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Abstract

We discuss an application of positive commutators to the problem of periodic so-

lutions of nonlinear wave equations.

1 Introduction

The use of positive commutators has played a key role in solving many problems in quantum
mechanics, e.g., absence of bound states with positive energy, localization of bound states,
local (in space) time decay of scattering states, and asymptotic completeness (see for example
[CFKS] or [HS]).

In this article we announce recent results of ours concerning an application of positive
commutator methods to the problem of periodic solutions of the nonlinear wave equation
(NLW)

8¢ — Ap + f(p) = 0. (1.1)

Here o : RY xR, - R, f: R — R with f(0) =0, and 8? = 9%/0t*, A = XN, 6%/0z;>.
By a periodic solution we understand solutions that are periodic in time ¢, and L? in z. Full

details of our results will be published elsewhere.
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We address two problems concerning periodic solutions: constraints on their frequencies
and exponential bounds on their spatial localization. To state our results we introduce some
notation. Let S} denote the circle of radius w™'. The class of solutions we consider is the

following set:

D, = {go € H'RY x S1) ; if ¢ is any of ¢, 0 or - Ve, then ||| poo(mn x51) < 00

and Il|im | ¥(z,t) |=0 uniformly in t } (1.2)
r[—00

(This class of solutions can, probably, be enlarged). Here H'(Q) stands for the Sobolev space
of order 1 for functions on Q. Let L2(S!, H!(R")) denote functions ¢ : S} — H(RY), such

that (|9 22w g1y + VYl 2@ w51y = 190117251, @)y < 00
We are able to prove the following theorems.

Theorem 1.1 Suppose f € C3(R,R). Let ¢ be a nontrivial 2 /w-periodic solution of NLW
on D,,. Then w* < f'(0).

Theorem 1.2 Suppose f € C3(R,R) such that f'(0) # m?w?, m € Z. Let ¢ be a 27/w-

periodic solution of NLW on D,,. Then e*®lp € L2(SL, H'(RN)) for all o satisfying

o? < £1(0) - [y LD

w

where |a| denotes the integer part of a.

To apply the technique of positive commutators we first formulate NLW as an eigenvalue
problem. Let
W(u)=~—>—k, r=f(0). (1.3)

For a given function ¢ € L*(RY x S!) define the ”potential” W, (z,t) = W (p(z,t)) acting

as an operator of multiplication, and the linear operators

K,=K,+W,, K,=0}-A (1.4)



on L?(RN x S1). By construction we have that

Kyp = —kp. (1.5)

From (1.3) and the chain rule, it is clear that W, 0,W, and z - VW, are bounded and
vanish as |z|— oo, uniformly in ¢. In particular, this implies that for ¢ € D, K, as defined
by (1.4) is self-adjoint on L*(RY x S!).

By separation of variables, 0(K,) = 0(8?) + 0(—A) = Upez|—m*w?, 00). That is, the
essential spectrum of K, consists of semi-infinite branches of continuous spectrum originating
from the points {—m2w?; m € Z}. We expect the essential spectrum of K, to be stable
under the perturbation W,,. Thus, we denote by £(K,) = {—m?w?; m € Z} the thresholds of
K. Due to the nonresonance condition f'(0) # m?w?, m € Z, and the hypothesis f'(0) > 0,

there exists an m, € N such that
—m2w? < —f(0) < —(m,—1)%w?%

Then, (m, — 1)? = [{/2@|? and Theorem 1.1 states that e’ € L*(SL, H'(RV)) for all
a such that a? is less than the distance from —f’(0) to the nearest threshold above (i.e.,

greater than) — f'(0).

2 Outline of proof

We will omit the subscript ¢ when discussing the operators K, and W, so that from now
on K = K, and W = W,,. The main ingredients of the analysis are microlocalization in the
operators K and i0; and the use of compactness. By the former we mean the decomposition
of the space L?(RY x S!) according to the spectral projections associated to K and id;.
This allows us to isolate certain properties of functions from this space. For example, an
operator B may be bounded below globally on L*(RY x S!), ie., (B), > —c||p||* for all
¢ € L*(RN x S1), where ||-|| denotes the L?*(RY x S1) norm and (B),, denotes the expectation

value (Byp, ¢). However, B may be essentially positive in the sense that it may be positive



when restricted to a certain subspace E and small otherwise. Here E will be the range
of a spectral projection E;(H) associated to a self-adjoint operator H on L2(RY x Sl)

corresponding to some interval / C R. Writing

B = E;(H)BE;(H) + E;(H)BE;(H)

+ E;(H)BE;(H) + E;(H)BE(H), (2.1)

we require that the expectation values of the last three terms on the right of (2.1) are
negligable (small).

To show how compactness is used, consider the term (Er(H)BE;(H)),. It may be
possible to find a self-adjoint operator A such that for some interval J C R, E;(H)BE:(H)
is a compact operator when restricted to the subspace Ran E;(A). If ¢ can be embedded into
a family . that converges weakly to zero as ¢ — 0, then (E;(A)Er(H)BE[(H)E;(A)),.
converges to zero. Another instance of compactness follows from the property that the
potential W is bounded and vanishes as |z| — oo. This implies that W is compact relative
to —A for each t (see for example [RS-IV]). This relative compactness of W will be important
in the analysis.

We remark that compactness as just described arises naturally in many applications, that
is, it is an inherent feature of the problem, and an extremely useful one.

A priori, the function ¢ under consideration may be microlocalized to some extent as a
consequence of being an eigenfunction, or approximate eigenfunction, of a self-adjoint oper-
ator. In the case we are considering here, periodic solutions of NLW, ¢ is an eigenfunction

of K. We use this strong localization of ¢ in the analysis.

We begin now a more detailed discussion of these ideas in the context of proving ex-
ponential bounds for periodic solutions of NLW. Recall that ¢ € D, is a 27/w -periodic
solution of NLW and that K¢ = —kp, k = f'(0). Our objective is to show that for some
§ >0, emp e L2(SL, HY(RN)). To this end we first cut-off the function r at infinity, we
denote this function by h(r), with the cut-off depending on a parameter ¢ and such that

lim,_,q h(r) = r + const. Then, ™"y e L2(S}, H'(RY)) for all £ > 0. We will show that



1€*" || r2(s1 i (ry) < oo uniformly in e. This implies then that e € L2(S}, H*(RY)).
To utilize the compact operators that will arise, we multiply e®*"¢ by a cut-off function
X = Whose support lies outside of a ball of radius R in RY. Then, for any compact operator
C, (C)yenn, < 0r(1)]|xr€M||> where 04(1) denotes a quantity that vanishes as R — oo.
This is a stronger statement than the mere vanishing of (C), .snr,,-

We make these definitions more precise. For R > 0 and § > 0 set

Yr = XReéh(T)(Pa and (2-2)

K" = hKeh) = K — §%|Vh|® + idy. (2.3)

Here h is a smooth function such that h(r) = 0, r < 2R, h(r) = r + const, r > 3R
and v, = Y(Vh-V + V- Vh). Xz is a smooth cut-off function: x.(r) =0, r < R and
Xz(r) =1, 7 > 2R. The important features of the function h are that h = 0 on supp (x5),
h(r) = 7 + const near infinity, with |h™(r)| < ¢, R*™, c,, independent of R. In the
rigorous analysis the function A is cut-off in a neighborhood of infinity as mentioned above.
However, to make the present discussion simpler we will not perform this regularization.
This does not affect the presentation of the essential ideas.

Our goal is to show that for R sufficiently large and for some § > 0, @5 € L?(S., HY(RY))

uniformly in e. The function ¢ is an approximate eigenfunction of K* in the sense that

1" + el < on(Dllelliasy vy, (2.4
This follows from the formula

(Kh + 5)‘;012 = eéh(T)XR(K + H)‘P + eh(r) [_Aa XR]SD

= (—Axr)p — 2Vxgz- Vo, (2.5)

where we have used that & = 0 on supp (x5), and then the property |X53m)| < cR ™ to arrive
at (2.5). Let A= %(z-V + V-z). Since ey is an eigenfunction of K*, we have that

0 = Im((K"+k)eMp, Ae®hm ).



This equation is related to the virial theorem of quantum mechanics [CFKS]. Expanding the

inner product, we find

0 = Im{(K"+k)eMp, Aehr)p)

9 2
= 6K, Ay + ORe (mA)onin, = SGlIVAE, Ao (26)

If we substitute ¢y for e®"y in this equation the left hand side is no longer zero, but since

(K" + k) is localized to the support of x, (cf. (2.5)) where h = 0, we find that

[Im (K™ + K)en, Apr)| < clloliaisy,mmvy), (2.7)

where c is independent of R. Furthermore, using that A and ~, are parallel, a simple

calculation gives
Re(y,A),, = positive term + 0x(1)]|¢x]>. (2.8)

By design of h we have the estimate

62
5 VAP, Algg| < 8[lex] (2.9)
These relations yield
(1, AD) g — 0n (D)l eall” = e8®llial® < ellelFasy memny)- (2.10)

We see how positivity of i[K, A] enters: if we can show that
(i[K, Al)pp > 0||90R||%2(S‘},,H1(RN))5 for some 6 > 0, (2.11)
then from (2.10) and (2.11) it follows that for R sufficiently large and ¢ sufficiently small,

lrllizss mmvy < cllellizsy mevy < oo (2.12)



Hence, e’ p € L%(SL, HY(RY)).

To prove (2.11) we begin by evaluating the commutator
ilK, A] = —2A —z-VW
and writing —A = K — 82 — W. We have then that
(K, Al = (=D + (K + K = (R)p + (=0 = (W42 VW)
This allows us to take advantage of the localization of ¢ with respect to K. Now,
K+r = K'+k+8|Vh®> —idy, (2.13)
from which it follows that, since K + & is self-adjoint and iv, is skew-adjoint,
(K+K)pr = Re(K"+K)pq + (VA

Using this and (2.4),

(K + K)orl < K"+ K)pn| + c82]| 0|2
< NE" + &)@l | @rll + c6?llall?
< on(1) 1l 2o, mevy) + alleisr m@vyy| + c0lleall. (2.14)

Because W and z - VW both vanish as |z| — oo uniformly in ¢ and ¢y, is supported outside

of a ball of radius 2R, we obtain the estimate
[2W +2- VW)er| < o0r(D)llerll™ (2.15)
Combining these results we have the inequality

GIE, Apr > IVerl® = sllgrl® + (=07)er

—On(l)[||90||%2(53,,H1(RN)) + ”(IOR”%?(S},,Hl(]RN))} - C52||90R||2- (2.16)
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It remains to show that

(=00)er > mow’[loxl?, (2.17)

up to a remainder term that we can control through the parameters R and §, where m, > 1
is the integer characterized by the relation —m,w? < —k < —(m, — 1)2w?. To prove (2.17)
we first write L2(RY x S1) ~ ®rezFr where E;, = %' @ L2(RY) is an eigenspace of i9;. For
P € L*(RY x S) we write ¢ = 3, ™4y, where ¢y(z) = (21/w)™" [s1 9(z, t)e* dt. Let
Py denote the projection onto the k** mode: Py = ™oy, and 1L, = X jpj<m Py I =
1 —II,,. Using that —02I,,,_1 > m2w?Il,,,_; and that —d2IL,,,_; > O (these inequalities

are in the sense of quadratic forms), we obtain

<_6t2><PR = <_8t2>1=lm,,_1<pR + <_6t2>1'[m,,—190R

= mow’l|@all” — mew* (Tn,—1)er (2.18)

To estimate the second term on the right hand side we microlocalize with respect to K and
10; and use the —A compactness of W.

Pick an interval I C R containing —« and such that sup (I) < —(m, — 1)?w?. Let E;(K)
be a smoothed-out spectral projection of K corresponding to the interval I and decompose

I,,,_1 with respect to E;(K) and E(K) to obtain

M1 = (Er(K)+ Ef(K)) T, 1 (Er(K) + Er(K))
= Ei(K)y, 1Er(K) + Ei(K),,,_1Er(K)
+ Er(K) L, 1 E1(K) + Er(K)n,-1E1(K). (2.19)

From this and the Schwarz inequality we then have the bound

(Mnp—1)e| < BIEH(E)@illllenll + (C)on, (2.20)

where C = E;(K)Il,,,_1Er(K) is a compact operator, as we will see shortly. Because ¢g

has support that goes off to infinity as R — oo, this term is of order og(1)||¢x||*.



To prove that the operator Er(K)IL,, _1FE;(K) is compact, we use the relative compact-

ness of W. The operator K, has a natural decomposition along the eigenspaces Ey:
K, = @pen(—Kw? = A),
from which it follows that
(Ko —2)7"' = @pen(—Kw* —A—2)"", z€eC\R

Because W is compact relative to —A for each ¢, each mode Wy (x) of W is compact relative
to —A. As a result, W is compact relative to K, when restricted to finitely many of the
subspaces E;. Introducing the spectral projections F;(K,) associated to the operator K,,

we write

E{(K)y,1E((K) = Epf(K),,_1Er(K,)
+ (Bi(K) = E1(K,)) T, 1 Er(K)
+ Ef(Ko) T, 1(Er(K) — Er(K,)). (2.21)

The first term on the right hand side is zero by conservation of energy. That is,
P.E;(K,) =0 for k < m,. (2.22)
This relation can be seen as follows. On Ran P, = E,, K, = —k?w? — A so that
P.E(K,) = PEi(—kw® —A).

Since sup (I) < —k?w?, spec(—k*w? — A) = [—k?w?, o0) is disjoint from I. Hence,
Ei(—k*w? — A) =0.

To treat the other two terms on the right hand side of (2.21) it is enough to consider the
resolvents R(z) = (K — 2)7! and R,(z) = (K, — z)~! in place of the projections E;(K) and

E;(K,). For the second term on the right, say, and using the second resolvent equation, we



have, for any m; € N,

R(2)WR,(2)n,_1E1(K) = R(2)Ip,W Ro(2)lpn,_1E1(K) + R(2)IL,W R, (2)II,,, 1 E;(K).
(2.23)
By the relative compactness of W, WR,(z) is a compact operator on each E;, and so
I, WR,(2)I1,,, 1 is a compact operator for each m; € N since it acts on finitely many
Ey. Thus the first term on the right hand side of equation (2.23) is compact. By taking m,
sufficiently large we can make the second term arbitrarily small in norm. This can be seen by
noting that if W is time independent and if m; > m,—1 then, because W will commute with
the projections Py, II,,,WR,(2)Il,,,_1 = 0. The time dependence of W couples the space
and time variables and can bridge the gap between f[ml and II,, _1, but we can estimate

this by writing

M, WRo(2)n,—1 = 0, 01,0, WR,(2) I, 1
= O ML, (OW)Ry(2) M, -1 + 05 'L, W R,(2)01,, 1. (2.24)

Combining this with the estimates
107 T, | < 1/, and (|81 Tmy 1| < mo — 1, (2.25)

we see that ||IL,,, W R,(2)II,,,_1|| can be made arbitrarily small by taking m, sufficiently large.
Therefore, referring to (2.23), R(2)W Ro(2)Tm, 1 E1(K), and hence (E;(K)—Er(K,)) My, 1 Er(K)
is compact.

Going back to (2.20), we use the fact that ¢ is an eigenfunction of K corresponding to
the eigenvalue X\ to show that ¢y is essentially localized in I with respect to the spectral
decomposition of K, i.e., that ||E;(K)yg|| is small. More precisely, we can establish the

estimate

||EI(K)SDR|| lerll < d_loR(l)[||Q0||%2(S&,,H1(]RN)) + ||@R||%2(S}),H1(RN))]
+ dilé(é + 1)||90R||%2(S$,H1(1RN)) (226)
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where d = dist (01, X). This follows from the formula, derived using the functional calculus,
IEN(E)eall < d7H (K = Xgall, (2.27)

and the estimate

(K +&)erll < or(Dlellrzsy,mmny + 66 + 1)|[¢rll2(ss,m @y (2.28)

which follows from (2.4), (2.13) and the triangle inequality.
Combining (2.18), (2.20) and (2.26), we have that

(=)er = malPle|” = d 7 or(1) |1l F2s,m vy + 1€al72 (st vy

— or(Dllrll® — d716(0 + Dllnllasy,m @), (2.29)

and so

(i[K, ADyr > bllorllTo mEvy — @+ 1)OR(1)[||90||i2(53,,H1(RN)) + ||()OR||%2(S‘}J,H1(RN))]
— d76(6 + DllerllFa(ss @y (2.30)

where b = min (—x + m2w?, 1) > 0. Thus, we have achieved (2.11) for R sufficiently large

and ¢ sufficiently small and therefore have an exponential bound for ¢.

This method secures some exponential bound ¢ for ¢. To achieve a better bound we
iterate this method, incrementally approaching the optimal bound. We begin the iteration
by assuming that ¢, = e*"p € L*(S}, H'(R")) for some o > 0. To prove that there exists
a § > 0 such that ¢, € L2(SL, HY(RY)), we perform the above analysis on the function
Xz p,. Denote by §(a) the exponential bound found for ¢, found in this way. Therefore
our new exponential bound for ¢ has exponent o + §(a) = ;. Repeating the analysis we
determine ay = a; + d(y), etc. Finally, we show that as n — oo, A +a2 — —(m, — 1)%w?

if A < 0 (recall that m, > 1 is the largest integer m such that —f'(0) = —k < —(m — 1)%w?),

or else becomes arbitrarily large if f'(0) > 0.

11



This completes the discussion of the proof of exponential bounds. To prove Theorem 1.1
we first show that under the hypothesis w? > f/(0), e*"p € L?(S}, HY(RY)) for all o where
@ = ¢ — Pyp. Note that ¢ contains all the time dependence of . By unique continuation
at infinity (see Theorem 3.1 below) it then follows that ¢ = 0. Therefore, ¢ is independent
of time.

It is the presence of the threshold —(m, — 1)?w? above —f’(0) that prevents us from
proving a larger exponential bound for . In the case w? > f’(0), zero is the only threshold

above —f'(0). We remove this threshold by projecting NLW onto [ :
0= Py(0p — Ap + f(p)) = Kop + Pof(p) (2.31)
where ¢ = Pyp. Setting ¢y = Py, we can write

(@) = floo+ @) = flwo) + f(©) + o g(vo, p) (2.32)

for some C! function g. Since Pyf(pg) = 0, we have that

Pof(p) = Pof (o + @) = Po(f (o + @) — F(0)). (2.33)
Therefore
Pof(p) = Po(£(9)+ pop g(t00,9))
~ A1+ g )P (note that Pog =)
= (U+k)g, (2.34)
where
_p D _ @ _ - gt
U=PRVeP, Vz= 2 K+ wog(po, @), &= f(0). (2.35)
Thus,
Kp = —kp with K = K,+U. (2.36)

Observe that I_(¢ has no zero threshold and therefore no zero threshold above —k. This

12



allows us to prove, by the same method used to prove exponential bounds, that e*"¢ €
L*(SE, HY(RY)) for all a. Theorem 1.1 now follows from the next theorem, a kind of unique

continuation at infinity.

Theorem 2.1 Suppose K1) = M\ for somep € L*(SL, HY(RN)). Ife*yp € L*(SL, HY(RN))
for all o, then ¢ = 0.

We point out the the zero threshold can always be removed without removing the eigen-
value —f’(0) because f does not couple the branch [0,00) to the other branches. This
follows from the fact that Pyf(¢y) = 0; f cannot generate time dependent modes from a
time independent function.

The idea of the proof of Theorem 3.1 is based on the observation that if K¢ = A\ and
eeryyp € L?(S), H'(RY)), then 1 is an approximate eigenfunction of K with eigenvalue A+ a?.
Therefore, (K),; ~ A+ a?. On the other hand, as an approximate eigenfunction the virial
theorem implies that (i[K, A]), is small. Since (i[K A]) — (K) = (=02 — A —z- VW — W)

is bounded below, we obtain a contradiction by taking a sufficiently large.
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