses some
technical issues. Appendix A states some of the properties of sub-Gaussian and
strict sub-Gaussian noise vectors that we require. Finally, Appendix B proves, for
the reader’s convenience, some intermediate results needed along the way.

2. Summary of Known Results

This section summarizes the main result from [1] and the associated algorithm.
First we introduce some notation.
If B = {e1, . . . , en} is an orthonormal basis for Rn, then for any vector v ∈ Rn, vk[B]
denotes the kth coordinate of v in the basis B; vk[B] = 〈v, ek〉. Here, 〈v, u〉 is the
standard (Euclidean) inner product on Rn. In particular, 〈u, v〉 =

∑n
k=1 uk[B]vk[B]

for any orthonormal basis B. U = {uk}n
k=1 denotes the standard orthonormal basis

of Rn and ‖v‖2 = 〈v, v〉.
The data is given in the form y = s+z where s, z ∈ Rn, s is the deterministic signal
and z a noise vector whose coordinates zi[U ] are assumed to be i.i.d. Gaussian white
noise. The common variance of the coordinates will be denoted by σ2 = E(z2

i [U ]).
Let L be a library of orthonormal bases of Rn and Mn the set of distinct vectors in
L. Mn will denote the cardinality of Mn, i.e., Mn is the total number of distinct
vectors occurring among all the bases in the library. Let y[B] be the original data
transformed into the basis B.

2.1. Oracle in basis B. Let w, θ, ζ be the coordinate vectors of y, s, z, respectively,
in some basis B. The only probabilistic hypothesis needed in the computation that
follows is the assumption that E(ζi) = 0. Let θ̂ be the oracle estimate for θ;

θ̂i = δi wi, δi = δi(θi) ∈ {0, 1}.
The Oracle risk in basis B, R(s,B), is given by

(2) R(s,B) ≡ min
δi

E(‖θ̂ − θ‖2) =
n∑

i=1

min(s2
i [B], σ2

i ),

this equality is easy to prove and well known. It will be convenient to introduce
the best risk in the library L;

(3) R?(s,L) = min
B∈L

R(s,B).

These quantities depend on knowledge of θ (hence the name oracle) and are mate-
rially unavailable for denoising purposes.
Choose λ′ > 8 and set

(4) Λ′n = Λ′n(λ′) = (λ′ σ (1 + tn))2, where tn =
√

2 log Mn.

Remark 1. The “ ′“ in λ′ and Λ′n was not used originally in [1]; we use it to
differentiate their values from our values of λ and Λn used here. Similar remarks
also apply to other symbols which use “ ′“ below.

We now describe a procedure to obtain an optimal best basis estimate. Define the
entropy functional

E ′λ(y,B) =
∑

i

min(y2
i [B], Λ′n).
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Let B̂′ be the best orthogonal basis according to this entropy;

B̂′ = arg minB∈LEλ(y,B).

For given threshold t define the thresholding function, acting on a real number
c, by ηt(c) = c 1{|c|>t} where 1{|c|>t} is the characteristic function of the set
(−∞,−t) ∪ (t,∞). Given the basis B̂′, we then apply hard thresholding to obtain
the empirical best estimate ŝ′;

ŝ′i[B̂′] = η√
Λ′n

(yi[B̂′]).
A measure of the quality of the above procedure, which approximates s by means
of ŝ′, is given by the following theorem from [1].

Theorem 1. Given data y = s + z as described above, then, with probability ex-
ceeding πn = 1− e/Mn:

(5) ||ŝ′ − s||22 ≤
λ′ Λ′n

σ2 (λ′ − 8)
min
B∈L

E(||ŝ′B − s||2) =
λ′3 (1 + tn)2

(λ′ − 8)
R?(s,L).

The indicated minimum is over all ideal hard thresholding estimates working in
all bases of the library, i.e. in basis B the coordinates of ŝ′B are just given by
yi[B] 1{|si[B|>σ}. We provide more details in Appendix B.
The relevance of having the magnitude minB∈L E(||ŝ′B− s||2) as an upper bound to
the L2 error of the approximation, as in (5), is discussed in [1]. For the case when
L consists of a single orthonormal basis, Theorem 1 specializes, up to a constant
factor, to a main result in [2].

3. Strict Sub-Gaussian Noise

Here we introduce the definitions needed to characterize our hypothesis on the
noise vector z.

Definition 1. A random variable ξ is called sub-Gaussian if there exists a number
a ∈ [0,∞) such that the inequality

E
(

exp
(
λ ξ

))
≤ exp

(
a2 λ2

2

)

holds for all λ ∈ R1. The class of all sub-Gaussian random variables defined on a
common probability space (Ω,F , P ) is denoted by Sub(Ω).

Introduce the notation

τ(ξ) = inf{a ≥ 0 : E (exp (λ ξ)) ≤ exp
(

a2 λ2

2

)
λ ∈ R1},

τ(ξ) is called the sub-Gaussian standard of the random variable ξ. We say that the
sub-Gaussian random variable ξ is standardized to one if τ(ξ) = 1. It can be seen
that Sub(Ω) is a Banach space under the norm τ(·) and that (see [4])

(6) E(ξ2) ≤ τ2(ξ).

Definition 2. A random variable η majorizes a random variable ξ in distribution
if there exists x0 ≥ 0 such that

P (|ξ| ≥ x) ≤ P (|η| ≥ x) for all x > x0.

The following theorem characterizes sub-Gaussian random variables.



6 SEBASTIAN E. FERRANDO1 AND RANDALL PYKE2

Theorem 2. A random variable ξ is sub-Gaussian if and only if it has mean zero
and ξ is majorized in distribution by a zero-mean Gaussian random variable.

Definition 3. A random vector ξ ∈ Rn is called sub-Gaussian if there exists a
symmetric nonnegative definite operator B : Rn → Rn such that

(7) E
(

exp〈u, ξ〉
)
≤ exp

(1
2
〈Bu, u〉

)

holds for all u ∈ Rn. We call the operator B the companion operator for ξ. The
class of all sub-Gaussian random vectors is denoted by Sub(Ω,Rn). Notice that
Sub(Ω,R) = Sub(Ω).

Lemma 1. Let ξ ∈ Rn be a random vector and B be an orthonormal basis. If
ξk[B] ∈ Sub(Ω) k = 1, . . . , n, then ξ ∈ Sub(Ω,Rn).

Notice that Lemma 1 reduces the problem of constructing elements of Sub(Ω,Rn)
to the problem of constructing elements of Sub(Ω). See Appendix A for explicit
examples and [4] for detailed information on Sub(Ω,Rn).
In some sense the assumption z ∈ Sub(Ω,Rn) is the most natural for the noise
vector, nonetheless we use stronger hypothesis as introduced below. The reasons
for requiring stronger hypothesis are explained in Section 5.

Definition 4. A sub-Gaussian random variable ξ is called strictly sub-Gaussian if
σ2 ≡ E(ξ2) = τ2(ξ). The class of all strictly sub-Gaussian variables is denoted by
SSub(Ω).

Definition 5. A random vector ξ is called strictly sub-Gaussian if

E
(

exp〈u, ξ〉
)
≤ exp

(
1
2
〈Bu, u〉

)

holds for all u ∈ Rn where B is the covariance operator of ξ, namely

〈Bu, v〉 = E
(
〈ξ, u〉〈ξ, v〉

)
∀u, v ∈ Rn.

The class of all strictly sub-Gaussian random vectors is denoted by SSub(Ω,Rn).
Note that SSub(Ω,R) = SSub(Ω) and, of course, SSub(Ω,Rn) ⊆ Sub(Ω,Rn).
Lemma 3 in Appendix A shows under what conditions SSub(Ω) is closed under
linear combinations. Lemma 5 in Appendix A reduces the problem of construct-
ing elements of SSub(Ω,Rn) to the problem of constructing independent elements
of SSub(Ω). For these reasons, it is enough to provide examples of elements in
SSub(Ω), this is done in Appendix A.

As indicated before, U = {uk}n
k=1 denotes the standard basis of Rn. We assume

the data is of the form y = s + z where s ∈ Rn is the signal and z is the noise
which is assumed to satisfy the following assumption.

Definition 6. We say that the vector valued random variable z (i.e. the noise
vector) is strict sub-Gaussian white noise if it satisfies:

z ∈ SSub(Ω,Rn), the random variables zk[U ] are uncorrelated, and E(z2
k[U ]) = σ2 ∀k.

Remark 2. All our results remain valid if U , in Definition 6, is replaced by any
other orthonormal basis. It follows from Lemma 5 that a sufficient condition for z
to be strict sub-Gaussian white noise is given by:

zk[U ] ∈ SSub(Ω,R), the random variables zk[U ] are jointly independent, and
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E(zk[U ]2) = σ2.

4. Library of Bases and Strict Sub-Gaussian Noise

Set

δn(λ) ≡ 4 λ (1 + (2 + 3β) log Mn) .

We have left β unspecified as this is convenient for some developments and compar-
isons. For the sake of simplicity the reader can set β = 1. We will use the following
threshold

(8) Λn = Λn(λ) = σ2δn(λ), λ > 2.

With this new parameter we repeat the notions from Section 2, first introduce the
empirical entropy as follows

Eλ(y,B) =
∑

i

min(y2
i [B], Λn).

Let B̂ be the best orthogonal basis according to this entropy;

B̂ = arg minB∈LEλ(y,B).

Apply hard thresholding with ηt(y) = y1{|y|>t} to obtain the empirical best esti-
mate ŝ?;

ŝ?
i [B̂] = η√Λn

(yi[B̂]).

For the present set-up, in which Λn is direction independent, the complexity func-
tional from (33) can be expressed as follows;

K(s̃, s) = ‖s̃− s‖22 + Λn min
B∈L

∑

{i, s̃i[B]6=0}
1 = ‖s̃− s‖22 + Λn NL(s̃)

where

NL(s̃) = minB#{ei ∈ B : s̃i[B] 6= 0}.
Let so denote a signal of minimum theoretical complexity;

(9) K(so, s) = mins̃K(s̃, s).

Several key properties of the above notions, and their proofs, are given in Appendix
B.
In the next theorem we will make use the following notation

j0 ≡ max(NL(so), 1).

Remark 3. In Theorem 3 we will assume (1+(2+3β) log Mn) ≤ Mβ
n which holds

for Mn ≥ 15 when β = 1, a condition that will hold for all practical purposes. If
this condition is not assumed, the only effect on our result will be to replace the
above δn(λ) by δn(λ) = 6.44 λ (1 + 2(1 + β) log Mn).

Here is our main result.
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Theorem 3. Given data y = s+z, we assume z is strict sub-Gaussian white noise
(as in Definition 6) and (1 + (2 + 3β) log Mn) ≤ Mβ

n . Then, after setting β = 1,
with probability exceeding πn = 1− e/M j0

n :

||ŝ? − s||22 ≤ 2 λ

(λ− 2)
minB

∑

i

min(s2
i [B], Λn)(10)

≤ 2 λ δn(λ)
(λ− 2)

R?(s,L).(11)

Proof. The first moves in the proof are intended to improve the values of some key
parameters. Define

k =
λ

4
Λn

(
NL(ŝ?) + NL(so)

)
,(12)

k̂? = ‖ŝ? − s‖22 + k,(13)
ko = ‖so − s‖22 + k.(14)

Let Bo
1 and B̂?

1 be the bases that are realized in NL(so) and NL(ŝ?) respectively,
and Bo ⊂ Bo

1 and B̂? ⊂ B̂?
1 be those basis vectors in Bo

1 and B̂?
1 with which so

and ŝ? have nonzero inner products (i.e., the vectors corresponding to the nonzero
coordinates of so[Bo] and ŝ?[B̂?]). Let S be the subspace spanned by the vectors
in Bo ∪ B̂?. Let PS be orthogonal projection onto S. Thus,

dimS ≤ NL(so) + NL(ŝ?).

From (39), in Appendix B, we have

(15) K(ŝ?, s) ≤ K(so, s) + 2〈z, ŝ? − so〉.
We also have the upper bound

2〈z , ŝ? − so〉 = 2〈PSz , ŝ? − so〉
= 2〈PSz , ŝ? − s〉+ 2〈PSz , s− so〉
≤ 2‖PSz‖

√
k̂? + 2‖PSz‖

√
ko.(16)

Consider the events

A1 = {ω : ‖PSz(ω)‖2 ≤
√

k̂?

λ
and ‖PSz(ω)‖2 ≤

√
ko

λ
}

and
A2 = {ω : NL(ŝ?) + NL(so) = 0}.

We will prove (10) for any ω ∈ A ≡ A1 ∪A2. To this end it is enough to prove that

(17) ‖ŝ? − s‖22 ≤ 2K(so, s)
(1− 2

λ )
, λ > 2 for all ω ∈ A.

The fact that (17) implies (10) follows from

K(so, s) = mins̃ K(s̃, s) = minB
∑

i

min(s2
i [B], Λn)(18)

≤ δn(λ) ·minB
∑

i

min(s2
i [B], σ2)

= δn(λ) · R?(s,L),

for a proof of (18) see Appendix B.
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Next we proceed to prove (17). Consider first w ∈ A1,

2‖PSz‖2
√

k̂? + 2‖PSz‖2
√

ko ≤ 2
k̂?

λ
+ 2

ko

λ

=
2
λ
‖ŝ? − s‖22 +

2
λ
‖so − s‖22 + Λn

(
NL(ŝ?) + NL(so)

)
.(19)

Using this and (15) we obtain

‖ŝ? − s‖22 + ΛnNL(ŝ?) ≤
‖so − s‖22 + ΛnNL(so) +

2
λ
‖ŝ? − s‖22 +

2
λ
‖so − s‖22 + ΛnNL(ŝ?) + ΛnNL(so),

(20)

which reduces to

‖ŝ? − s‖22 ≤ 2K(so, s)
(1− 2

λ )
, λ > 2.

Consider now w ∈ A2, clearly then so = ŝ? = 0, therefore

‖ŝ? − s‖22 = ‖s‖22 = KB(so, s) ≤ 2 KB(so, s)
(1− 2

λ )
,

where we used λ > 2. Therefore, (17) has been proven for all w ∈ A.

In order to complete the proof, it remains to obtain an upper bound for P (Ac). Let
C(j, Mn) denote the collection of all subsets consisting of j vectors chosen from the
Mn vectors of Mn. By an abuse of notation we will write Ŝ ∈ C(j, Mn) to mean
the subspace spanned by an element of C(j, Mn),

Ac ⊆ {
ω : ‖PSz(ω)‖2 ≥

√
Λn

√
NL(so) + NL(ŝ?)

2
√

λ

} ⊆
Mn⋃

j=j0

Bj

where

Bj ≡ {
ω : sup

bS∈C(j,Mn)

‖PbSz(ω)‖2 ≥
√

Λn

√
j

2
√

λ

}
.

Let

(21) a =
√

Λn

√
j

2
√

λ

and for a fixed subspace Ŝ1 ∈ C(j, Mn) of dimension d, with d ≤ j, define

Dj =
{
ω : ‖PbS1

z(ω)‖2 ≥ a
}
.

We will obtain the following bound

(22) P (Dj) ≤ M−j
n M−j0β

n .

With this common bound, i.e. independent of the particular Ŝ1, we have

P (Bj) ≤ #C(j, Mn)M−j
n M−jβ

n =
(

Mn

j

)
M−j

n M−j0β
n .

Therefore,

P (Ac) ≤
Mn∑

j=j0

P (Bj) ≤
Mn∑

j=j0

(
Mn

j

)
M−j

n M−j0β
n ≤ M−j0β

n

Mn∑

j=1

1
j!
≤ e

M−j0β
n

,
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which will conclude the proof upon setting β = 1. Thus, remains to prove the
bound on (22). It is here where the hypothesis on the noise vector are put to use.
Let {e1, . . . , ed} be an orthonormal basis of Ŝ1. Extend {e1, . . . , ed} to an orthonor-
mal basis E = {e1, . . . , ed, ed+1, . . . , en} of Rn. Then

(23) z =
n∑

k=1

〈z, ek〉 ek, and ξ = PbS1
z =

d∑

k=1

〈z, ek〉 ek.

Evidently,

ξk[E ] = zk[E ], k = 1, . . . , d,

ξk[E ] = 0, k = d + 1, . . . , n.

Let U = {u1, . . . , un} be the standard basis of Rn. Then z =
∑n

k=1〈z, uk〉uk and

ξk[E ] = 〈z, ek〉 =
n∑

j=1

zj [U ]〈uj , ek〉, k = 1, . . . , d.

Since PbS1
is a linear operator, by Lemma 4 from Appendix A, ξ ∈ SSub(Ω,Rd).

Let R = [PbS1
]EU be the matrix representation of PbS1

acting from the basis U to the
basis E . Then [R]ij = 〈uj , ei〉 ≡ rij . Note that

∑n
j=1 r2

ij = ‖ei‖22 = 1, ∀i = 1, . . . , n.
Consider k = 1, . . . , d,

τ2(ξk[E ]) = E(ξ2
k[E ]), ξk[E ] ∈ SSub(Ω)(24)

= E
(
(

n∑

j=1

rkj zj [U ])2
)

=
n∑

j=1

r2
kj E(z2

j [U ]), zj [U ] are uncorrelated

=
n∑

j=1

r2
kj τ2(zj [U ]), zj [U ] ∈ SSub(Ω)

=
n∑

j=1

σ2
j r2

kj , τ2(zj [U ]) = E(z2
j [U ]) = σ2

j

Under the hypothesis of the present theorem, τ2(zj [U ]) = σ2
j = σ2, j = 1, . . . , n.

Let Q be the covariance operator of ξ and qij be the matrix entries of [Q]EE . Since
ξk[E ] = 0 for k = d + 1, . . . , n, bij = 0 if either i or j is greater than d. For
i, j ∈ {1, . . . , d},

qij = E
(
ξi[E ]ξj [E ]

)
= E

(
zi[E ]zj [E ]

)
= E

(
〈z, ei〉〈z, ej〉

)
=

E
(
〈

n∑

k=1

zk[U ]uk, ei〉)〈
n∑

k′=1

zk′ [U ]uk′ , ej〉
)

= E
( n∑

k=1

zk[U ]〈uk, ei〉
n∑

k′=1

zk′ [U ]〈uk′ , ej〉
)

=

∑

k,k′
E

(
zk[U ]zk′ [U ]〈uk, ei〉〈uk′ , ej〉

)
=

n∑

k=1

σ2
k rki rkj ,
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where we have used the fact that the zk[U ] are uncorrelated; E(zk[U ]zk′ [U ]) =
0, k 6= k′. In the present white noise case τ2(zj [U ]) = σ2

j = σ2, j = 1, . . . , n. We
use the fact that

∑n
1 rki rkj = 〈ei, ej〉 = δij to obtain

qkk = σ2 = τ2(ξk[E ]), k = 1, . . . , d(25)
qij = 0, i 6= j;(26)

and so Q is diagonal. The above considerations will allow us to apply Theorem 4
in Appendix A. For convenience introduce the notation Y = ||PbS1

z||2. With a as
above, using Markov’s inequality we obtain;

(27) P (Y ≥ a) = P
(

exp(θY 2) ≥ exp(θa2)
)
≤ exp(−θa2) E

(
exp(θY 2)

)
,

where θ > 0 is an arbitrary parameter.
Consider (29) in Appendix A with r > 2 σ2 and take θ = 1/r. Let ρ ≡ 2σ2/r so
0 < ρ < 1. Using qk,k = 0 for k > d and (27) we obtain
(28)

P (Y ≥ a) ≤ exp(−a2/r) E
(

exp(1/r

n∑

k=1

ξ2
k)

)
= exp(−a2/r) E

(
exp(1/r

d∑

k=1

ξ2
k)

)
≤

exp(−a2/r)
d∏

k=1

(
1− 2σ2

r

)−1/2

≤ exp(−a2ρ/2σ2) (1− ρ)−d/2 ≤

exp(−a2ρ/2σ2) (1− ρ)−j/2

Notice that in the last inequality we have used the fact that d ≤ j and ρ < 1. The
function G(ρ) ≡ exp(−a2ρ/2σ2) (1− ρ)−j/2 is minimized at

ρ′ = 1− j σ2

a2
,

Here, a2 = Λnj/4λ > jσ2 and so ρ′ ∈ (0, 1). Evaluating G(ρ) at ρ = ρ′ and using
equations (8), (21) and (28) we obtain (notice that j ≥ j0):

P (Dj) = P (Y ≥ a) ≤ G(ρ′) = exp(j/2) exp(−a2/2σ2)
( a2

jσ2

)j/2

=

exp(j/2) exp(−j/2) exp(−j/2 (2 + 3β) log Mn) (1 + (2 + 3β) log Mn)j/2

≤ M−j
n M−j0β

n

where we have used (1 + (2 + 3β) log Mn) ≤ Mβ
n . ¤

Presumably, the need to consider the event A2 in the above proof has been over-
looked in [1].

Parameter Improvements:
We now briefly compare the values of Λ′n in (4) and Λn in (8). We will refer

to the energy of a signal, by which we mean the square of its L2-norm. define
e′ ≡ λ′Λ′n/

(
σ2(λ′− 8)

)
and e ≡ 2 λΛn/

(
σ2(λ− 2)

)
. The numbers e′ and e are the

coefficients in the right hand sides of (5) and (10) respectively. We will set β = 1
in these parameters. On the one hand, for a given λ′ and setting λ = λ′/4, it is
easy to see that

3.2 Λn ≤ Λ′ and e ≤ 0.6 e′
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So in this case (λ = λ′/4) Theorem 3 constructs a more energetic estimate and
reduces the upper bound by almost half. On the other hand, we can compare the
improvements in the upper bounds for the errors by choosing λ such that Λn ≈ Λ′n.
Therefore, if for purposes of comparison we force Λn = 2λ′2σ2

5 (1 + 5 log Mn) ≤ Λ′n,
under this condition ŝ? has a larger energy than ŝ′. It also follows that

e′

e
=

λ′(λ− 2)
(λ′ − 8)2λ

and λ′2 = 10λ.

As a numerical example we can take λ′ = 8.1 which gives e′/e > 28. Therefore we
obtain a more energetic estimate while reducing considerably the upper bound for
the error.

5. Discussion

It should be possible to generalize our results to colored noise. It was mentioned
previously that it is more natural to assume z ∈ Sub(Ω,Rn) than the stronger
hypothesis z ∈ SSub(Ω,Rn). We now explain our use of this later assumption. Let
ξ be the projection of z in some library subspace (as in (23)). It is then crucial
to obtain useful estimates on the matrix elements of the companion matrix of ξ.
The computation in (24) gives this estimate. One can always find analogous upper
bounds (for matrix elements) under the sole assumption z ∈ Sub(Ω,Rn), but these
estimates are not useful for the purposes of this paper. On the other hand, this
problem is not present for the case in which we only have to deal with a single basis
as both Bo and B̂? are both subsets of a common orthonormal set, namely B. This
implies that, for the single basis case, we can relax the hypothesis on the noise and
only require it to be sub-Gaussian. A previous version of the present document
presented a theorem with such a result, we did not include this theorem in our final
version of the paper as it was shown to us (by a referee) that such a result did not
provide optimal bounds. Moreover, when dealing with sub-Gaussian noise one has
to address the issue of estimating τ2(z).

Appendix A. Noise Results

In this appendix we state several basic results and provide examples related to
our noise set-up, most of these results are used directly or indirectly in the main
body of the paper. Most proofs can be found in [4].

Lemma 2. Assume ξ1, . . . , ξn are independent sub-Gaussian random variables.
Then

τ2

(
n∑

k=1

ξk

)
≤

n∑

k=1

τ2(ξk).

Lemma 3. Let ξ and η be independent and in SSub(Ω). Then

τ2(ξ + η) = E
(
(ξ + η)2

)

(so ξ + η ∈ SSub(Ω)).

Lemma 4. Assume ξ ∈ SSub(Ω,Rn) and let A be a linear map from Rn to Rm.
Then Aξ ∈ SSub(Ω,Rm).
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Lemma 5. Suppose that ξ1, . . . , ξn are jointly independent elements of SSub(Ω)
and {ei}i=1,...,n an orthonormal basis in Rn. Then

ξ =
n∑

i=1

ξi ei ∈ SSub(Ω,Rn).

Remark 4. Notice that, given a collection of jointly independent elements from
SSub(Ω), the previous lemma allows to construct new elements from SSub(Ω) by
choosing different orthonormal basis of Rn.

Lemma 6. One has ξ ∈ SSub(Ω,Rn) if and only if 〈u, ξ〉 ∈ SSub(Ω) for any
u ∈ Rn.

Theorem 4. Assume ξ ∈ Sub(Ω,Rn) and let B = (bk,j)n
k,j=1 be its companion

matrix which we will assume to be a diagonal matrix. Then if r > 2 maxk bk,k

(29) E
(
e1/r

Pn
k=1 ξ2

k

)
≤

n∏

k=1

(
1− 2bk,k

r

)−1/2

.

The next two results give sufficient conditions for a random variable ξ to be in
SSub(Ω).

Proposition 1. Let ξ be symmetric and E(ξ2) < ∞. If

E(ξ2k) ≤ (E(ξ2))k (2k)!
2kx!

, k ≥ 1

then ξ ∈ SSub(Ω).

Proposition 2. Assume the characteristic function ψ(z) = E(eizξ), z ∈ C, of a
zero mean random variable ξ is an entire function of finite order. If either {z :
ψ(z) = 0} = ∅ or {z : ψ(z) = 0} ⊆ R, then ξ ∈ SSub(Ω).

Examples:

1) If ξ is a bounded random variable with zero mean then ξ ∈ Sub(Ω).

2) Gaussian random variables ξ with mean zero are in SSub(Ω).

3) Consider a random variable ξ and a positive real number m such that P (ξ = m) =
P (ξ = −m) = 1−µ

2 and P (ξ = 0) = µ. Then µ ∈ [0, 2/3] implies that ξ ∈ SSub(Ω).
To prove this we argue as follows, first, we indicate that E(ξ2) = m2(1−µ). Notice
that for µ ∈ [0, 2/3]

(30)
2kk!

(1− µ)k−1(2k)!
≤ 6kk!

3(2k)!
≤ 1 for all k ≥ 1.

Now we compute

(31) E(eλξ) = µ +
(1− µ)

2
(emλ − e−mλ) =

1 + (1− µ)
∞∑

k=1

(mλ)2k

(2k)!
≤ 1 +

∞∑

k=1

(1− µ)k(mλ)2k
2kk!

= e
(1−µ)m2λ2

2 = e
E(ξ2)λ2

2 .

Where we used (30) to obtain the inequality in (31). In general E(ξ2) ≤ τ2(ξ),
hence the above computation shows E(ξ2) = τ2(ξ).
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4) Consider a positive real number m and a random variable ξ uniformly distributed
over [−m,m]. Then ξ ∈ SSub(Ω). To prove this we argue as follows, first, we
indicate that E(ξ2) = m2/3. Now we compute

(32) E(eλξ) =
1

2m

∫ m

−m

eλxdx =
∞∑

k=0

(λm)2k

(2k + 1)!
,

using 6kk! ≤ (2k + 1)! we can then estimate

E(eλξ) = 1 +
∞∑

k=1

(λm)2k

(2k + 1)!
≤ 1 +

∞∑

k=1

(λm)2k

6kk!
= em2λ2/6 = eE(ξ

2)λ2/2.

Therefore, it follows that τ2(ξ) = E(ξ2).

Appendix B. Intermediate Results

Most of the results below appear explicitly or implicitly in [1], they are described
here for the reader’s convenience. We have used a direction dependent thresholding
for the sake of generality.

Complexity functional: Introduce the definition,

(33) K(s̃, s) ≡ ‖s̃− s‖22 + min
B∈L

∑

ei∈B, 〈s̃,ei〉6=0

Λn(ei).

For the purposes of the computations in this appendix Λn(ei) could be taken to be
any positive real number, in our applications we take Λn(ei) to be given by (8).
Recall that ŝ? was defined (in the basis B̂) by

ŝ?
i [B̂] = η√Λn

(yi[B̂])

where B̂ = arg minB∈LEλ(y,B) = arg minB∈L
∑

i min(y2
i [B], Λn(ei)). We have the

following properties:

(34) K1 ŝ? = arg mins̃K(s̃, y)

(35) K2 K(ŝ?, s) ≥ ‖ŝ? − s‖22

(36) K3 mins̃ K(s̃, s) = minB
∑

ei∈B
min(s2

i [B], Λn(ei)).

K2 is self-evident but we present proofs of the other two statements.

Proof of K1:

Fix y and basis B. For any s define

KB(s, y) ≡ ‖s− y‖22 +
∑

ei∈B 〈s,ei〉6=0

Λn(ei).
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Note that

KB(s, y) =
n∑

i=1

KB,i(s, y) where

KB,i(s, y) = |si[B]− yi[B]|2 + Λn(ei) χ(si[B]),
where χ(t) = 1 if t 6= 0 and χ(t) = 0 if t = 0.

Define the vector qi by

qi
j [B] = aiδij

ai =
{

yi[B], |yi[B]| >
√

Λn(ei)
0 |yi[B]| ≤

√
Λn(ei)

Let u 6= qi. The following table exhausts all the possibilities for KB,i(u, y);

ai = yi ai = 0
( so KB,i(qi, y) = Λn(ei) < y2

i ) ( so KB,i(qi, y) = y2
i ≤ Λn(ei) )

ui = ai KB,i(u, y) = Λn(ei) KB,i(u, y) = y2
i

ui 6= ai KB,i(u, y) = |ui − yi|2 + χ(ui)Λn(ei) KB,i(u, y) = |ui − yi|2 + Λn(ei)

We see that KB,i(qi, y) ≤ KB,i(u, y). Thus, qi is a global minimizer of KB,i(s, y).
By minimizing each KB,i(s, y),

s?
B = q1 + q2 + · · ·+ qn

is a global minimizer of KB(s, y).

Note that s?
i [B] = η√

Λn(ei)
(yi[B]) in the notation above, and

KB(s?
B, y) = Eλ(y,B)

Therefore,

K bB(s?
bB, y) = Eλ(y, B̂)(37)

= min
B
Eλ(y,B)

= min
B

KB(s?
B, y)

≥ K(ŝ?, y).

To show the last inequality, pick any basis B1 and let s?
B1

be defined as above.
Then,

KB1(s
?
B1

, y) = ‖s?
B1
− y‖22 +

∑

ei∈B1 〈s?
B1

,ei〉6=0

Λn(ei)

≥ ‖s?
B1
− y‖22 + min

B

∑

ei∈B 〈s?
B1

,ei〉6=0

Λn(ei)

= K(s?
B1

, y)
≥ K(ŝ?, y).

The following relations hold;

K bB(s?
bB, y) ≤ KB(s?

B, y) ∀B
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KB(s?
B, y) ≤ KB(s, y) ∀ s ∀B

Pick any vector s and let B2 be the basis B that minimizes
∑

ei∈B 〈s,ei〉6=0 Λn(ei)
(i.e., so K(s, y) = KB2(s, y)). Then,

K(s?
bB, y) ≤ K bB(s?

bB, y) ≤ KB2(s
?
B2

, y) ≤ KB2(s, y) = K(s, y)

The first inequality was demonstrated above (in the equation following (56)), while
the second and third inequalities follow from the two relations above. Thus,

K(s?
bB, y) ≤ K(s, y) ∀ s

Since the minimizer of K(· , y) is unique, s?
bB = ŝ?. This completes the proof of K1.

Proof of K3:

Let s̄ = arg mins̃ K(s̃, s). Then, as shown above, s̄ is defined in the basis B̂(=
B̂s) by s̄i = η√Λn

(si[B̂]) where B̂ = arg minB∈LEλ(s,B). Thus, mins̃ K(s̃, s) =
K(s̄, s) = KB̂(s̄, s) = Eλ(s, B̂), (by (56)), which proves K3.

Other relations

Let so denote a signal of minimum theoretical complexity (see (9)). Therefore,

K(ŝ?, y) ≤ K(so, y).

Also,

(38) K(ŝ?, y) = ‖ŝ? − y‖22 + min
B∈L

∑

i, ŝ?
i [B]6=0

Λn(ei)

= 〈ŝ? − y, ŝ? − y〉+ min
B∈L

∑

i, ŝ?
i [B] 6=0

Λn(ei) =

〈ŝ? − s− z, ŝ? − s− z〉+ min
B∈L

∑

i, ŝ?
i [B] 6=0

Λn(ei)

= 〈ŝ? − s, ŝ? − s〉+ 〈ŝ? − s,−z〉+ 〈ŝ? − s,−z〉+ 〈−z,−z〉+ min
B∈L

∑

i, ŝ?
i [B]6=0

Λn(ei)

= K(ŝ?, s) + 2〈z, s− ŝ?〉+ ‖z‖22
Therefore,

(39) K(ŝ?, s) = K(ŝ?, y)− 2〈z, s− ŝ?〉 − ‖z‖22
≤ K(so, y)− 2〈z, s− ŝ?〉 − ‖z‖22

= ‖so − (s + z)‖22 + min
B∈L

∑

i, so
i [B]6=0

Λn(ei)− 2〈z, s− ŝ?〉 − ‖z‖22

= ‖so − s‖22 + min
B∈L

∑

i, so
i [B] 6=0

Λn(ei) + 2〈z, s− so〉+ ‖z‖22 − 2〈z, s− ŝ?〉 − ‖z‖22

= K(so, s) + 2〈z, ŝ? − so〉.
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