Resonances, Stability, and Effective Stability in
Hamiltonian Dynamical Systems

R.Pyke, Department of Mathematics, University of Toronto *

August 1994

I Introduction

These notes are intended to be an informal introduction for nonspecialists to some aspects of clas-
sical Hamiltonian systems. The main objects of study are integrable systems and perturbations
there-of. Perturbations can lead to unstable motions and one of the aims of these notes is to un-
derstand how resonances of the underlying integrable system are responsible for these instabilities.

Perturbation Theory

We will discuss certain types of differential equations that arise in physics (”Hamiltonian equa-
tions”). By a finite-dimensional dynamical system we mean a set of ordinary differential equations
(ODE’s), and by an infinite-dimensional dynamical system we mean a set of partial differential equa-
tions (PDE’s). In either case the dynamical system can be written in the form Zu(t) = F(u(t)),
where u(t) € R*, (ODE), ! or u(t) € F, (PDE), where F is some (infinite-dimensional) space of
functions? and F : R* — R or F : F — F in the ODE or PDE case respectively. Let’s call the
variable ¢ time. When we talk of the evolution of a dynamical system we are talking about the
function u(¢) and how it changes in time. In these notes we are concerned with problems in classical
mechanics so we will only treat ODE’s (the ”equations of motion”). Let me just mention, though,
that many of the ideas and theorems we will discuss about ODE’s can be carried over to PDE’s
(see, for example, references [19],(26],[32],[33],[S],[BFG],[FSW],[W]).

One of the main paradigms of mathematical physics is perturbation theory. Studying a dy-
namical system means studying the properties of the solutions, which are functions, of the set
of differential equations that define the dynamical system. Typically, the equations that arise
in physics ("real” dynamical systems) are difficult to solve. However, often they are close to an
”ideal” one which we can solve (and this is why we call it ideal). The idea is to use the knowledge
gained from having at hand solutions to the ideal problem to help understand the (similar) real
problem. The difference between the real and ideal system is what we call the perturbation. Since
the perturbation is in the equations of motion, which are infinitesimal, its effect is cumulative. If
the perturbation is ”small” we expect it to have a relatively small effect on the evolution of the
underlying ideal system, at least at the start: the evolution of the real and ideal systems should be
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similar for some time until the perturbation affects the real system so much as to make it appear
significantly different from the ideal one. The main objective of perturbation theory is to estimate
this length of time and to quantify precisely in what respect the two systems differ.

Celestial Mechanics

The ODE’s that arise in classical mechanics decribe the motion of particles as they move under
the influence of one or more forces (e.g. gravitation, electric/magnetic) and, perhaps, subject to
some constraints (for example, the particles may only be allowed to move along a certain curve
or surface, or they may all be in a fixed position relative to one another so that they must move
together as a whole!). In celestial mechanics the particles are celestial objects like planets, moons,
comets, or stars. Here there are no rigid bodies (each planet etc., is treated like a particle with no
internal motions) and the only force is gravitation (usually).

Ideal mechanical systems exhibit periodic (in time) or quasi-periodic (in time) motions, i.e., the
solutions, u(t) , to the equations of motion are periodic or quasi-periodic. By a periodic function we
mean that u(t +T) = u(t) for all ¢ and for some T (the period), which implies, via the theorem on
Fourier series, that we can write u as u(t) = Yz ure™** where w € R ("frequency”: w = 27/T)

and the u, € R ("Fourier coefficients”: u; = £ f_TﬁQ u(t)e ™kt dt). By a quasi-periodic function

we mean that u can be written as u(t) = Y yczn uge’ @ where w = (w1, . ..,w,) € R* (frequency
vector). Notice that a quasi-periodic function can also be realized as a function defined on the
torus T"; u(t) = U(tw) where U : T" — R, (U = U(by,...,0r)), and tw = twi,...,tw,. Then
uk = (gpyw Jon U1, ..., On)e *0d0. 2

The significance of periodic and quasiperiodic solutions is straight forward: they are bounded
for all time (u(t) remains in a bounded subset of R”) and their motion is highly regular. For
example, in the ideal solar system (where the planets do not influence each other but move just
according to the gravitational force of the sun) the planets would never escape from the sun and
the orbits would always be ellipses. 3

In the real solar system the plantes do influence each other by their own gravitational fields.
This is the perturbation. Since the planets are much smaller than the sun this perturbation is very
weak compared to the interaction between the sun and the planets. So what about the real solar
system? Will it too exhibit regular motions for all time or will a planet some day escape 7 In other
words, Is the solar system stable? But notice that stability here means for all time. This notion
of stability is not a physically meaningful one because infinite times are never realized. What we
should be asking is whether the solar system is effectively stable: whether it will exhibit regular
motions for time scales that are relevant in this context (for example, the age of the universe).

KAM Theory and the Nekhoroshev Theorem

The approach taken in the perturbation theory of mechanical systems exploits the special
structure (or geometry) of the equations of motion - their ”Hamiltonian” structure (which will
be described below). This structure singles-out a certain class of coordinate systems (”canonical

LA ”rigid body”.

*For u(t) € R™, the above formulae are for each component of u.

3 Actually, even in the ideal solar system there are a few exceptional orbits that can escape from the sun - those
orbits that are straight lines radially away from the sun - plus we would have to arrange the initial positions of the
planets so that they would not collide. But modulo these considerations the resulting motions would be regular.



coordinates”?) in which the equations have a special form. For any ideal system there is, from the
class of canonical coordinates, a set of canonical coordinates, particular to the ideal system under
consideration, in which the equations of motion assume a very simple form. When expressed in
these coordinates the periodic and quasi-periodic behavior of the solutions are readily apparent.
(In this formalism the ideal systems are referred to as ”integrable” and the particular canonical
coordinates are called ”action- angle variables”; all of which will be described later on.)

Given a perturbed dynamical system (that is, one in which the equations of motion equal the
equations of motion of an ideal system plus another, perturbation, term) which is (originally)
expressed in canonical coordinates associated to the underlying ideal system (its action-angle vari-
ables), one looks for a new set of canonical coordinates that will put the perturbed equations into
ideal form (so that these new coordinates will be action-angle variables for the perturbed system).
Thus one looks for a transformation (”canonical transformation”) from one set of canonical coor-
dinates to another (actually, from one set of action-angle variables to another). If this can be done
then one has shown that the perturbed system is actually an ideal one (but was just given in the
"wrong” coordinates) and so has regular motions (periodic and quasi-periodic). That is, in this
case one would say that perturbing the original ideal system still gives an ideal system - that the
original ideal system is ”"robust”. The bottom line would then be that most mechanical systems
exhibit quite regular motions - because most mechanical systems are close to ideal ones. It was
well known in the 19th century, though, that ideal mechanical systems were rare - most physical
systems appeared much too complicated (on paper) to be of the ideal type (action-angle variables
could not be found for them).

The approach to a general theory of the behavior of mechanical systems focussed on pertur-
bations of ideal systems and how their regularity was affected by the perturbations. This was
because the ideal systems were explicitly solvable and, really, this is one of the only ways to get
at the general systems. Since every mechanical system can be written as an ideal system plus a
perturbation (although the perturbation may be quite large), this approach is a way to understand
all mechanical systems.

It was Henri Poincaré who, at the turn of the century, made a careful analysis of perturbation
theory in celestial mechanics and concluded that inherent in the structure of any ideal mechanical
system are mechanisms (resonances) for destroying that ideal structure whenever a perturbation
is added. So the best one could do was to find new canonical coordinates that put the perturbed
equations into as near an ideal form as possible. The questions then became: What is the long-
time behavior of nearly ideal sytems? Do they appear regular for awhile before they become
complicated, and if so how long does it take? Poincaré called these questions ”the fundamental
problem of dynamics”. So overwhelming was Poincaré’s analysis that progress on the problem
was daunted by its apparent unsolvability. It wasn’t until the 1950’s when Andrei Kolmogorov
proved that nearly ideal systems were still very regular. However, Kolmogorov reformulated the
problem in such a way that it was possible to get a meaningful answer. It was the rigidity of the
notion of stability (all solutions regular for all time) that made the problem so difficult to solve.
Building on the insight provided by Kolmogorov’s work, Nikolai Nekhoroshev (in 1977) proved a
deep theorem about perturbed ideal mechanical systems again by first reformulating the notion of
stability. For future reference, and as will become clearer later, I’ll just mention here these new
notions. Kolmogorov proved a ”local” stability theorem which states that on a (very peculiar) subset
of R™ the perturbed dynamical system behaves like an ideal one for all time, while Nekhoroshev
proved a ”global” stability theorem which states that on all of R® the perturbed system behaves
nearly ideal for a certain, calculable, finite time (which, remember, to us physically oriented people,

4Sometimes we will refer to coordinates as variables.



is a more meaningful concept than infinite times).

These two theorems, KAM (Kolmogorov-Arnold-Moser) and Nekhoroshev !, are the corner-
stones of modern perturbation theory of mechanical systems, but the techniques and ideas are so
novel and deep that they have been influential in many other areas of mathematics and physics. In
fact, there is a whole industry of ”KAM techniques” in mathematics to handle the ”small divisor
problems” that seem to be endemic to perturbation and inverse function theory.

In the following section we describe some geometric notions about dynamical systems. Looking
at a dynamical system ”as a whole” (i.e., all solutions) we identify certain large-scale structures
that impose regularity on the set of solutions. We also discuss the particular kinds of equations
that arise in classical mechanics and the formalisms associated to them. This will allow us, in the
subsequent sections, to formulate precisely the KAM and Nekhoroshev theorems.

Section III discusses some notions associated with KAM theory: resonances, invariant tori,
stable tori, and diophantine inequalities. It ends with two versions of the KAM theorem.

Section IV is devoted to Nekhoroshev’s theorem. To understand it we first have to understand
the approach to perturbed mechanical systems via canonical transformations. We will then see
how the resonances in the underlying ideal system manifest themselves in the perturbed system by
”magnifying” the effect of the perturbation (without resonances the perturbation would hardly be
noticable). By mapping-out the locations of the resonances we will be able to carefully estimate
the evolution of the perturbed dynamics and thus to estimate how much it differs from the ideal
one.
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ITI Dynamical Systems

Ordinary Differential Equations

For us a dynamical system will be a first-order ODE on R" (or more generally, on an n-

dimensional manifold M") :

©(t) = F(x(t)) (1)
where z(t) e R*, F: R* - R" and & = %x. Although equations of motion in physics are always of
at least second-order (defined on R™, say), they can be written as a system of first-order equations,
but now on a "larger” space (R?*™, so the n above in the R” is an even number). The space on
which the first-order equations are defined is called the phase space. This is one manifestation of
the Hamiltonian formulation of mechanics: it reduces Newton’s and Lagrange’s formulation of the
equations of motion of a physical system, which are second-order (on ”configuration space”), to a
first-order system (on phase space).

The old (i.e., before Poincaré) approach to solving (1) was to find explicit formulae for individual
solutions (different solutions are characterized by their different initial conditions). One drawback
of this (other than it being very difficult to find explicit solutions) is that often the qualitative
behavior of the solution is hidden: Is the solution periodic? What is its long-term behavior (i.e.,
after transients have died away)? Does the solution wander through out all of phase space or does
it remain in some bounded region? Many physically meaningful questions can be answered from
knowledge of the qualitative behavior of the solutions. In particular, questions of stability can be
decided (stability here means that the solution stays in a bounded region of phase space for all
time). But not everything can be answered and often an analytic formula is required. For example:
How long does it take this solution to reach equilibrium? (the solution may wander through phase
space for a while before settling down to remain in some particular region from then on).

The new (i.e., after Poincaré) approach is to look at the solutions of (1) as a whole - the
” geometry of phase space”, by which I mean the geometry of the ”"flow” in the phase space associated
to (1). What is "flow”? Well, treat (1) as defining a vectorfield on R® : at each z € R" there
is a vector attached to that point, namely, the vector F((z). ! Then a solution of (1) is a curve
(or ”trajectory”, or ”orbit”) in R™, denoted by z(t), such that @(¢) = F(z(t)). If you think of
z(t) as describing the position at time ¢ of a particle that is travelling along this curve, then the
velocity, ©(t), of the particle at the point z(t) equals F(z(t)). (This is what we mean when we say
”integrate a vectorfield”: find a curve on the manifold whose velocity vector is everywhere equal
to the vectorfield. In otherwords, we are solving an ODE). The collection of all these curves (one
through every point z € R") is the flow of (1). (These notions are discussed in [1] and [7], for
example.)

Example: The Harmonic oscillator; i(t)=—=z(t), z€R, &= j—;w (Newton’s equations).
Write as a first-order system on R,

ey = (3)=re(2)

(P’m suppresing the t-dependence of the functions x and y.)
The vectorfield for this dynamical system at the point (z,y) is the vector with components (y, —x) :

'We say F(z) € T;R", the "tangent space” of R" at x, which is just another R".



solufion curve

N\

In polar coordinates the equations of motion become:
vector field ~ [ f‘(t) =0, (t)=-1 — r(t) = ro, H(t) =6, —t.
/A Solutions are circles traversed in the clockwise direc-

N

The flow of (1) is the map ®; : R — R" (which depends on t) and is defined by the formula;
®4(2,) = x(t) where 2(0) = @, (i.e., ¥, is the point on the trajectory z(t) at time 0). So the flow
moves a point in R™ along the solution curve for (1) that passes through that point. In the example

above, ®4(r,,0,) = (10,6, — t) = (r(¢),6(1)).

X tion. (r,,8,) is the initial condition that distinguishes
different solutions.

Some "geometric” questions to ask about the system (1):
- are trajectories "trapped” in any region of phase space?
- are there invariant sets? i.e., is there a set V' C R™ such that ®,(V) C V for all #?
For example, are there any points z such that ®,(z) = 2 for all ¢? (these are called
fixed points and are precisely the points where F = 0).
Periodic solutions are examples of invariant sets (these are the phase space trajectories of (1)

that are closed curves). In the example above all circles are invariant sets.

A more interesting example:

t=a—y—z(2?+y?) r=r(r-1)
Jy=a+y—y®+y?) f=1

Here we see that the circle r = 1 is an invariant set for this dynamical system (since # = 0 there).
For r < 1,7 < 0 so r(t) is decreasing; for » > 1, 7 > 0 so r(t) is increasing, and (0,0) is a fixed
point. Thus, a complete qualitative description of the flow of this system (i.e., all the solutions) is;

AY

N
(\ We conclude (effortlessly!) that there is only one peri-
Y Ba\ >—X odic orbit and all other trajectories (solutions) either
‘L ‘// eventually approach the origin (if , < 1) or become

monotonically unbounded (if r, > 1).

Important observation: the circle » = 1 divides the phase space into two regions and the flow
cannot cross from one region to the other.! So you see, if you can find an invariant surface in the
phase space that bounds some region, then the flow inside that region will have to remain inside:
the solutions of (1) that have initial conditions inside this region will be bounded.

!By the uniqueness of solutions to first- order ODE’s, a trajectory cannot cross an invariant surface.



This is an important theme for us : invariant surfaces (manifolds) in phase space act as a barrier
to the phase flow. They give structure (regularity) to the flow, and hence the solutions will assume
some regularity (a complicated flow has few invariant surfaces; see [8],[9] for more discussion).

Now, if you wanted to ask about the example just given how long it takes a solution to approach
the origin (if it does eventually), then you would have to do some (analytic) work. So let’s say that,
close to the origin 7 ~ —r, = 7r(t) = re”'. To get within a distance d of the origin you would
have to wait until ¢ = In(r,/d). This time  co as d \, 0, of course, but it goes to infinity ”very
slowly” which means the trajectories are approaching the origin ”very quickly” (even though they
never get there). If r, > 1, then writing 7 ~ 73 we get 7(t) = v/702/(1 — 2tr,?) so that r(t) = oo
when t = 1/2r,2. We say then that the flow is incomplete: it is not defined for all time.

This little bit of analytic work allows us to associate a time scale to the dynamical system :
how long it takes to "reach equilibrium” or, the ”relaxation time”. These time scales are important
in (real) physical applications. For example, if this time scale is very short in comparison to some
relevant time scale associated to the system, then for all practical purposes the system will appear
to be in equilibrium (i.e., nothing will seem to change). If on the other hand this time scale is
relatively long then even though in the limit as ¢ — oo the system reaches equilibrium, it will take
so long to do so that it may never appear to be in actual equilibrium. Physical systems often evolve
towards an equilibrium state, but just how long it takes for them to get there is a profound problem
in statistical mechanics; see [22],[S].

Structural Stability of Dynamical Systems

This is the geometric view of perturbation theory. A perturbed dynamical system has the form

&(t) = F(x(t)) +ef(x(t), 1) (2)

where ¢ is usually considered to be much smaller than 1. For ¢ = 0 we have the unperturbed
system (1). Suppose we are able to solve (1), i.e., we know the geometry of its phase flow (e.g.,
fixed points, periodic orbits - in general, the invariant manifolds). Then we ask: How does the
influence of the perturbation € f(z,t) affect this geometry? For example, does (2) have an invariant
manifold (say, a periodic orbit) that is "near” to one of (1)? If so, then we say that this object is
structurally stable under the perturbation f.! If the object is structurally stable for some (large)
class of perturbations, then we may just say that it is structurally stable. It is important to remem-
ber that the notion of structural stability is associated to a class of functions (the perturbations).

Really, in physical applications we are only interested in studying structurally stable systems,
or rather, we are interested in knowing what features of the phase flow of a dynamical system are
structurally stable and which are structurally unstable. The reason being that we are never able to
define a (physical) dynamical system ezactly (for example, we don’t know the exact masses of the
planets) so whatever model we come up with we must be prepared to study how it changes under
a perturbation. The uncertainties in our model will be incorporated into the € f(z,t) term. That’s
why our perturbation theory must consider arbitrary (”generic”) perturbations f.

Hamiltonian Dynamical Systems

These are the (very special) dynamical systems that arise in classical mechanics. They are
distinguished by the special form of the F(z(t)) term in (1). For a Hamiltonian system the phase
space is always even dimensional (pairs of ”velocity,position” coordinates) so we will call our phase

1Contrast this with the notion of stability with respect to initial conditions in a fized dynamical system.



space simply R?". The (Hamiltonian) equations of motion are prescribed by a function H (the
Hamiltonian) defined on the phase space; H : R — R, and in special canonical coordinates
{(p,q),p € R*,q € R*} on R?" take the form

p(t) =—-0H(p,q)/dq ; q(t)=0H(p,q)/0p (3)

or,

t U
(12213) = JVH(p(t),q(t), J= ( 1 0 )’

or, in modern differential geometric language,
dH = ixyw

where Xy is the vectorfield associated to (3), w is the ”symplectic form” on phase space and ix ,w
denotes the ”interior product” (or ”inner product”) of Xz and w (see [1],[2] for details).

For any dynamical system, an integral is a function h defined on phase space such that
(h o ®)(p,q) = h(p(t),q(t)) = h(t) = constant, where ®; is the flow of the system. In other
words, the trajectories (p(t), q(t)) lie on level surfaces of h: h~!(c), which is a submanifold of R??
of codimension 1 if ¢ is a regular value of h, i.e., dh(z) # O for all z € h=!(c). We say that "h
is conserved”. For example, in certain 4-dimensional Hamiltonian systems (ones with rotational
symmetry) angular momentum, given by the function h(p,q) = p1g2 — p2q1, is conserved (see [5]

§9, [G] §3.2).

H is always an integral of a Hamiltonian system. Proof: calculate!

d d OH 0H
_ — _H — T Yo .
i H(t) a (p(t),q(t)) ap D+ 8q g (chainrule)

__OHOH OHOH .
~ Op Oq dq Op vea
=0

This means that ”energy is conserved”. Thus, the flow of a Hamiltonian system is restricted to
2n — 1 dimensional ”energy surfaces” H !(e), (e is the energy of the points (p,q) on the surface
H~1(e)). This will always be tacitly assumed: we will talk of the dynamics, always meaning the
dynamics on an energy surface.

The existance of an integral means that the phase space has many invariant manifolds: the
surfaces h_l(c) for appropriate ¢’* € R. Consequently, we expect that the phase flow will be greatly
restricted in the presence of integrals.

The more integrals there are the more restricted is the phase flow because the trajectories must
stay on the level surfaces of all the integrals. Thus, if in addition to the energy integral H there is
another integral g, then on the energy levels H~!(e) the flow must lie also on the level sets g~!(c)
so the flow is restricted to a 2n — 2 dimensional submanifold of the phase space. We see then
that in the presence of integrals we need only study the dynamics of a system of lower dimension
(the flow on the level sets) which is generally easier the lower the dimension. We will see that if
a Hamiltonian system has ”sufficiently many” integrals then the dynamics are very simple. These
are the so-called integrable systems and are the ideal systems mentioned at the start.




But first some more jargon;
The Poisson bracket {f, g} of two functions f, g defined on phase space is given by the formula

" 9f 89 _ Of dg

{f.9} = X

< 0q; Opi  Op; Og;’

Notice that {f, g} is a function on phase space and that {f, H} = % f. In particular, p = {p, H}
and ¢ = {g, H}. The Poisson bracket makes C*(R?") into a Lie algebra, where C*°(R?") denotes
the smooth functions on phase space. So: f is an integral <= {f, H} = 0. We say that f and ¢
are in involution if {f,g} = 0.

Integrable Hamiltonian Systems

A Hamiltonian system is called integrable (or completely integrable) if there are n functions
{fi=H, fa,..., f} such that {f;, H} = 0, {fi, fi} = 0 for 4,5 = 1,...,n, and {df1,...,df,} are
linearly independent almost everywhere ([1],pp 392-393). That is, there are n integrals in involution
that are functionally independent (for a discussion of functional independence, see [LS ppl75]).

Let ¢ € R® and N. = {(p,q) | fi(p,q) = c1,--., fn(p,q) = ¢n}. The Arnold-Liouville theorem
([1] pp393, [2] pp282, [4] ppl10,114) states that if N, is compact, its connected components are
diffeomorphic to the n-torus T" (if N, is not compact then it is diffeomorphic to the ”cylinder”
T"—* x R¥, for some k < n). Furthermore, these tori are invariant manifolds of the flow (so the
phase flow wraps around the tori) and on these tori the flow is very simple; it is just translational,
ie. if 6 = (6y,...,6,) are angular coordinates on T", then in these coordinates the flow satisfies
éi = w; for some w; € R. 1 We call the w;s the frequencies of the flow on the torus (the frequencies
generally depend upon which torus you are considering). Translational flow means that if you
unwrap” the torus to make R™ the trajectories are straight lines with slopes wi, ..., w, and points
on these trajectories move with constant velocity. In addition, there is a neighborhood (in phase
space) around any such torus, call this neighborhood D, where there are canonical coordinates
(I, ..., In,01...,0,) = (I,0) such that the level sets I~1(i), i € R®, are n-tori T" and @ are
angular coordinates on these tori. In other words, D ~ P™ x T", where =~ means diffeomorphic
to and P is, say, an open ball in R" (called the action space). The coordinates (I,6) are called

action-angle variables. Also, I = I(f1,...,fn) and |H = H(I)|. A consequence of this is that

I = —9H/39 = 0: the functions Iy, ..., I, are integrals ( and are in involution). We define
w(l) = 6 = 0H /OI. Thus, the action variables do not evolve and the frequencies are a function of
the action only (so the frequencies are constant on tori). Since w(I) = OH/JI, the properties of
the frequencies are going to be determined by properties of H.

Kindly words of warning: even if a Hamiltonian system is integrable there may not be action-
angle variables defined everywhere in phase space (for example, near a critical point of H) so phase
space may not be simply R™® x T" or P™ x T". The existence of action-angle variables depends not
only on properties of the Hamiltonian function H, but also on the topology of the phase space.
However, for us we will just assume that our phase space is P™ X T™ - if your particular Hamiltonian
system does not admit global action-angle variables then just interpret P™ x T" to be a region of
phase space that does admit them, then everything we say is only with respect to this region. (For
more information on when action-angle variables can be defined, see the paper by J.J. Duistermaat,

[20]).

'Here and through out we write I(t) = 41(t), 0(t) = 4 9(t) where (I(t),0(t)) is a representation of the flow in
(I,8) coordinates.




Some consequences of integrability: all bounded motions are quasi-periodic (they may be pe-
riodic if there are enough relations among the frequencies), and (most) unbounded motions lie on
surfaces with simple geometry. Thus, the phase flow of an integrable system is highly regular, in
particular it is nothing like ergodic (”chaotic”).

Perturbed Integrable Systems

Since many real-life Hamiltonian systems can be realized as perturbations of integrable ones
(for example, the solar system) it is natural to ask whether this nice phase space geometry persists
for the perturbed system. Are motions for the perturbed system (nearly) quasi-periodic? The big
question of the day (~1900) was: Is a nearly integrable system (i.e., a perturbed integrable system)
integrable? Or, more simply, how many integrals does a nearly integrable system have? Poincaré
discovered that under "most” perturbations a nearly integrable system has no (analytic) integrals
(see [14]). This seemed to suggest that Hamiltonian systems came in two types: integrable or
completely nonintegrable (no integrals except for H). We’ve seen how the existence of integrals
leads to the existence of invariant manifolds in phase space that inhibit the phase flow, so with
the indication that nearly integrable systems have no integrals it was generally felt that the phase
flow will wander through-out all of phase space (restricted to an energy surface) and that it would
even be ergodic flow, which means the flow would uniformly sample all of the energy surface. This
would make things simple because then you could apply the techniques of statistical mechanics to
these systems and obtain information about average behavior (statistical mechanics assumes the
ergodic hypothesis) - see [13] pp137, and [22].

But of course, there can be invariant manifolds in phase space even without the existence of
any integrals, and in fact the KAM theorem constructs ”local integrals” in phase space: it shows
that there are many invariant manifolds in the phase space of nearly integrable systems that ”come
from” the invariant tori of the integrable system (for a precise discussion of ”local integrability”
see [30]).

Once computers were developed enough so they could readily integrate the equations of motion
of nearly integrable systems, people were quite surprised by what they saw. For instance, in
Princeton in the 1950’s Fermi, Pasta and Ulam ([21]) numerically integrated a system of weakly-
coupled harmonic oscillators. Without the coupling this system is integrable. They started the
integration with a particular configuration (which would have remained stable without the coupling)
and expected that it would decay into ”irregular” behavior as all of the "modes” became excited
- as prescribed by the principle of equipartition of energy (statistical mechanics- see [22]). But
nothing of the sort happened. Instead, the motion became a little bit irregular as a few of the
lower frequency modes became excited, but after a while the system returned to nearly the same
configuration that it started with (but much sooner than that given by Poincaré’s ”Recurrence
Theorem”- [2] pp71), and then began the cycle again, etc. So apparently the trajectory in phase
space was not travelling through-out all of the energy level. It was as if there were some barriers,
some invariant manifolds, preventing this; the trajectory seemed to be diffusing through phase
space (this means the type of slow, irregular motion associated with a "random walk”). However,
this experiment did not rule-out the possibility that the rate in which the higher frequency modes
were being excited was very slow, too slow to be observed. We will see below, with Nekhoroshev’s
theorem, that nearly integrable systems can exhibit extremely slow diffusion in phase space.
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IIT The KAM Theorem

Nearly Integrable Hamiltonian Systems

This is a theorem about the existence of invariant manifolds in the phase space of nearly
integrable systems. Recall that, for us, an integrable Hamiltonian system has a Hamiltonian H of
the form

H(I1,0)=H,(I), (I,0) e P" xT", P"CR". (4)
That is, H depends only on the action variables. Consequently, the dynamics are given by
. O0H 0H, . 0H 0H,
I = —— = — = = — = = o I .
O="%g="20 =0  0=7%7 =5 =D

wo(I) is the frequency vector of the (translational) flow of (4) on the torus T"(I) € P™ x T™ labelled
by the action coordinate I. (Remember that the tori T"(I) are invariant manifolds for (4).) The
frequencies depend only on I so that we can talk of the frequencies in action space P"™. The
properties of w,(I) play a crucial role in KAM theory (and perturbation theory in general). For
example, they decide which tori will survive a (given) perturbation.

By a perturbed system we mean a nearly integrable Hamiltonian system whose Hamiltonian
has the form

H(I70):HO(I)+€f(I70) (5)
and thus dynamics given by

oH  of

oH OH 0H, df
90~ o6

0(t) = — = =° = wo(I) + e2L = w(I).
=31 = a1 o1 =D tegr=wll)
Here (I,0) are action-angle variables for the integrable system H, (¢ = 0). In a nutshell, the
KAM theorem says that "most” of the invariant tori of (4) survive the perturbation ¢f(I,8) for
e sufficiently small so that the phase space of the system (5) contains many invariant manifolds

(tori).

By ”an invariant torus T"(I,) of (4) surviving the perturbation e f” (i.e.,that it is (structurally)
stable) we mean: for all ¢ sufficiently small there is a (diffeomorphic image of a) torus, call it T7,
sitting inside of P™ x T™, that is invariant with respect to the flow of (5), upon which the flow (of
(5)) is translational with frequencies w,(1,) (”quasi-periodic with frequencies wy(l,)”), T2 lies in a
neighborhood U, of T"(1I,) and U, — T"(I,) as ¢ \, 0 ! (U. is typically a neighborhood of size
O(4/€) around T"(I,) in the cases we are considering ([4], pp 184)). In other words, if T"(I,) is a
stable torus of (4), then by varying the initial conditions slightly we can find quasi-periodic orbits
of (5) that have frequencies w,(I,).

Resonant and Nonresonant Frequencies

Let’s review some facts about frequency vectors w € R™. We say that w is nonresonant if
w1, ...,wy are linearly independent over the rationals, which is equivalent to saying that if w - k =
wiki + -+ 4+ wpky, = 0 for some k € Z™, then k = 0. For example, if w is nonresonant then the w;*
must be distinct and at most one of them could be rational - the rest must be irrational numbers.
w is resonant if w -k = 0 for some nonzero k € Z". More precisely, we say that w satisfies a
resonance of order N if w-k =0 for |k|=|k1| +---+ |kn|= N. Notice that a resonant vector could

!More precisely, we say that there exists a family of diffeomorphisms =, : T* — P™ x T", such that Zo(T") =
T"(1,), E<(T") is close to T"(I,), and Z¢(T™) is an invariant manifold of (5).
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have all irrational frequencies still. A quasi-resonant vector w of size § , § > 0, is one in which
|w - k|< & for some nonzero k € Z™. It is a well known fact that even if w is nonresonant it still
satisfies a quasi-resonance of arbitrarily small size. although the smaller you specify § the larger
(typically) must be |k|. For example, for w’® € B? we can represent them as a vector in the plane:

1=
[} L] N . .
* Here I've put dots at the lattice points of Z? (the

integer coordinates of Z2). Tt’s easy to see that w is

L] ] 4 L] .
resonant when the line through w passes through a
lattice point. Of course w has to be picked extremely

] [ ] [} [ ) [ ] [

well for this to happen so that typically, t.e., with
probability one. w is nonresonant. If w is nonresonant

- - . *—> the line through «w never passes through a lattice

point, but you can see that it will (eventually) get
. . ] . . . . arbitrarily close to one!

That is, if you give me any small number § > 0, I can find a lattice point (it may be quite far
from the origin) by which the line through w passes within a distance §. This doesn’t mean that
a nonresonant w can’t satisfy a quasi-resonance that is close to the origin, of course it can, but
your w would have to be chosen more carefully so that it would be less typical. In other words, if
you randomly choose a w, then for sure it will be nonresonant, and the smaller quasi-resonances it
satisfies would occur further from the origin. We can make these ideas precise using diophantine
inequalities; w satisfies a diophantine inequality with parameters v, > 0 if |w-k|> v/ |k|? for
all k € Z" k # 0. What this means is that even though w may satisfy arbitrarily small quasi-
resonances, they must occur far enough away from the origin: if k is where this quasi-resonance
occurs (50 |w - k|< &), then |k|> (y/8)Y/7. If w satisfies a diophantine inequality with parameters
v, 1, then within any ball in Z" centred at the origin w satisfies no quasi-resonances (due to
from inside this ball) smaller than some certain number that we can calculate.

It is a fact that almost every w € R" (in the sense of Lebesgue measure) satisfies a diophantine
inequality for some v (v = y(w)) and if 5 > n (the ones that don’t are "algebraic numbers”). Let
Q(v) = {w € R" such that w satisfies a diophantine inequality with parameters v,n}. Then the
above ideas can be made precise by saying that the measure of Q(y)c is small and that it goes to
zero as v goes to zero (see [12] pp98).

Suppose w = (wy,wz) € R? is resonant. Then kiw; + kowy = 0 for some ky, ky € 7, (#£0), =
wifky = —wy/ky, and wy/wy; = —ky/ky € Q. If (61,6;) are angular coordinates on T2, denote by
01(t), 05(t) the translational flow on T2 with frequency w : 6;(t) = wit, 85(t) = wot (I take the
initial condition to be the origin).

So the curve ¢(t) = (6,(t), 02(¢)) on T? wraps once
around the #;-direction after ¢t = 27 /w; and once around
the f;-direction after t = 27 /w,. If wy/ko = —wy /Ky,
then —&o(27/wi) = k(27 /wy) so that c(t) wraps
exactly ko times around the 6;- direction and exactly &,
times around the f;-direction after a time T = ko(27 /wy).

2
closed curve on T

(k=1 k= 3)
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That is, ¢(t) is a closed curve on T% it is actually a circle. Notice that if w -k = 0 then the larger
| k| is, the more times ¢(t) wraps around the torus before closing on itself: flow of a high-order
resonance samples more of the torus than flow of a lower-order resonance.! Similarily, if w € R™
and w-k = 0, then the translational flow with frequency w actually lies on lower dimensional torus
sitting in T".

w can satisfy more than one resonance. In fact, if w -k = 0 then w-(mk) = 0 for any m € Z. If
w-ky =0and w-ky =0, then w-(m1ky +maky) = 0 for any my, my € Z. In general, if {ky,..., k,}
are resonances for w, then the lattice A, C Z" generated by these &’* contains only resonances of w
(A, = all integral linear combinations of ky,..., k). You can convince yourself that w can satisfy
at most n — 1 independent resonances.

Also note the important fact that if w € B" is nonresonant, the translational flow on T" with
frequency w covers T" uniformly and densely (we say then that the flow on T” is ergodic).

Perturbation of an Integrable System With Two Degrees of Freedom

Let’s look at the case of a nearly integrable system with two degrees of freedom (this means
that configuration space (”¢-space”) is two- dimensional):

H(I,0)=H,I)+<f(I1,0), (I1.) e P2 xT?, P?cCR2

Here the energy surfaces are 3-dimensional (say, some open subset of 23) and they are foliated by
2-dimensional tori. Thus, through every point in the energy surface there passes one and only one
such torus. Here’s an example of a foliation of &> by 2-tori:

“A
Now rotate these "circles” around the z-axis.

You can see that the coordinates identifying
the tori (the I'®) and the angular coordinates
m on each torus are coordinates for R3
w (although in this case, when restricted to an
v energy surface, only one I coordinate is needed
to lable the different tori (via the implicit
function theorem applied to the equation

H(I)=¢) - so below I will use just one I
coordinate).

Following Arnold ([2] app.8) we will try to see what happens to these tori when you add a
perturbation. We assume that the integrable Hamiltonian H, is nondegenerate or isoenergetically
nondegenerate. Nondegeneracy means the matrix 0?H,/8I? (the Hessian of H,) is nondegenerate
at all points (I, ). Isoenergetic nondegeneracy means H, is nondegenerate on energy levels (see for
example, [2] pp402-403 for these definitions ). Since w,(I) = 9H,/dI, nondegeneracy implies that
det(0w,/0I) # 0, i.e., the frequencies are functionally independent. Among the many consequences
of this is the important property that, given any torus T"(I,) in phase space, there is a neighborhood

'This has relavence in the theory of averaging; sece [2],[4].
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of w,(I,) in R™ such that for any w in this neighborhood there is a torus T™(I,) near to T"(I,) such
that we(l,) = w: nearby any torus with frequency w there is a torus with any frequency close to
w. So if w is not quite the right frequency we need, by adjusting our initial conditions slightly we
can find a torus with precisely the frequencies we want.! Of course, the easy way to say all this is
that in nondegenerate systems we can use the frequencies as coordinates in action space.

For a 2-degree of freedom system we have T? sitting in R® as shown in the diagram on the left
below.

Trvariont T2 in r®

o< (1)

> T

Call o(I) = wi(I)/wa(I). Then isoenergetic nondegeneracy implies that %a(I) # 0. Thus, a(T)
has a graph that looks like that in the diagram on the right above. Take a (2- dimensional) plane
and slice it through the family of tori that foliate the energy surface. These tori intersect the plane
in circles. Define a map F : R? — R2 via F(m) = m’ where m/ is where the trajectory that starts
at m returns to intersect the plane that cuts the torus ("first return map”). The circles where the
invariant tori intersect the plane are invariant under F, and in fact F just rotates them, but by
different amounts because da/dI # 0:

m ~ -~
F Now if a(I) € Q, say a(I) = ky/k; for some ky, ky €
m’ Z, then after the #; coordinate on this torus makes k,

complete cycles, the #; coordinate makes k; complete
cycles so that the trajectories on this torus are periodic
(as we saw above). If we iterate the map F ky-times
(F* = Fo...0F), then the circle C(I) in this plane
that comes from the torus labeled by the coordinate I
does not move under F*2 i.e., C(I)is composed entirely
of fixed points of F*2,

Of course, T2(I) is what we call a resonant torus. Observe that as we move from the torus labeled
by the coordinate I; to that labeled by Iy, o(T) sweeps out an interval [a(I1), a(I)] C R. For every
rational number in this interval there is a resonant torus, and since the rationals are dense in R,
the resonant tori are dense in phase space. This is a general feature of integrable, nondegenerate
systems of any dimension:

'This property will be important in the construction of invariant tori for the perturbed system: if ¢ is sufficiently
small then the perturbed Hamiltonian, H,is also nondegenerate. Then one can find initial conditions for the perturbed
flow which has the same frequencies as the nonresonant unperturbed torus whose stability we are investigating.
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If T(m) = {tori whose frequencies satisfy m-independent resonances}, then T(m) is dense in phase
space for each m = 1,...,n — 1. In particular, periodic orbits (T(n — 1)) are dense in phase space.
But, in a similar way as for rational numbers, the T(m) each have zero measure. Thus, "most”
invariant tori are nonresonant (the union of nonresonant tori has full measure), but arbitrarily
nearby any nonresonant torus are tori with any prescribed number of resonances. ([2] pp402)

Continuing with the example above, let T?(I;) be a nonresonant torus lying inside of T%(I)

and T%(I;) a nonresonant torus lying outside of T%(I). Denote by C(I1) the circle made by the
intersection of T%(I;) with the plane, and similarily for T Iy) and TX(I): C(I;) and C(I). Then
F*2 is a "twist map” that fixes C(I) and rotates C'(I) and C(I3) in opposite directions:

F*
c(z2) We jump ahead and use the KAM theorem to assure
us that, if < is sufficiently small and if w(I;) and w(I)
c(d) are "sufficiently nonresonant” (we can always find such

nonresonant tori), C'(I;) and C(I3) survive to become
invariant circles C5 and C5 for F¥2 | where F. is the
return map for the perturbed flow.

Now, can we expect there to be a circle of fixed points for F*> near C(I) ? (i.e., that TI)
survives the perturbation?) This kind of behavior, for a map (here, F*2) to have a whole curve
of fixed points (C(I)), is highly non-generic ("non-typical”) in a precise sense. ”Most” mappings
of this form have only isolated fixed points, so that under a general perturbation (F* — Fk2),
F*2 will have only finitely many fized points near c() ([2] pp404). This means that the resonant
torus T2(I) is destroyed by the perturbation. But all is not lost. Poincaré proved in his "Last
Geometric Theorem” ([2] app.9, [3] pp88) that the twist map F*? has 2kk, fixed points near C(I)
(here k is some integer greater than zero). These correspond to periodic orbits on T2(I) that do
survive the perturbation - the so-called "stable periodic orbits” (which have special significance in
the quantization of the classical system; see [17],[25] §15.6, [27]).

For more discussion about this description of the destruction of resonant tori and the resulting
complicated dynamics, see [3] pp89-93. [4] pp186-190, [12], and [17].

KAM Theorem

The KAM theorem is an ezistence theorem, it says which tori survive under a perturbation. It
says nothing about which tori are destroyed. Proofs of the KAM theorem proceed as follows (see for
example, [6] §36, or [23] pp605-620). If w satisfies the diophantine inequality |w -k |> v(¢)/ | k |”
Vk € Z", where vy(¢) is prescribed by the particular perturbation, one can construct (using an
iterative, "linearized” scheme that rapidly converges to) a family of quasi-periodic solutions of the
perturbed system that have the frequency w, and that this family defines an invariant manifold
that is diffeomorphic to T". Furthermore, this invariant manifold is close to the unperturbed one
that carries the frequency w.

~v(e) is a calculable function that \, 0 as ¢ \, 0 ([23] pp605), so although we can’t say for
sure which tori will be destroyed by the perturbation, we may be able to say something about
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the ”robustness” of an (unperturbed) torus. First notice that if w is resonant then it will not
satisfy any diophantine inequality (i.e., for any -). It is consistent, therefore, to say that resonant
tori are destroyed no matter how small the perturbation is. Now, as the strength of the (particular)
perturbation grows (i.e., ef as € increases from zero), the function vy(¢) increases which means the
set Q(v(g)) of frequencies satisfying a diophantine inequality with parameters y(¢),n gets smaller
(see ppl2). So there are less and less candidate stable tori as the strength of the perturbation
increases.

A nonresonant frequency w is "near” to resonance when the minimum + of the set of diophantine
inequalities with parameters -y, n that it satisfies, is small. We conclude then that those nonresonant
tori whose frequencies are close to resonance may become unstable first (as € increases), and that
those tori whose frequencies are further from resonance (i.e., the minimum -+ is larger) are the most
robust (they will survive a stronger perturbation). ! See ref.’s [17] pp33-34, [25] §9.8, and [27]
pp129-131.

For a fixed &, Q(vy(¢e)) is a closed set of large measure, by which we mean that the mea-
sure of Q(y(e))¢ is small (see ppl2). However, Q(y(¢))¢ is open and dense. Define the set
P? C P" to be those I € P™ such that w(I) € Q(y(¢)). Then P? x T* C P™ x T" are sta-
ble tori (the perturbed system has an invariant torus close to each torus in P? x T") and form
a closed set of large measure in phase space (P x T?). 2 Furthermore, P? x T" has no interior
(like a Cantor set) which means every torus in this set lies arbitrarily close to one outside of this
set. The set of tori that contain the candidate unstable tori, (P?)C x T" (where (P?)¢ contains
those I'* € P™ such that w(I) € Q(y(£))%), is open and dense in phase space. What this all means
is that you can never decide whether, for the perturbed system, a particular initial condition will
give quasi-periodic (bounded) motion (i.e., that the trajectory that begins at this initial condition
lies on a (perturbed) stable torus of the unperturbed system) or nonquasi-periodic (and perhaps
unbounded) motion, because you will never be able to pin point its initial condition ezactly, which
is what is required since P7 x T" has no interior.

We say, in this situation, that the issue of stability is _undecidable. So, although the KAM
theorem does describe in detail the features of the perturbed system, in the end it does not (can
not) answer the question which motivated its development: are motions of a nearly integrable system
stable? An exception is the case where n = 2 (two degrees of freedom). Here the stable tori P2 x T?
confine the trajectories that lie between them so that although the initial condition may not lie
on an invariant torus, the trajectory will be trapped between two of them forever (and so will be
bounded). For n > 2 this is not the case: the invariant tori of the perturbed system do not confine
the space in between them so that a trajectory can wander out to infinity (if it wanted to); see [2]
pp407, and [4] pp 189.

The behavior of the trajectories that wander through out phase space is the content of Nekhoro-
shev’s theorem. Here there is no such sensitivity to initial conditions. Roughly speaking, Nekhoro-
shev’s theorem states that no matter where the trajectory of a perturbed system starts it can not
wander away very far over time scales that are exponentially long in the parameter & (7" ~ e%). So,
although a torus of the unperturbed system may be destroyed by the perturbation, these trajec-
tories still live near where the torus used to be for a very long time (this is what we call the ”life
time” of the (unstable) torus). Clearly, this is a more relevant result for physical systems.

n two dimensions the least resonant frequency is the one where w1 /w2 = \/5.2—1 = "the golden mean”.

2For the perturbed dynamics we actually mean diffeomorphic images of P? x T and (P?)€ x T" in P™ x T" -
see the footnote on ppll.
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We will discuss this in more detail in the next section, but let’s end this section here with a
couple versions of the KAM theorem.

Theorem (KAM) ([2] pp405, [4] pp183)  If the unperturbed system is nondegenerate or isoen-
ergetically nondegenerate, then for a sufficiently small Hamiltonian perturbation most nonresonant
invariant tori do not vanish but are only slightly deformed, so that in the phase space of the per-
turbed system there are invariant tori densely filled with quasi-periodic phase curves winding around
them, with a number of independent frequencies equal to the number of degrees of freedom. These
invariant tori form a majority in the sense that the measure of the compliment of their union is
small when the perturbation is small. In the case of isoenergetic nondegeneracy the invariant tori
form a majority on each level manifold of the energy e

Theorem (KAM) ([13] pp123) If
(1)H(I,0) is analytic in a complex neighborhood of P™ x T";
(ii) Ho(I) is strictly non-isochronous, i.e., det(0%H,/0%I) > d > 0 for I € P™;
(iii) € < e, where €, depends on the Hamiltonian,

then there exists a canonical transformation Ce: (I,0) — (I',6'), an integrable Hamiltonian h.(I'),
both Cc and hl. being of class C*® in P™ x T", and a set P? C P™ of large Lebesgue measure, precisely
meas(P"/P?) — 0 for e — 0, such that the new Hamiltonian H' = H o C satisfies the relation

HA(I',6) 2 BT

P’n.
where = denotes equality restricted to P] e

Remarks

The set P? in this theorem is the same set as I discussed above.

See ref. [4] pp185 for a discussion of what can be done in the case when H, is degenerate (but
the perturbation removes the degeneracy).

Appendix 8 of [2] discusses applications of the KAM theorem and its generalizations.
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IV Perturbation Theory and Nekhoroshev’s Theorem

Perturbation Theory (again)

Consider the nearly integrable Hamiltonian of the form

H(I1,0)=H,(I)+¢ef(1,0) (6)
with dynamics given by
. OH 0
I(t) = 50 = —58—5
by = 9E 0 0T 42w, (™)

oI oI oI oI
Here I € P™ C R*,0 € T™ are action-angle variables for the integrable system with Hamiltonian
H,.

For the (unperturbed) integrable system H(I,6) = H,(I), the evolution of the action variables
are trivial: 1(t) =0, i.e., I(t) = I(0). For the perturbed system this may no longer be the case (I(t)
may no longer be zero; see eq.(7)). We are interested in questions of stability: Do the trajectories
(solutions) of the perturbed system (7) wander all over phase space or do they remain in a bounded
region (like the trajectories of the unperturbed system)? To answer this question notice that it is
enough to consider only the evolution of the action variables I because the angle variables 6 are
bounded (are cyclic). Our objective will be to estimate the velocity I(t) of the action variables
under the perturbed dynamics (7) which will allow us to estimate how far I(t) travels from the
initial point 7(0) during a certain period of time.!

We see from eq.(7) that the fastest evolution I(¢) could have is O(e). Evolution of this order
will be called fast motion.
Our zeroth- order estimate for the evolution of the action variable of the system (7) is

| 50) = 100) = | [ 50(16),006)) s | < et Lo ®)

so that | I;(t) — I;(0) |< 1 for t < e L. Notice that, for large ¢, Jo 0f /08; may be small so that (8)
may be a poor estimate in the long run.

For a general dynamical system (t) = F(z(t)) + ef(z(¢),t), a priori there is no reason to
expect an estimate any better than |z.(t) — zo(t) | € for t S 1, where z,(t) is a solution for the
unperturbed equation and z.(t) is a solution of the perturbed equation with z,(0) = z-(0). For
Hamiltonian dynamical systems however, as we will see, their remarkable geometry can allow us to
make much better estimates.

Consider the evolution (7) in a neighborhood U(I,) of the torus labelled by the action coordinate
I, (i.e., the torus T™(I,)). Following [13] and [14], our approach will be to look for a canonical
transformatlon C, defined on U(I,) which takes (I,6) coordinates to (I',0") coordinates, is e-close
to the identity transformation;?

Co: UllL) —U); C(I,8) = (I'¢) = (I'1,9),6'(I,0)),

!This is what we mean by effective stability”: I(t) will remain close to I(0) for t < T' where T is the ”time scale
of effective stability”.

*We specify Cr to be e-close to the identity transformation because the perturbed dynamics are e-close to the
unperturbed dynamics (whose trajectories lie on tori T"(I)); see eq. (7). Also, C, being a canonical transformation
means that the dynamics in the new coordinates are given by: I’ = —9H /06’, 6' = 8H /OI', whence the estimates
below follow.
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| (1,6) - (I',6) X e,

and is such that our Hamiltonian H will be in normal form to order r + 1 in the new coordinates;

HOCT(I,G) — H(Il701) — H(I)(II)+€T+1fI(II7el).1

(See also ref. [6] §30.) Then since | I'(t) — I(t) |S € and | I'(t) — I'(0) |< te"+1||0f!/06]| oo, We have
the (better) estimate
| I(t) —1(0) |~ e for tSe".

(These will be referred to as ”polynomial estimates”.)

Let r = 1. How do we find C;? We look for a generating function S; of the form

Sl(I,,g) =1T. 0—+—6W1(II,0).

Then,
I = 38“21(1' 6) = I'+ 8;;/1(1' 0)
aS oW
9 = 81}(1',9) = 0+e 81,1 (I',6). (9)

Expand H, and f in a Taylor series about the point (I’,6’);

Ho(I) = Ho(I(I'0) = Ho(I') + Se(1{1 -1 +-
= Hy(I') + ewo(I')- ngl (I',6) + O(e?)
oWy

= HO(II) + 6(,()0([,)' (II 01) + 0(62)7

26
f(I,O) = f(I(II701) 0(1, 01))

= JIL0) + -] +
= f(I',60) + O(e).

of

60(1’ 0')[0 — 0] + O(e?)

Substitute this into (6)

oW
00

To put (6) into normal form to order 2, we require the terms in the square brackets in (10) to be
independent of the angle variable €', i.e., we need that

H(I',0') = Ho(I') + elwo(I')- ——(I',0") + f(I',0)] + O(£?). (10)

wo(I) - 8;;1 (I.0) + f(I',0)) = y(I'). (1)

We call (11) the fundamental equation of perturbation theory. It is a linearized Hamiltonian-Jacobi
equation that is to be solved for the unknown functions W7 and ¥.

1Of course, we have H(I',8') = H,(I') + ef(I',0") to begin with.
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Notice that in equation (11) expressions like w,(I’) and f(I’,6) mean the known functions w,
and f evaluated at I’,¢'. If we can solve (11) then we have a formula! for Sy(I’,6). If the Hessian
0251/0T'99 is nondegenerate we can solve the equation I = %(I’, 6) implicitly for I': I' = I'(1,6).

This, along with the formula 6’ = %(I ’,0), will define the transformation Cj.

Since ¢’ are angular coordinates (6'; + 2w = 6';, see (9)), and we’re assuming all functions to
be smooth, we can express f and Wi by their Fourier series

f(II, 01) _ Z fk(]—l)eik-e” Wl(I,, 9/) _ Z Wl,k(Il)eik-O"

kEZ” keZn

Now we solve (11) by equating Fourier coefficients,

k=0: Ui(I') = fo(I')
k 75 0: (iwo(I') . k)Wl’k(I’) + fk(fl) 0.

The second equation requires that

!

Wik(I') = z% (12)
If wo(I') - k = 0 then we will need that fx(I') = 0 too. For nondegenerate systems w,(I') - k
will vanish for some k on a dense set of I’*.2 This means that if we wish to solve (11), the Fourier
coefficients, fi(I'), of f will have to be zero for every k € Z™ that characterizes a resonance
of wo(I') in U(L,). I don’t think this means that all the Fourier coefficients of f will have to
vanish, but so many will that f would be of a very special form - too special, in fact. f would
be "nongeneric” (non-typical; recall the discussion about structural stability on pp7). This is the
content of Poincaré’s nonexistence theorem ([14]). If we wanted to prove that H was integrable
then we would at least have to carry-out the above procedure for each order r. But there are ways
out: we will "work around” the resonances (see below). Also notice that even if w,(I') - k never
vanishes for any k € Z" (i.e., that w,(I") is nonresonant), it could become arbitrarily small so that
the convergence of ), Wy is far from assured. In fact, any w € R" satisfies infinitely many,

arbitrarily small, quasi-resonances (see pp11,12).

I'll end this discussion with an observation. If H can be put into a higher-order normal form (or
if H is in fact integrable), then there is a canonical transformation from (I,6) — (I’,6") and this
transformation will have a generating function S (at least locally; see [2] pp258, [4] pp22, [5] §45).
Thus, if the above procedure to find the generating function for this canonical transformation fails
then it truely fails: there does not exist such a transformation, and H can not be put into normal
form.

Isochronous Systems

We begin our approach to this problem by first studying the simpler situation where w,(I) = w
= constant through-out phase space,

H(I,0) = w-I + ef(I,0). (13)

Notice the difference between a formula and a function. In the Taylor expansions above we are treating H, and
f as formulas.
>That is, for a dense set of I'* € U(I,), the frequencies wo(I') will be resonant; see the bottom of ppl4.
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Here the underlying (degenerate) integrable system is the isochronous system H,(I) = w - I.

Let’s consider the case of a (perturbation of an) isochronous system that arises near an elliptic
equilibrium point of a Hamiltonian system ( [1] pp489-503, [2] §23,app.7, [G] ch.6).

Suppose (0, 0) is an equilibrium point of the system ((3), pp8) i.e., that dH(0,0) = (a—H(O 0), 2 P H(0,0)) =
0, and that the ”infinitesimally symplectic” 2n x 2n matrix H (= J d*H),

_9?H(0,0) _ 8%H(0,0)
Hij = 62;(1083 62;(’083 ,j=1,...,n; i=row,j = col
6p_78p’b 8‘1]6Pz
has purely imaginary eigenvalues {iws, ... ,%w,, —iw1, ..., —iw,} where {wi,...,w,} are distinct.!

Then, after going to "normal mode” coordinates: (p,q) — (P, Q) (this can be done by a linear
canonical transformation? ), and rescaling the P,Q (P; — /w;P;, Q;j — Qj/\/&;), we can, via
Taylor expansion, write the Hamiltonian as

H(P,Q) Zw] (Q3+P}) + ) Hy(P,Q),

s=1

where the functions H; are homogeneous polynomials of degree s+2 in P, (). Introduce the rescaled
variables P} = e 1p;, Q= e 1Q; ("blowing-up”) and write

H(P,Q) = H(P Q) i @ +PY) + Y emPQ) (1)
s=1

(so we’ve made explicit the "natural perturbation parameter”, namely, the distance from the origin).
Define canonical coordinates (I,6) 3 via the formulae

Then (14) becomes
H'(1,0) = w-I + Y *Hi(I,9), (15)
s=1

where now the functions H. have only finitely many Fourier components (in ) since they are poly-
nomials in cos@ and sin 6.
To put (15) into normal form to order £ we need to solve (via the fundamental equation (11))

oW

S L 8)+ Hi(I,8) = w(I).

This has a (formal) solution given by

Uy (I') = Hio(I),

!Thus, the ”linearization” of eq. (3) about the point (0,0) is : ( Z ) =H ( 5 >

2Normal mode coordinates diagonalize H so that the linearized equations are uncoupled harmonic oscillators:
=32.;(Q] +wiP)).
3(] 6) are action-angle variables for the harmonic oscillator H = 3 Z wj (Q’2 +P'2).
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H (I') . .
wi(I',0) = ) iwezk"’ : (16)
w-k
k0
(Here, H} ,(I') is the kth-Fourier coefficient of H}(I',6").)
Notice that the sum for Wi in (16) is finite. If w is nonresonant, then, since this sum converges,
it defines a bona-fide canonical transformation. Our hamiltonian is in normal form to order &2 in

these coordinates,
H'(I',0) =w-I' + eH o(I') + E2£/(I',0).

(Now the integrable part is H,(I') = w - I' + e H{ o(I'), which is isochronous to order ¢.)

Resonant vectors are dense in R™, so what to do in that case? This does not present a problem
and in fact it helps us understand just how resonances are responsible for instabilities.

So suppose we have the Hamiltonian given by (15) where w is a resonant frequency and let
A, C Z" be the resonant module (or lattice) of w (A, = {k € Z" | w-k = 0}; see ppl3). A, is a
submodule (”subspace”) of Z" of dimension [ < n where [ is the number of independent resonances
satisfied by w. In this case we can not get rid of all the angle variables ! so our fundamental
equation is

“"%U”@’) + H(I',0) = ¥u(I',6),
which is solved by )
v (I,e) = > Hi,k(ﬂ)@zk'y
ke,

I g\ __ . {,k(II) ik-0'
wi(I',6) = > e (17)
kgh, Y

Our normal form to order €2 modulo A, is then

H’(I’,Q') — LU'II + e Z Hi,k(I,)eik'ol + E2fl(Il,0l,)

keA,
with the evolution of I’ given by
i oH' . ! 1 ik-0' 2
I't) = - S = i€ > kHi i (INe™ + O(e?). (18)
keA,

Thus, I'(t) can only have fast motion in the direction of vectors k € A,. 2 By iterating this

procedure we will see that the remainder term causes a drift in I'(¢) that is exponentially small in
¢ so motion of I'(t) is essentially determined by the resonances.

To apply this procedure again we look for a generating function of the form

So(I",0) = w- I" + W (1", 0).

!That is, we can not solve equation (11) when there are non-zero k'* such that w -k = 0 and f is an arbitrary
(smooth) function.

*Formula (18) also shows us how to construct ”approximate Integrals”: if o € R™ is such that « is orthogonal to
A, then the function g(I') = o - I satisfies ¢(I'(t)) = {g, H'} = O(¢?).
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Going through the same calculations as before, we will be faced with a fundamental equation of

the form
oWy

w - W(III7 0”) _+_ f’(I”, 0[/) — \IIQ(I”)
or,

oW,
o9
in the nonresonant or resonant cases respectively. Here the function f/'(I”,6") is a polynomial in
the H; and their first-order derivatives and so has only finitely-many Fourier components. We
can solve for Ws and ¥4 by equating Fourier coefficients just as before. Ultimately, this defines a
canonical transformation Ca: (I',8') — (I",6") = Co(I',#'). Then, H o (Cy0C;) ! is in normal
form to order &3;

(I”, 9//) + fI(I”, 0[/) — \I,Q(I”, 0[/)

w

Ho (Cg o Cl) =w-I"+ hg(I") + 63f”(I”,9”)

or,

Ho(CaoC)=w-I"+hy(I",0") + " (I",0"),

where h“ has non-zero Fourier components only for those k. € A,,.

If we iterate this procedure infinitely-many times we get a formal power series (in the I;) for the
canonical transformation Coo = lim r — 00 (C, 0+ 0C1) and heo, hf}o“' such that the Hamiltonian
is in integrable, or integrable modulo A, form;

HoC® = w-I® + hoo(I™),
HoC® = w-I® + hlv(I®,6®).
These formal series, however, usually diverge.?

Now suppose f is just an arbitrary (smooth) function so that now the series in (16) or (17) for
W1 (depending on whether w is nonresonant or resonant) can have infinitely many terms. 3 Then
we still have to deal with the small denominators w-k. Carl Siegel observed that if the numerators,
call them fj(I") for simplicity, vanished sufficiently rapidly (as ¥ — oo) and if we had control on
the size of the small denominators, then there might be a chance that the series for W converged.
Vanishing of the Fourier coefficients fi(I’) is related to the smoothness of f(I’,6’) in ' (this follows
from properties of the Fourier transform), while control over the small denominators is precisely
the diophantine inequalities for w (pp12).

So assume w is nonresonant and satisfies a diophantine inequality with parameters ~y, n; or, if w
is resonant, that w satisfies such an inequality for those k & A, 4 and the perturbation f (1,0) is
analytic in a complex strip | Imé |< p. Then the f(I') will decay exponentially fast so the terms

% will also decay (exponentially) fast ® making the series convergent.

Thus, for Hamiltonians of the form (13), if w satisfies a diophantine inequality outside of its
resonant module and if f is smooth enough, then H can be put into (Birkhoff) normal form modulo
A, to any order.

INotice that C5 o C; is e- close to the identity.

2The above construction of the C, is Birkoff’s Theorem and the normal forms are called Birkhoff normal forms;
see[4] pp111-114; 255-258, [12] pp92-93, [14] pp8, and [28] pp30-34.

3Each term is finite, though.

“See [14] pp11. We can just say the A, = 0 if w is nonresonant.

5The denominator w - k can vanish not faster than ~ k™™ while the numerator vanishes like ~ e~ !*!?, This shows,
too, that we can even do with polynomial decay of the fi as long as it beats the decay of the denominator: we need
that f be ”sufficiently smooth”.
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There are still some frequency vectors w that we haven’t yet dealt with. These are the w'®
that do not satisfy any diophantine inequality, or at least not a prescribed diophantine inequality,
outside of its resonant module. In this case we define a ”quasi-resonant module” AZ™" D A, to
be the module generated by those k' € Z" for which |w - k|< «/ |k|™ for some prescribed v.! In
practice, one is only concerned about k" such that |k|< M (see the discussion of Nekhoroshev’s
theorem below) in which case every w € R™ can be made to satisfy some diophantine inequality
outside of some AL " so we can carry out the normal form reduction modulo A% " (see [GDFGS]
ppl84).

Another use of these quasi-resonant modules is that they allow us to obtain more precise es-
timates. For example, suppose that outside the resonant module A, there are some k', |k |< M,
that produce a quasi-resonance (so that w -k is a small denominator). Then the main contribution
to the error (or remainder) term in the normal form modulo A, will come from these k'*. If we
include them in A, and look at the resulting normal form, the error term becomes smaller and we
have a more accurate idea of what are the fast motions (cf. eq.(18)).

We consider now how to estimate remainder term.
For simplicity consider the case where w is nonresonant. If H is in normal form to order r + 1

H(I'0) = w-I' + h(I') + 1 f(1,0),

then we immediately get the estimate | I|< Cre"t!. We can put H into normal form to any order
we want so (and this is the basic idea) let’s choose 7 = r(¢) . Now it is crucial to control the
r-dependence of C,.. For instance, if we can show that the C)* satisfy an estimate like C, < r™™,
m > 0, then | I' |[< 7"™e™t1, Now take r(e) = (é)l/m. Then | I' |< ee(=/e"'™) where o = 1/e.
Remember that our canonical transformation was e-close to the identity, so that in the original
coordinates we have the estimate

)~ 1(0) | Se  for e/

These are the celebrated exponential estimates of Nekhoroshev. To be assured of the estimates on
C. as above, conditions like analyticity of H in a complex neighborhood of P™ x T" are sufficient
(see [13] pp129).

Nekhoroshev’s Theorem

Let’s gather our accomplishments to this point. We’ve seen that there are ways to handle
resonances and small denominators (”quasi-resonances”) in perturbation theory for isochronous
systems via diophantine inequalities and the use of normal forms modulo a resonance lattice. To
treat the general system H(I,0) = H,(I) + €f(I1,0) we will use these techniques according to
what properties the frequency vector w,(I) has. We will divide the action space up into regions
according to the resonant or quasi-resonant properties of w,(I) in these regions, apply the normal
form reduction appropriate to each region, and then piece them all together to get an estimate of
the evolution of I(t) for all of phase space. The ”geometry of resonances” in action space is the
heart (but not soul!) of Nekhoroshev’s theorem (Nekhoroshev’s paper [29] is good reading about
this).

!This is a kind of ”micro-local analysis” of the function w,(I), where the AL™" is something like the ”wave front
set”.
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So now let us consider the general nearly integrable system

H(1,0) = Ho(I) + f(1,0). (19)
We want to obtain estimates on the evolution of I(¢). Before, in the isochronous case, the frequency
vector wy(I) = ago was constant on all of phase space and we were able to find a canonical

transformation that put (19) into normal form modulo some lattice A,,. Now the frequency vector
is not constant. At any particular point I, in action space we can put (19) into normal form
according to the properties of w,(I,), but apriori this normal form is not valid in any neighborhood
of I,, which is what we want, because I(t) is moving. ! For nondegenerate systems the properties of
w,(I) are always changing as I changes (the frequencies can be used as coordinates in action space,
remember). 2 However, the quickly varying (resonant) properties of w,(I) (i.e., those coming from
infinitesimal or nearly infinitesimal changes in I) are due to the properties of w,(I) - k for those k'
in a neighborhood of infinity in Z™! We saw this already on ppl2: a nonresonant w € R™ satisfies
arbitrarily small quasi-resonances but the smallest ones occur for those k'* that are very large. In
that case, if you restrict yourself to consider only those k’® that lie inside some ball in Z" centred
at the origin, then an w that satisfies some diophantine inequality will have only finitely many
quasi-resonances and these quasi-resonances are bounded from below (do not become arbitrarily
small).

I claim that, by choosing an appropriate M = M(I,) > 0, I can be assured that there is a
neighborhood A(I,, M) C P™ of I, such that w,(I) shares the same properties (as far as normal
forms are concerned) as w,(l,) in A(l,, M) when restricted to those k’* with |k|< M. Then the
normal form modulo A, (z,) is valid in the region A(Z,, M).

We can see this more clearly in the case of w € R? (cf. the diagram on pp12). Suppose the line
through w intersects a lattice point inside of the ball B(M) of radius M centred at the origin. Then
you can see that we can change w slightly (i.e., rotate it slightly back and forth) and not intersect
any other lattice point inside of B(M). 3 The amount we can change w will depend on the size of
the ball. Thus, by restricting to those k such that |k|< M, w,(I) will have no other resonances in
a neighborhood of I,.

In the nonresonant case, where the line through w does not intersect a lattice point inside of
B(M), we can change w slightly and still not intersect a lattice point inside of B(M). Suppose,
further, that this w satisfies a diophantine inequality with parameters 7, n inside of B(M). Then
if we change w slightly it still satisfies a diophantine inequality inside of B(M) but with, perhaps,
a different v, say, 7/2. * Here then, we see that by restricting to those | k|< M, wo(I) will, in a
neighborhood of I, satisfy a similiar diophantine inequality as w,(I,) does.

For the other w, the ”algebraic numbers” that don’t satisfy any diophantine inequality on all
of Z", they will satisfy a diophantine inequality on any ball B(M) in Z".

”Shifting w slightly” in the description just given translates into; ” moving from I, to a nearby
I and seeing how wy(I) changes from wy(l,)”. Remember that in nondegenerate systems the
frequencies can be used as coordinates in action space (ppl4) so that if we know the neighborhood
of I, in action space then we know the neighborhood of w,(I,) in frequency space, i.e., we know
exactly how the frequencies change with 1.

The bottom line of all this is that, by restricting to those | k |[< M for appropriate M, the
resonant and quasi-resonant properties of w,(I,) will be shared by those w,(I) in a certain neigh-

!We want to put (19) into normal form in some neighborhood of I, that contains I(t) for some length of time.
?>To show you how delicate this issue is, recall that those I'® in which w,(I) is resonant is dense in P™.

30f course, the line will intersect many lattice points outside of B(M).

“This can also be seen analytically by looking at the formula |w - k|< #, |k|< M and then changing w slightly.
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borhood of I,. Thus, our frequency is ”constant” in these regions, at least as far as the appearance
of the normal form is concerned.’

Notice that if the Fourier coefficients of order greater than M of the perturbation f van-
ished, then we would only be considering those k’* with | k |[< M anyways! and the above
normal form would be perfectly legitimate in A(I,, M). So let’s just truncate the Fourier se-
ries for f at order M (an "ultraviolet cut-off’ 2 ), call this function f™, and calculate the
normal form with fM as the perturbation instead of f. The price we pay by doing this is
that the remainder term in the normal form using f™ is no longer accurate for the original
f: there are now contributions to the remainder term that come from the neglected f’;. But
one can show that, for an appropriately chosen M, this contribution is not any bigger than
what the error term associated to an f with finitely many Fourier coefficients is already. 3
Thus, our normal forms valid inside of A(I,, M) are: H(I',8') = Hyo(I') + ef,(I') + 2 f'(I',#') and
H(I',0') = Hy(I') + € Ypep, ifM(I")e* 9 + 2 f/(I',6') in the nonresonant and resonant case re-
spectively.

Introducing an ultraviolet cut-off also results in resonance-free regions in P™. 4

Now we have control on I(t) inside of A(I,, M). By iterating the normal form algorithm,
and choosing M appropriately, we can show that the remainder term is exponentially small in .
Thus, I(t) would essentially stay inside of A(I,, M) if there were no fast motions (if there were no
resonances of order less than M there). If there are fast motions then we know in what directions
they are (cf. eq.(18)) so we know where I(t) will exit the region A(I,, M) and we can also estimate
how long it will take to do so. How long depends not only on how fast the fast motions are, but
also on the size of A(l,, M) which may be limited by the size of the domain of definition of the
canonical transformation C" that puts the Hamiltonian into normal form. Typically, as the order
of the normal form increases the size of the domain of the canonical transformation shrinks so we
must make a trade-off between making the remainder term very small (larger r) and the domain
A(I,, M) large (smaller r). Part of the analytical work in the proof of Nekhoroshev’s theorem is
finding this optimal r (see [GDFGS] pp186-188, [13] pp134, for example).

If I(¢) is in a nonresonant region its velocity is exponentially small so that it stays in this region
for a long time. The regions A(I,, M) are chosen so that if I(¢) is initially in a resonant region,
it will leave that region and eventually enter a nonresonant region® (i.e., a region where there are
no resonances of order less than or equal to some M) where it will essentially stop. To obtain
global estimates on the evolution of I(t) (i.e., for exponentially long times), one has to keep track
of the sizes of the resonant regions A. Thus, the statement of Nekhoroshev’s theorem contains two
numbers that characterize the distance I(t) has travelled from I(0) and the time taken to travel
there.

®In equations (16) and (17) we will have w,(I) instead of w, and the resulting series for W7 will be defined on
A1, M).

1See eq.(12)

*The idea of introducing an ultraviolet cut-off is standard technique in KAM theory; see [12] pp105, [15] pp5,
[23] pp586-587, [29] pp21-22.

31f r = 1 then we can show that the higher-order harmonics of f contribute only to O(g?) in the normal form,
which is the size of the remainder (see the references given in footnote (2)).

“There are only finitely many k € Z™ with |k|< M.

5This is where the ”convexity” property of H, is used in Nekhoroshev’s theorem.
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Here now are two versions of Nekhoroshev’s theorem:

Theorem (Nekhoroshev) ([29] pp4) Consider the nearly integrable Hamiltonian
H(Iaa) = HO(I) + Ef(I70) (20)

where ¢ << 1. Suppose that H, satisfies certain "steepness conditions”. Then there are positive
constants a, b and €, with the following property. Let 0 < & < &,. Then for every solution I(t),0(t)
of the system (20) (i.e., eq. (7)),

| I(t) = 1(0) | < €°

for allt € [0,T], where
1 1

T = E exp(ga).
The constants a,b depend on H,; €, depends only on H, and on the two parameters in f that
estimate, respectively, the largest quantity and the rate of decrease of the coefficients in the Fourier
series for f in terms of 0. This estimate is proven under the assumption that H is analytic. If we
only require H to be smooth, then the estimate is not exponential, but a polynomial estimate whose
exponent is larger the more derivatives H has. o

Remarks
a and b N\ 0 as n (the number of degrees of freedom) increases to infinity.
”Steepness” is a kind of convexity and is shown by Nekhoroshev to be generic.

Theorem (Nekhoroshev/Pdschel) ([31] ppl90) In the same notation as above, suppose H, is
l,m quasi-convex and ||||f|||| < €o. Then for every orbit with initial condition (I,,6,) in P™ x T"
one has . .
[1(t) = 1(0) | < Ro()*  for | t] < Toexp(so()%)
o

except when ||w(L,)|| < mr, in which case |I(t) — I(0)|< 1, for all t. Here, a =1/2n e
D [Jw( :

Remarks

T, depends on € in some implicit way.

H is assumed to be real analytic on a complex neighborhood of P™ x T". ||||f|||| is an
exponentially-weighted norm on the Fourier coefficients of f.

H, is quasi-convex if at every point I € P" at least one of the inequalities

lw(D)- €1 > 1gll,  ((O°Ho/*1)E,€) > mlé]?

holds for each ¢ € R” and for some I, m ("I, m quasi-convex”).

Notice the case when w(I,) is sufficiently small; you have perpetual stability (i.e., this orbit
remains close to the unperturbed one for all time).

Poschel discusses how the different resonant properties in different regions of phase space pro-
duce different ”life-times” and that, generally, regions of stronger resonances (i.e., | k| is smaller)
exhibit longer life-times for the destroyed orbits (this is related to the remark made just above).
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Geometry of Resonances

To give you some idea of how to cover the action space by the domains A I mentioned above,
and a flavour of the proof of Nekhoroshev’s theorem, I will give some definitions. Details can be
found in the references (particularily [12],[15],[23],[29],[31]). Note that ref.([31]) gives a different
construction than the others and that given here.

As before, A, will denote the resonant lattice of w. For nondegenerate systems (of which the
Hamiltonians in the above theorems are) we know that we can use the frequencies to lable the tori,
that is, we can use frequencies as coordinates on P" via the formula

P"> 1 — wo(I) € F, CR".

This mapping has an inverse * : F, - P" , & = I,,, where wo(l,) = w. " is called the frequency map.
It is easier to look at the geometry of resonances in frequency space F,, and then use the frequency
map to put that structure on P™ (and hence phase space).

Take k € Z" and define the set (k) = {w € R* |w -k =0}. Q(k) is just the plane kL in R"
that is perpindicular (in R"®) to k. In general, Q(k1,...,ks)={w e R* |w-k; =0 j=1,...,s <n}
is II(k1, ..., ks) L where II(k1,...,ks) = span of {ki,...,ks} as vectors in R". So, the Q(ki,...,ks)
are planes of various codimensions in R™. We can also define, for any sublattice A of Z™, the set
Q(A)={w € R® |w-k =0 for all k € A}. This will be a collection of planes in R®. As A varies over
all possible sublattices A of Z™, the Q(A) will cover all the resonant frequencies in R™. Notice that
since a resonant frequency w can satisfy many different resonances, w may lie in more that one
Q(A).! Since resonant frequencies are dense in R" , the collection Q = [Jpczn Q(A) will be a dense
set of planes in R, 2

Also used in the proofs are the resonant zones Q9(A) ={w € R" |w-k; <4 for j=1,...,s}
where {k1,...,ks} is a basis for A. What these Q°(A) are, I think, are ”pancakes” lying along the
plane Q(A) which are thicker near the origin and thinner further away from the origin, approaching
Q(A) as |w|— oo. It is in these resonant zones where the fast motions occur.

Resonant surfaces R(A) in action space are defined by R(A) ={I € P" | w(I) € Q(A)}. Then
R(A) is just Q(A), and since " is a diffeomorphism, R(A) is a collection of curves and surfaces
in P™. The resonant block associated to the resonant surface R(A) is the difference between the
resonance zone R3(A) of R(A) and the union of the resonance zones of all resonant surfaces not
containing R(A).> The multiplicity of a zone or block is the dimension of the associated lattice A.

Now we can describe the evolution of I(¢). In the words of Nekhoroshev ([29] pp25): ”We can
choose the resonance width of the zones used to construct the set of blocks so that if a point I(¢)
leaves each zone close to the corresponding block, then it passes into a block of lower multiplicity
than that of this zone. For this reason, as I(¢) moves from its initial position I(0), it passes from
one block of lower multiplicity until it reaches a nonresonance block. The speed in this block is
(essentially) zero, and so it is impossible for I(¢) to move further from 7(0).”

Tt will lie in the intersection of them, which is also a plane.
2For R?, Q is the collection of straight lines throught the origin with rational slope.
3Here the zone ”"width” § is fixed.

28



References

Classical Mechanics

[1] J. Abraham and J. Marsden: Foundations of Mechanics, 2"%ed (1985 printing). Addison-
Wesley 1978.

V.I. Arnold: Mathematical Aspects of Classical Mechanics. Springer-Verlag 1978.

CORS)

V.I. Arnold and A. Avez: Ergodic Problems of Classical Mechanics. Addison-Wesley 1989.

[4] V.I. Arnold (ed.): Encyclopedia of Mathematical Sciences vol.3 Dynamical Systems III;
Mathematical Aspects of Classical and Celestial Mechanics, 2"%d. Springer-Verlag 1993.

L.D. Landau and E.M. Lifshitz: Mechanics, 3"%d. Pergamon Press 1976.

CNRE

C.L.Siegel and J.K. Moser: Lectures on Celestial Mechanics. Springer-Verlag 1971.

Dynamical Systems

[7] V.I Arnold: Ordinary Differential Equations, 3"%d. Springer-Verlag 1992.

[8] J. Guckenheimer and P. Holmes: Nonlinear Oscillations, Dynamical Systems, and Bifurcations
of Vector Fields. Springer-Verlag 1988.

[9] J. Palis and W. deMelo: Geometric Theory of Dynamical Systems. Springer-Verlag 1985.

[10] D. Ruelle: Elements of Differentiable Dynamical Systems and Bifurcation Theory. Academic
Press 1989.

[11] S. Smale: Differentiable Dynamical Systems. Bull. Am. Math. Soc., 73, Nov. 1967.

Kam Theory and Nearly Integrable Systems

[12] V.I. Arnold: Small Denominators and Problems of Stability of Motion in Classical Mechanics
and Celestial Mechanics. Russian Mathematical Surveys 18:6, pp85-191, 1963.
Also reprinted in: Hamiltonian Dynamical Systems, R.S. Mackey and J.D. Meiss eds. Adam
Hilgar 1987.
(See also the paper by Arnold: Proof of a Theorem of A.N. Kolmogorov on the Invariance of
Quasi-periodic Motions Under Small Perturbations of the Hamiltonian. Russian Mathemat-
ical Surveys 18:5, pp9- 36, 1963.)

[13] G. Benettin: Nekhoroshev-Like Results for Hamiltonian Dynamical Systems. Nonlinear
Evolution and Chaotic Phenomena, G. Gallavotti and Paul F. Zweifel eds. Plenum Press
1988.

[14] G. Benettin, L. Galgani, and A. Giorgilli: Poincaré’s Non-Existence Theorem and Classical
Perturbation Theory For Nearly Integrable Hamiltonian Systems. Advances in Nonlinear
Dynamics and Stochastic Processes, R. Livi and A. Politi eds. 1988.

[15] G. Benettin, L. Galgani, and A. Giorgilli: A Proof of Nekhoroshev’s Theorem for the Stability
Times in Nearly Integrable Hamiltonian Systems. Celestial Mechanics, 37, ppl1-35, 1985.

29



G. Benettin and G. Galavotti: Stability of Motions Near Resonance in Quasi-Integrable
Hamiltonian Systems. J. Stat. Phys. 44, 3/4, pp293-338, 1986.

M. Berry: Regular and Irregular Motion. Reprinted in Hamiltonian Dynamical Systems, R.S.
Mackay and J.D. Meiss eds. Adam Hilgar 1987.

J.B. Bost: Tores Invariants Des Systéms Dynamiques Hamiltoniens. Séminaire Bourbaksi,
37e année, 1984-1985, # 639 (Fev. 1985). Astérisque 133-134 (1986), pp113-157.

W. Craig and C.E. Wayne: Newton’s Method and Periodic Solutions of Nonlinear Wave
Equations. Commun.Pure Appl. Math., 46, pp1409-1498, 1993.

J.J. Duistermaat: On Global Action-Angle Coordinates. Commun.Pure Appl. Math., 33,
pp687- 706, 1980.

E. Fermi, J. Pasta, and S. Ulam. Lect. Appl. Math., 15, pp143, 1974.

L. Galgani: Relaxation Times and the Foundations of Classical Statistical Mechanics in the
Light of Modern Perturbation Theory. Nonlinear Evolution and Chaotic Phenomena.
G. Gallavotti and Paul F. Zweifel eds. Plenum Press 1988.

G. Gallavotti: Quasi-Integrable Mechanical Systems. Critical Phenomena, Random Systems,
Gauge Theories. (Les Houches 1984) K. Osterwalder and R. Stora eds.

A. Giorgilli and L. Galgani: Rigorous Estimates for the Series Expansions of Hamiltonian
Perturbation Theory. Celestial Mechanics 37, pp95-112, 1985.

M.C. Gutzwiller: Chaos in Classical and Quantum Mechanics. Springer-Verlag 1990.

S. Kuksin: Nearly Integrable Infinite-Dimensional Hamiltonian Systems. Lecture notes in
Math # 1556, Springer-Verlag 1993.

V.F. Lazutkin: KAM Theory and Semi Classical Approximations to Eigenfunctions. Springer-
Verlag 1993.

J. Moser: Stable and Random Motions in Dynamical Systems. Annals of Mathematics
Studies # 77, Princeton University Press 1973.

N.N. Nehkoroshev: An Exponential Estimate of the Time of Stability of Nearly-Integrable
Hamiltonian Systems. Russian Mathematical Surveys, 32:6, ppl-65, 1977.

J. Poschel: Integrability of Hamiltonian Systems on Cantor Sets. Commun.Pure Appl. Math.
35, pp653-695, 1982.

J. Poschel: Nekhoroshev Estimates for Quasi-Convex Hamiltonian Systems. Math.Z., 213,
pp187-216, 1993.

J. Po6schel: Small Divisors With Spacial Structure in Infinite- Dimensional Hamiltonian
Systems. Commun.Math.Phys., 127, pp351-393, 1990.

C.E. Wayne: Periodic and Quasi-Periodic Solutions of Nonlinear Wave Equations via KAM
Theory. Commun.Math. Phys., 127, pp479-528, 1990.

30



Related References

[S] Seminar on Dynamical Systems. S. Kuksin, V. Lazutkin, and J. Poschel eds. Birkhauser
1994

[BFG] G. Benettin, J. Frolich, A. Giorgilli: A Nekhoroshev-Type Theorem for Hamiltonian Sys-
tems with Infinitely Many Degrees of Freedom. Commun.Math.Phys. 119, pp95-108, 1988.

[FSW]  J. Frolich, T. Spencer, C.E. Wayne: Localization in Disordered, Nonlinear Dynamical
Systems. J. Stat. Phys. 42, #3/4, pp247-274, 1986.

[GDFGS] A. Giorgilli, A. Delshams, E. Fontich, L. Galgani, C. Simé: Effective Stability for a
Hamiltonian System Near an Elliptic Equilibrium Point, with an Application to the
Restricted Three Body Problem. J. Diff.Eq. 77, pp167-198, 1989.

[LS] L.H. Loomis and S. Sternberg: Advanced Calculus. Addison- Wesley 1968.

(W] C.E. Wayne: The KAM Theory of Systems with Short Range Interactions, I.
Commun. Math. Phys. 96, pp311-329, 1984.

[G] H. Goldstein: Classical Mechanics,2"®ed. Addison- Wesley 1980.

31



	resonance
	6
	resonance
	12
	13
	14
	15
	resonance

