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Abstract: Bound states are functions on space-time that are localized in space uniformly in

time and play an important role in the scattering theory of dispersive wave equations. We

prove for a class of nonlinear wave and Schrödinger equations that bound state solutions are

almost periodic in time. As an application we establish necessary conditions for the existence

of bound states for these equations.
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1 Introduction

In this article we study solutions of nonlinear wave (NLW) and nonlinear Schrödinger (NLS)

equations on space-time Rn+1;

∂2
t u−∆u + f(u) = 0 (NLW )

−i∂tu−∆u + f(u) = 0 (NLS)

Here u : Rn
x×Rt → C and f : C → C is a nonlinear function. In the absence of the nonlinearity

f , these equations are purely dispersive and all finite energy solutions spread out and decay

in amplitude. More precisely, they decay in a local (spatial) norm to the zero solution. The

nonlinearity, however, can act against dispersion with the result that some solutions may

remain localized in space, or even blow-up (i.e., u or one of its derivatives becomes infinite

in finite time). A general overview of the theory of these equations can be found in [S].
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The most natural, and simplest, space-time classification for solutions of these equations

are bound states and scattering states. Bound states are solutions that are localized in space

uniformly in time, while scattering states are solutions that decay locally in space with

respect to time. Bound states represent particle-like solutions (such as solitons and solitary

waves) while scattering states represent dispersive waves (radiation travelling to infinity).

Not every solution is a bound state or a scattering state, but these types of solutions can be

used to describe the large-time behavior of a general solution (scattering theory).

Linear wave or Schrödinger equations of the form ∂2
t u+Hu = 0 or −i∂tu+Hu = 0 where

H is a self-adjoint operator, will possess bound states if H has non-empty discrete spectrum.

Under certain assumptions on H every solution can be expressed as a superposition of bound

states and scattering states (see for example [RS-III] or [Pe]). For integrable nonlinear

equations (e.g., the sine-Gordon NLW; ∂2
t u − ∆u + sin u = 0, or the cubic NLS; −i∂tu −

∆u− 2|u| 2u = 0, both in dimension n = 1) one can use the method of inverse scattering to

deduce the same, at least on a formal level [FT],[NMPZ].

For linear equations it is well known that in the large-time limit these modes - the

bound states and scattering states - decouple due to dispersion and consequently the solution

converges in a local (spatial) norm to the bound states while radiating energy to infinity.

This is a conclusion of the so-called RAGE Theorem [R],[AG], [E] (see also [GI], [RS-III]

or [Pe]), which states an equivalence between the space-time behaviour of solutions and the

spectral subspaces of the linear operator generating the dynamics. For reference we state the

RAGE Theorem for the Schrödinger equation (the linear wave equation can also be written

in the form of the Schrödinger equation). Recall that the solution of the linear Schrödinger

equation i∂tϕ(t) = Hϕ(t) for appropriate initial data ϕ can be written as ϕ(t) = e−iHtϕ.

RAGE Theorem

Suppose H = −∆ + V acting on H = L2(Rn) is a locally compact operator. Let Hd and

Hc be the discrete and continuous spectral subspaces of H respectively, and ϕ(t) = e−iHtϕ.

Then,
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(a) ϕ ∈ Hd if and only if for each ε > 0 there is an Rε > 0 such that

sup
t

‖χ̄Rεϕ(t)‖L2(Rn) < ε

(b) ϕ ∈ Hc if and only if for each R > 0,

lim
T→∞

1

T

∫ T

0
‖χRϕ(t)‖L2(Rn) dt = 0

Here, χR is the characteristic function of the ball of radius R in Rn.

The localization described in part (a) is our definition of a bound state (while part

(b) describes the behaviour of scattering states). Under the hypothesis of the Theorem

H = Hd ⊕ Hc and the discrete spectrum σd(H) of H consists of countably many isolated

eigenvalues with finite multiplicity, perhaps with an accumulation point at the bottom of the

essential spectrum = inf σc(H). We can therefore write σd(H) = {λ1, λ2, λ3, . . .} where we

repeat an eigenvalue according to its multiplicity. Consequently, part (a) implies that bound

states are almost periodic in time; ϕb(t) =
∑

λj∈σd(H)

cje
−iλjtφj, Hφj = λjφj, cj = 〈ϕ, φj〉.

With a slight strengthening of the assumptions on H (so that Hc = Hac, the absolutely

continuous spectral subspace of H), the convergence in part (b) holds pointwise in t, and so

we see that solutions converge locally to bound state solutions; ϕ(t)
loc→ ϕb(t) = e−iHtϕb as

t → ∞, where ϕ = ϕb + ϕs, ϕb ∈ Hd, ϕs ∈ Hc (note that ϕ(t) = e−iHtϕb + e−iHtϕs). Here

ϕ(t)
loc→ ϕb(t) denotes convergence locally in space; limt→∞ ‖χR(ϕ(t)− ϕb(t))‖L2(Rn) = 0.

For integrable nonlinear equations one can use the method of inverse scattering to for-

mally establish an analogous result (see also [CVZ] and [DZ] which makes this rigorous in

certain cases). That is, one can decompose the initial data into pieces corresponding to

bound states and scattering states, with these two modes decoupling as t →∞.

This scenario is becoming a paradigm in the scattering theory of general nonlinear dis-

persive wave equations. That is, one expects that a general solution will converge locally to
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bound states as t →∞ while radiating energy, the convergence being driven by dispersion.

Rigorous results corroborating this view include [SW1] and [BP] where it is proven that

solutions of NLS initially near a soliton converge (locally) to a soliton (solitons are examples

of bound states). When the equation possesses many bound states (modulo symmetries) the

dynamics among them as the solution disperses is a fascinating problem [T], [SW2].

We see that bound states play an important role in describing the large-time behavior of

solutions of nonlinear wave and Schrödinger equations. By definition, bound states share the

property of being localized in space, uniformly in time. In this article we show that bound

states also share a compactness property in time, namely, that they are almost periodic

in time. This result extends part of the RAGE Theorem to nonlinear equations. As an

application of this temporal property, we establish a necessary condition for the existence of

bound state solutions. Proving existence or nonexistence of bound states for linear equations

is equivalent to determining the spectrum of the linear operator H (via the RAGE Theorem).

For integrable nonlinear equations one can use the formalism of inverse scattering to address

this question. For general nonlinear equations with ’repulsive’ nonlinearities one can prove

apriori dispersive-like decay estimates (perhaps only for small solutions), which rule out the

possibility of there being bound states (see [S] or [Ca] for a discussion and references). In this

article we present new nonexistence results using virial relations and the almost periodicity

of (the candidate) bound state solutions.

2 Statement of Results

To state our main result we introduce some notation and definitions. Both NLW and NLS

can be written as evolution equations;

∂tϕ = Aϕ + G(ϕ), (2.1)

where in the case of NLW, A =

 0 1

∆ 0

 , G(ϕ) =

 0

−f(u)

 , ϕ = (u, ∂tu), and where in

the case of NLS, A = i∆, G(ϕ) = −if(ϕ), ϕ = u.
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The spaces of functions we will work with are the following. In the case of NLW, we

let X = H1(Rn) × L2(Rn) and in the case of NLS we let X = H1(Rn). For µ > 0, we let

Xµ = H1+µ(Rn)×Hµ(Rn) or Xµ = H1+µ(Rn) in the case of NLW or NLS respectively, where

Hµ(Rn) denotes the L2(Rn) Sobolev space of order µ; Hµ(Rn) = {u ∈ L2(Rn) : 〈k〉µû ∈

L2(Rn)}, where û denotes the Fourier transform of u and 〈k〉 ≡ (1 + |k|2)1/2. We denote the

associated norms on these spaces by ‖ · ‖2
X = ‖ · ‖2

H1(Rn) + ‖ · ‖2
L2(Rn) or ‖ · ‖2

X = ‖ · ‖2
H1(Rn),

and ‖ · ‖2
Xµ

= ‖ · ‖2
H1+µ(Rn) + ‖ · ‖2

Hµ(Rn) or ‖ · ‖2
Xµ

= ‖ · ‖2
H1+µ(Rn) in the case of NLW or NLS

respectively.

We consider a solution ϕ(x, t) of NLW or NLS as a map ϕ : R → X which we will denote

by ϕ(t). For ϕ ∈ X, O(ϕ) will denote the orbit of ϕ; O(ϕ) = {ϕ(t) | t ∈ R, ϕ(0) = ϕ},

and AP(X) will denote the Banach space of almost periodic functions from R to X with

norm ‖ϕ‖AP(X) = supt∈R ‖ϕ(t)‖X (see Definition 3.1 below).

Definition 2.1 A function ϕ : R → X is a bound state if for any ε > 0 there exists a ball

BRε ⊂ Rn of radius Rε centered at 0 such that

sup
t
‖χRε

ϕ(t)‖X < ε (2.2)

where χRε
is the characteristic function of Rn \BRε . A bound state solution of NLW or NLS

is a globally defined solution of NLW or NLS that is a bound state.

Remark: Bound states as defined here are stationary. Both NLW and NLS possess a group

of symmetry transformations which map one solution into another (e.g., the Lorentz group

for NLW and the Galilean group for NLS). These symmetry transformation can transform a

bound state into a ‘travelling’ bound state. Thus, some solutions may not be bound states in

the sense of the Definition 2.1, but can be transformed into bound states by an appropriate

symmetry transformation.

If ϕ(t) is a globally defined solution of NLW or NLS with ϕ(0) = ϕ, we let S ( = Sϕ) :

R × O(ϕ) → O(ϕ), S(t) : ϕ1 7→ ϕ1(t) ≡ S(t)ϕ1, ϕ1 ∈ O(ϕ), denote the flow of the
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dynamical system (2.1) along O(ϕ). Note that {S(t)}t∈R is a group: S(t1 + t2) = S(t1)S(t2).

Our main result is the following.

Theorem 2.2 Let ϕ ∈ C(R; X) be a bound state solution of NLW or NLS such that

supt ‖ϕ(t)‖Xµ < ∞ for some µ > 0. If {S(t)}t∈R is equicontinuous on O(ϕ), then ϕ is

an almost periodic function from R to X.

The regularity condition supt ‖ϕ(t)‖Xµ < ∞, along with the hypothesis of localization

(i.e., that ϕ(t) is a bound state), assures thatO(ϕ) is relatively compact in X (see Proposition

3.3). This compactness, combined with the equicontinuity of {S(t)}t∈R, guarantees the

almost periodicity of ϕ(t) (as we will show). Recall that {S(t)}t∈R is equicontinuous if for

any ε > 0 there is a δ such that if ϕ1, ϕ2 ∈ O(ϕ) with ‖ϕ1−ϕ2‖X < δ, then supt∈R ‖S(t)ϕ1−

S(t)ϕ2‖X < ε. In the linear case the flow will be equicontinuous on any orbit if the family

{S(t)}t∈R is bounded; ‖S(t)ϕ1−S(t)ϕ2‖X ≤ (supt ‖S(t)‖X→X)(‖ϕ1−ϕ2‖X). In particular,

this is true for the free linear wave and Schrödinger equations (i.e., f(u) ≡ 0), and for general

linear equations under appropriate (mild) assumptions on the operator H. In the nonlinear

case equicontinuity will have to be verified for each equation. We remark that without the

hypothesis of equicontinuity the trajectory ϕ(t), although relatively compact, may only be

recurrent and not almost periodic (see for example Ch V.8 in [NS]).

Example

Consider the following assumptions on the nonlinearity f ;

F (u) ≥ −c|u|2 − c|u|q+1 for q < 1 +
4

n
in the case of NLW,

F (u) ≥ −c|u|2 in the case of NLS,

where F ′ = f . Furthermore, suppose |f ′(u)| ≤ c(1 + |u|p−1) where 1 < p < 1 + 4
n−2

(1 < p < ∞ if n = 1, 2). Then if ϕ ∈ X1, there exists a global solution ϕ(·) ∈ C(R; X1) with

ϕ(0) = ϕ (see [S] Chapter 3). Applying Theorem 2.2, if the solution ϕ(t) is a bound state
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such that supt ‖ϕ(t)‖Xµ < ∞, µ > 0, and if {Sϕ(t)}t∈R is equicontinuous on O(ϕ), then ϕ(t)

is an almost periodic function from R to X.

Nonexistence of bound states

Here we combine the use of virial relations, as discussed in [Py], with the almost pe-

riodicity of bound states (Theorem 2.2) to prove nonexistence of bound states for certain

equations.

A virial relation is an integral identity involving the solution of a differential equation.

The identity can be derived directly from the equation itself or, if the equation can be

formulated as a variational problem, from the action functional associated to the equation.

A well known example from physics relates the time-average kinetic and potential energies

of an n-particle system under the influence of central forces (usually referred to as the virial

theorem; see for example [LL]). In mathematics virial relations have been used extensively,

for example, in deriving necessary conditions for the existence of solutions of differential

equations beginning with the work of Pohozaev [Po].

Let’s consider NLW, and suppose ϕ(t) is a bound state solution. Assuming the hypotheses

of Theorem 2.2 are satisfied, ϕ(t) is almost periodic in time. As described in [Py], by

combining the dilation and gauge transformations, one obtains the following virial relation

valid for any c ∈ R;

lim
T→∞

1

T

∫ T

0

∫
Rn

{
(
1

2
− c)(∂tϕ)2 + (c +

2− n

2n
) | ∇ϕ |2

}
= lim

T→∞

1

T

∫ T

0

∫
Rn
{F (ϕ)− cϕf(ϕ)}

(2.3)

We assume that ϕ ∈ APq for some q ∈ [2,∞] where APq ≡ {ϕ ∈ AP(H1(Rn)∩Lq(Rn)) such

that ∂tϕ exists in the strong sense as a uniformly continuous map R → L2(Rn)}. Here AP(B)

denotes the set of almost periodic functions from R to the space B (see Definition 3.1 below).

We also assume that f ∈ C(R, R) with f(0) = 0 and that either |f(z) |≤ c(|z | + |z |q/2), or

f satisfies a Lipschitz condition at the origin.

If for some c ∈ [n−2
2n

, 1
2
], the inequality

F (z)− czf(z) ≤ 0 (2.4)
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holds, then both sides of Equation (2.3) must be zero. In the case c > n−2
2n

this then implies

that

lim
T→∞

1

T

∫ T

0

∫
Rn
| ∇ϕ |2 = 0 = lim

T→∞

1

T

∫ T

0
‖∇ϕ‖2

2. (2.5)

Parseval’s relation for Hilbert space-valued almost periodic functions ([LZ] pp 31) states that

lim
T→∞

1

T

∫ T

0
‖∇ϕ‖2

2 =
∑
k∈N

‖φk‖2
2 (2.6)

where
∑

k∈N φk eiλkt is the Fourier series associated to ∇ϕ(t) (see Definition 3.1 below). By

the uniqueness of these series it follows from equations (2.5) and (2.6) that ∇ϕ(t) = 0 (in

L2(Rn)) for all t which implies that, since ϕ(t) ∈ L2(Rn), ϕ(t) = 0 for all t. Thus, if f

satisfies (2.4) with c ∈ (n−2
2n

, 1
2
], then this NLW has no (non-trivial) bound states.

Remark: The virial relation (2.3) contains no boundary terms (in space and in time). The

occurrence of boundary terms themselves do not exclude the use of virial relations, but one

then one has to control these terms. A virial relation for NLW or NLS will have no boundary

terms if the solution has vanishing or periodic boundary conditions. Vanishing at spatial

infinity is assured by assuming the solution is integrable in x. Only dispersive solutions will

have vanishing boundary conditions in time, so to obtain virial relations without boundary

terms for bound states one must assume some kind of compactness property in time of the

solution. For example, the existence of the ergodic mean

lim
T→∞

1

T

∫ T

0
ϕ(t) dt

for ϕ(t) and the other terms appearing in the action functional defining the equation, allows

us to obtain virial relations without boundary terms in time. One important property of

almost periodic functions is that they do have ergodic means.
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3 Proof of Theorem 2.2

We state the definition of almost periodic functions that we will use (see for example [LZ]).

Definition 3.1 A strongly continuous function ϕ : R → X is almost periodic if the set

of translates of ϕ, T (ϕ) = {ϕh(t) ≡ ϕ(t + h); h ∈ R}, has compact closure in Cb(R; X)

where Cb(R; X) denotes the metric space of bounded strongly continuous functions from R

to X equipped with the supremum norm: ‖ϕ‖Cb
≡ supt ‖ϕ(t)‖X . The set of almost periodic

functions from R to X will be denoted by AP(X).

Remark: Almost periodic functions admit an elegant representation, from which their many

properties may be derived [Co],[LZ]. For example, we can associate a Fourier series to any

ϕ ∈ AP(X);

ϕ(t) ∼
∑
k∈N

φk eiλkt, λk ∈ R, φk ∈ X (3.7)

where φk = limT→∞
1
T

∫ T
0 e−iλktϕ(t) dt. λk are the frequencies of ϕ(t). The question of conver-

gence of this Fourier series is just as delicate as for periodic functions. In general though, by

re-summing the Fourier series of an almost periodic function one can find trigonometric poly-

nomials that approximate the function arbitrarily well, uniformly in time. More precisely, for

any ε > 0 there exists a trigonometric polynomial pε(t) = a0+a1e
iλk1

t+· · ·+ameiλkm t, ai ∈ X,

such that supt∈R ‖ϕ(t) − pε(t)‖X < ε. Some special classes of almost periodic functions are

the periodic functions; λk = kλ; here there is one independent frequency, and the quasi-

periodic functions; λk = ~k · ~λ, where ~k ∈ Nn and ~λ = (λ1, . . . , λn), with λ1, . . . , λn (linearly)

independent over Q; here there are n independent frequencies. In general, an almost periodic

function has a countably infinite number of independent frequencies.

Geometrically, ϕ is almost periodic with l independent frequencies if ϕ(x, t) = γ(x,~λt)

for some γ : T l → X where T l is the l-torus T l = Πl
k=1S

1. We call γ the generating function

of ϕ and ~λ the frequency of ϕ. In general, almost periodic functions ϕ can be characterized

by generating functions γ that are defined on the infinite dimensional torus T∞. Then, there

is a dense embedding Γ : R → T∞ such that ϕ(t) = γ(Γ(t)). If the image of this embedding

in T∞ sits in a finite-dimensional torus of dimension l, then ϕ(x) is quasi-periodic with l
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independent frequencies.

Proposition 3.2 If ϕ ∈ AP(X) then ϕ is a bound state.

An important property of almost periodic functions is that the closure of their orbits in

the phase space X are compact [LZ]. From this Proposition 3.2 follows. Conversely, to prove

that a bound state is almost periodic we first show that the closure of its orbit is compact

under a regularity assumption. For this we require a convenient characterization of compact

subsets of the spaces X.

Proposition 3.3 A bounded subset K ⊂ X has compact closure in X if for any ε > 0 there

exists an Rε > 0 such that supϕ∈K ‖χRε
ϕ‖X < ε and if for some µ > 0, supϕ∈K ‖ϕ‖Xµ < ∞.

Proof: We show that K is totally bounded in X. Let ε > 0 and find Rε so that supϕ∈K ‖χRε
ϕ‖X <

ε. Let R > Rε. For ϕ ∈ K let ϕ̃ ≡ χRϕ and ϕ ≡ χRϕ where χR is a smooth function such

that χR ≡ 1 on BRε and χR ≡ 0 on BC
R , and χR = 1−χR. We set K̃ = {ϕ̃ |ϕ ∈ K}. For any

subset Ω ⊂ Rn let X(Ω) denote the corresponding Sobolev spaces defined on Ω (as defined

above; so for example X(Rn) = X). Since K̃ is bounded in Xµ(BR), µ > 0, and every ϕ̃ ∈ K̃

is supported in BR, by the Rellich-Kondrachov Theorem, K̃ has compact closure in X(BR).

Therefore, there exists an ε-net for K̃ in X(BR), i.e., a finite set {φ1, . . . , φN} ⊂ X(BR) such

that for any ϕ̃ ∈ K̃, there is a k ∈ {1, . . . , N} such that ‖ϕ̃ − φk‖X(BR) = ‖ϕ̃ − φk‖X < ε

(here we extend ϕ̃ and φk to all of Rn with ϕ̃ ≡ 0 and φk ≡ 0 on Rn \BR). Since ϕ = ϕ̃ + ϕ,

we have that ‖ϕ− φk‖X ≤ ‖ϕ̃− φk‖X + ‖ϕ‖X < 2ε. Thus, {φ1, . . . , φN} is a 2ε-net for K in

X 2

A necessary and sufficient condition that K have compact closure in X is that K be

uniformly localized in space and momentum, i.e., that for any ε > 0 there is an Rε such

that supϕ∈K ‖χRε
ϕ‖X < ε and supϕ̂∈K ‖χRε

ϕ̂‖X < ε (see for example [RS-IV] or [GI]). The

condition supϕ∈K ‖ϕ‖Xµ < ∞ for some µ > 0 guarantees uniform localization in momentum,

but it is not a necessary condition so this hypothesis could be weakened (and hence the
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regularity hypothesis in Theorem 2.2 could be weakened).

The idea of the proof of Theorem 2.2 is to go from compactness of O(ϕ) in X to com-

pactness of T (ϕ) in Cb(R; X) via the equicontinuity of {S(t)}t∈R.

Proof of Theorem 2.2: Let {ϕhj} ≡ {ϕ(t+hj)} be any sequence from T (ϕ). By Proposition

3.3, O(ϕ) is compact in X so there exists a subsequence {h′j} of {hj} such that {ϕ(h′j)} is

a Cauchy sequence in X. Now consider the subsequence {ϕh′
j} of {ϕhj}. Let ε > 0. Since

we are assuming that the flow S(t) on O(ϕ) is equicontinuous, there is a δ > 0 such that

‖S(t)ϕ1−S(t)ϕ2‖X < ε for all t if ϕ1, ϕ2 ∈ O(ϕ) and ‖ϕ1−ϕ2‖X < δ. Because {ϕ(h′j)} is a

Cauchy sequence, we can find an Nδ such that ‖ϕ(h′k)−ϕ(h′l)‖X < δ if k, l > Nδ. Therefore,

‖ϕ(t + h′k)− ϕ(t + h′l)‖X = ‖S(t)ϕ(h′k)− S(t)ϕ(h′l)‖X < ε for all t if k, l > Nδ which implies

that {ϕh′
j} is a Cauchy sequence in Cb(R; X). Thus, T (ϕ) is sequentially compact, and

hence compact, in Cb(R; X) 2
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