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Introduction

We consider the nonlinear Schrödinger equation (NLS);

i∂tu+ ∆u+ f(|u|2)u = 0 (1)

where u : Rn ×Rn → C, f : R→ R (for example, f(z) = azp−1).

A soliton is a solution of the form

ψω(x, t) = eiωtϕω(x), (2)

where ϕω solves
∆ϕ+ f(|ϕ|2)ϕ = ωϕ. (3)

A solution of (3) exists for all ω > 0, decays exponentially as | x |→ ∞, and
we can choose ϕω to be real-valued. The ground state is the unique positive,
radially symmetric solution. (See [S] pp59, [SS] pp77, [SW1] pp 123, [W1]
pp472, [W2] pp54 and the references therein).

There are numerous equations that posses soliton solutions. In addition
to the NLS, there is the Korteweg-deVries equation which describes (among
other phenomena) water waves in a shallow channel; ∂tu + u∂xu + ∂3

xu = 0,
and the sine-Gordon equation; ∂2

t u− ∂2
xu+ sin(u) = 0 which arises in solid-

state physics, for example. There are special nonlinear equations which are
called integrable and for which are completely solvable by the Inverse Scat-
tering Method (IST). For a general discussion about solitons for nonlinear
wave equations and the IST, see for example the books [DEGM, DJ, N, Rem,
Wh]. For specific discussion about the IST see for example, [FT, NMPZ].

Symmetries of NLS

Let Φ(ψ) ≡ i∂tψ+ ∆ψ+ f(|ψ|2)ψ, and for ν = (γ, v,Do) ∈ R×Rn×Rn

and any function ψ(x, t) : Rn ×R→ C, let

(Tνψ)(x, t) = ei(
1
2
v·x− 1

4
v2t+γ)ψ(x− vt−Do, t). (4)

Then Tν is a 2n+ 1 parameter group of symmetries of NLS:

Φ ◦ Tν = Tν ◦ Φ. (5)

In particular, if ψ(x, t) is a solution of NLS, then so is (Tνψ)(x, t).
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Thus, the parameters σ = (ω, γ, v,Do) ∈ {R×R×Rn ×Rn} describe a
a family of soliton states (travelling waves) ψσ of NLS;

ψσ = Tνψω = ψσ(x, t) ≡ ei(ωt+
1
2
v·x− 1

4
v2t+γ)ϕω(x− vt−Do). (6)

Bound states and Scattering States:

The most natural, and simplest, space-time classification for solutions of
dispersive wave equations are bound states (particles) and scattering states
(radiation);

• Bound states in space-time: essentially localized in space, uniformly
in time; ‖χ̄ϕ(t)‖ < ε ∀ t. (Here, χ̄ is the characteristic function of the
complement of some ball in Rn and ‖ · ‖ denotes some spatial norm.)

• Scattering states in space-time: locally decaying in time (i.e., dis-
persive); ‖χϕ(t)‖ → 0 as t → ∞. (χ is the characteristic function of
some ball in Rn .)

For linear wave equations there is a complete classification of behaviour
of general solutions in terms of bound states and scattering states. Consider
the linear Schrödinger equation;

i∂tϕ = Hϕ.

The following well-known theorem in scattering theory states that all solu-
tions can be described in terms of bound states and scattering states.

RAGE Theorem (Ruelle, Amrein, Georgescu, Enss)
[AG, CFKS, P, R, RSIII].

Suppose H = −∆ + V acting on H = L2(Rn) is a locally compact oper-
ator. Let Hd and Hc be the discrete and continuous spectral subspaces of H
respectively, and ϕ(t) = e−iHtϕ. Then,

(a) ϕ ∈ Hd if and only if for each ε > 0 there is an Rε > 0 such that

sup
t
‖χ̄Rεϕ(t)‖L2(Rn) < ε

(b) ϕ ∈ Hc if and only if for each R > 0,

lim
T→∞

1

T

∫ T

0
‖χRϕ(t)‖L2(Rn) dt = 0

Here, χR is the characteristic function of the ball of radius R in Rn.

Remark: With a slight strengthening of the assumptions on H, part (b) can
be replaced with

‖χRϕ(t)‖Lp(Rn) → 0 as t →∞ ∀ p ≥ 2 (local decay)
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or even,

‖ϕ(t)‖Lp ≤ ct−
n
2
+n

p ‖ϕ‖Lq ,
1

p
+

1

q
= 1, 2 ≤ p ≤ ∞ (see for example [JSS])

If ϕ ∈ Hac, the absolutely continuous spectral subspace of H, then it is easy
to see that ϕ(t) converges weakly to zero in L2(Rn) (via spectral theory and
the Riemann-Lebesgue Lemma; see [RSIII p.24 for instance). Hac ⊂ Hc so
part (b) of the RAGE Theorem is a more general statement. (H = Hd⊕Hc,
but it is not always true that H = Hd ⊕Hac.)

H being locally compact means that χB(H + i)−1 is a compact operator
where χB is the characteristic function of any bounded set B in Rn, i.e.,
the resolvent RH(z) = (H − z)−1 is a compact operator when restricted
to bounded regions of Rn (“H has only discrete spectrum on a bounded
domain”). For example, −∆ is locally compact, and if V is continuous (or
if V ∈ L2

loc(R
n), V ≥ 0 and vanishing at ∞, then H = −∆ + V is locally

compact. For more information on locally compact operators and their uses,
see [P], [CFKS], and [HisS].

Part (b) of the RAGE Theorem is a direct consequence of Weiner’s (clas-
sical) Theorem on the time-mean of the Fourier transform F (t) of a finite,
continuous, Borel measure on R:

lim
T→∞

1

T

∫ T

0
|F (t)|2 dt = 0.

This is proved by explicit calculations (see [P] p.13 or [RSIII] p. 340). In
the present context F (t) = (ϕ, e−iHtϕ), which is the Fourier transform of
the spectral measure µϕ of ϕ; µϕ(B) = (ϕ, EB(H)ϕ) for all Borel sets B
of R, and where EB(H) is the spectral projection of H onto B (i.e., EB(H)
is the operator associated to χB, the characteristic function of B, via the
functional calculus: Φ(H) is defined by (ϕ, Φ(H)ϕ) =

∫
Φ(H) dµϕ(λ) for

all Borel functions Φ.) Conversely, if the Fourier transform of a finite Borel
measure has time mean zero as above, then it is continuous.

Note that if ϕ ∈ Hd, then ϕ =
∑
cjψj where Hψj = λjψj, so ϕ(t) =∑

cje
−iλjtψj . Thus, the ‘only if’ part of (a) is obvious. The (nontrivial) ‘if’

part of (a) states that a space-time boundstate is almost periodic in phase
space (periodic if ϕ = ψk for some k, quasiperiodic if ϕ is a finite sum of
eigenvectors of H.)

A related result concerning bound states in space-time is,

Exponential Bounds (‘Froese-Herbst Theory’ via postive commutator es-
timates; see [CFKS] or [HunS]) Under similar hypothesis on H as above, if
Hψ = λψ, then

e
√
|λ| |x|ψ ∈ L2(Rn),

and so e
√
|λ| |x|ψ(x, t) = e

√
|λ| |x|(e−iHtψ)(x) ∈ L2(Rn). (These L2 bounds

can be strengthened to point wise bounds, i.e., ψ(x) ≤ ce−
√
|λ| |x| .)
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Combining this with the RAGE Theorem we conclude that bound states
(in phase-space) are in fact exponentially localized (with exponent that can
be computed explicitly). Or, quasiperiodic solutions of the linear Schrödinger
equation are exponentially localized in space (uniformly in time). The same
result holds for periodic solutions of nonlinear wave and Schrödinger equa-
tions [PS].

The RAGE Theorem states that we can identify the spectral subspacesHd

and Hc of H by observing the space-time behavior of solutions of i∂tϕ = Hϕ.
Solutions that are dispersive come from the continuous spectral subspace
while solutions that are boundstates (≡ almost periodic in time) come from
the discrete spectral subspace. Since H is a direct sum of these two spectral
subspaces, all solutions of the Schrödinger equation can be described by these
two types of solutions (in fact, as a sum of these two types of solutions).
Furthermore, for scattering theory (the long-time behavior of solutions), we
have that for any solution ϕ(t), there exists a bound state solution ϕb(t) such
that

ϕ(t)
locally→ ϕb(t) as t→∞

That is, the bound states capture the long-time behavior of solutions. For
integrable nonlinear equations (such as KdV, cubic NLS, and sine-Gordon),
the same is true (at least formally); all solutions converge (locally) to a
bound state, the rest of the solution is dispersive ([FT], [NMPZ], and the
recent work [CVZ] and [DZ] which is a step in the direction of making this
rigorous).

This scenario is becoming a paradigm in the scattering theory of general
nonlinear dispersive wave equations. That is, one expects that a general
solution will converge locally to bound states as t → ∞ while radiating
energy, the convergence being driven by dispersion. In linear theory the
bound states come from the eigenfunctions of the linear operator (as stated
above in the RAGE Theorem). For nonlinear equations there is no spectral
theory. Here the bound states are the solitary waves (including solitons).
Rigorous results corroborating this view for nonlinear equations include [Cu,
SW, BP] where it is proven that solutions of NLS initially near a soliton
converge (locally) to a soliton, while in [MM] it is proven that solutions
starting nearby solitons of modified KdV converge to a soliton.

Interesting numerical experiments with interacting (colliding) solitons
and the resulting metastable states can be found in [CP].

Ideas of Proof of RAGE (following the excellent exposition [P])

Local compactness as stated above is equivalent to the property that the
operators PR,E = χRF (|H| ≤ E) are compact, where F (|H| ≤ E) denotes the
spectral projection onto the subspace of H where |H| ≤ E (eg., if H = −∆,
F (|H| ≤ E) = {ψ ∈ H | support (ψ̂) ∈ [−E,E]}).

Notation: Hd and Hc are the discrete and continuous spectral subspaces
of H respectively. Recall that H = Hd ⊕Hc.

An intermediate result is that for any self-adjoint H, Mbd = Hd and
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Mlv = Hc, where Mbd is the set of ϕ such that ϕ(t) = e−iHtϕ remains
inside a compact subset of H for all t (i.e., the orbit O(ϕ) of ϕ has compact
closure), and Mlv is the set of ψ such that e−iHtϕ leaves any compact set
of H (at least in the time-mean). Mbd andMlv are closed subspaces of H,
and Mbd ⊥ Mlv. One shows that Mlv = Hc by arguments using Weiner’s
Theorem (as mentioned above), and thatMbd = Hd by first noting that any
ϕ ∈ Mbd must be orthogonal to Hlv so Mbd ⊂ Hd; the reverse inclusion
Hd ⊂Mbd is easy. (Details can be found in [P] Section 1.1.)

Then (a) is proven as follows (see [P] Section 1.2). We want to transfer the
results in the previous paragraph on the behavior of solutions in phase space
to behavior in space-time. For this we need the extra assumption on H of
local compactness. The (easy) ‘only if’ part was addressed above. So suppose
that for any ε′ there is an R such that supt ‖χ̄Rϕ(t)‖L2 < ε′. Let ε > 0 be
given. Choose R and E such that supt ‖χ̄Rϕ(t)‖L2 < ε/6 and supt ‖F (|H| >
E)ϕ(t)‖L2 < ε/6 (note that F (|H| ≤ E)

s→ 1 as E →∞, and that e−iHt and
F (|H| ≤ E) commute so that ‖F (|H| > E)ϕ(t)‖ = ‖e−iHtF (|H| > E)ϕ‖).
Writing 1 − PR,E = 1 − (1 − χ̄R)(1 − F (|H| > E)) = χ̄R + F (|H| > E) −
χ̄RF (|H| > E), we have that supt ‖(1 − PR,E)ϕ(t)‖L2 < ε/2. Since PR,E is
compact, S = {PR,Eϕ(t), t ∈ R} is a compact subset of H, and so there is a
finite rank orthogonal projection Qε such that supt ‖(1−Qε)PR,Eϕ(t)‖L2 <
ε/2 v(‘S is almost finite dimensional’), and so by writing (1 − Qε) = (1 −
Qε)PR,E + (1 − Qε)(1 − PR,E), we conclude that supt ‖(1 − Qε)ϕ(t)‖L2 < ε
(for any ε!), which implies that the orbit O(ϕ) of ϕ is contained inside a
compact set . By the intermediate result, this implies that ϕ ∈ Hd 2

A result analogous to the RAGE Theorem holds for those (very) spe-
cial integrable nonlinear wave equations (such as the cubic NLS, KdV, sine-
Gordon). One can apply - at least on a formal level - the Inverse Scattering
(IST) method to deduce that general solutions of these equations will con-
verge (locally) to bound states. The IST is a kind of ‘nonlinear Fourier
transform’. Think about the linear Schrödinger equation. Here spectral the-
ory tells us from the initial data what the evolution of the solution will be.
That is, the ‘generalized Fourier transform’ (i.e., decomposition of a general
L2(Rn) function into components along the discrete and continuous spec-
tral subspaces of the linear operator H; the component along the continuous
spectral subspace being computed via the generalized eigenfunctions of H -
see [RS §XI.6] for example) measures the ‘content’ of bound states and scat-
tering states of a general L2(Rn) function. Furthermore, these two ‘modes’
evolve independently so for example (in the case of the IST), the future soli-
ton ‘content’ of the solution is the same as the soliton ‘content’ of the initial
data.

Schematically, the analogy can be seen as follows.
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Generalized Fourier Transform for SE :

ϕ(x)
F−→ (c(λ), µj) F : L2(Rn)→ L2(Rn)×Cm

SE ↓ ↓ Lin

{
µj(t) = e−iλjtµj
c(λ, t) = e−iλ

2tc(λ)

ϕ(x, t)
F−1

←− (c(λ, t), µj(t)) SE = F−1 ◦ Lin ◦ F

ϕ(x) = ϕc(x) + ϕb(x) ∈ Hc ⊕Hd = L2(Rn)

ϕc(x) =
∫
c(λ) e(x, λ) dλ, (c(λ) ∼ ϕ̂(λ))

ϕb(x) =
∑
j

µjζj(x); Hζj = λjζj, µj = 〈ϕb, ζj〉

ϕ(x, t) =
∫
e−iλ

2tc(λ) e(x, λ) dλ +
∑
j

e−iλjtµjζj(x)

Inverse Scattering Transform for cubic NLS :

ϕ(x)
FNL−→ (b(λ), γj) FNL : S(R)→ S(R)×Cm

NLS ↓ ↓ Lin

{
γj(t) = e−iλjtγj
b(λ, t) = e−iλ

2tb(λ)

ϕ(x, t)
F−1

NL←− (b(λ, t), γj(t)) NLS = F−1
NL ◦ Lin ◦ FNL

{γj} ∼ solitons (bound states)

b(λ) ∼ radiation

The ‘independent modes’ (c(λ), µj) and (b(λ), γj) of the linear Schrödinger
equation (SE) and of the cubic nonlinear Schrödinger equation (NLS) respec-
tively satisfy linear (Lin) equations (the IST is a change of coordinates which
linearizes the flow of NLS). As with the generalized Fourier transform for SE,
one can show that the component of the solution of NLS corresponding to the
‘radiation’ modes b(λ, t) are dispersive, and as a result (also in a similar way
as for SE) a general solution to NLS will converge locally to bound states.
See [FT] and [NMPZ] for more discussion about this.
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We now return to the investigation of the asymptotic behavior of solutions
of NLS. Our modest goal is not to prove that a general solution converges
to bound states, but a very particular instance where this occurs. We will
study the case when the initial data is close to a bound state, i.e., close to a
soliton. We wish to show that this solution will converge to a nearby soliton
as it evolves in time.

We begin with the weaker result of orbital stability. Let ϕω be a particular
ground state of (3). We call O(ϕω) the orbit of ϕω;

O(ϕω) = {eibϕω(x− c) | (b, c) ∈ R×Rn} (7)

Let d(u,O(ϕω)) be the distance from u to O(ϕω);

d(u,O(ϕω)) ≡ inf
ψ∈O(ϕω)

‖u− ψ‖H1 (8)

Then orbital stability (Lyapunov stability) of soliton states means that for
any ε > 0, ∃ δ such that

d(u(0),O(ϕω)) < δ =⇒ d(u(t),O(ϕω)) < ε ∀t > 0 (9)

We recall the argument (see for example [W2] or [SS]). Write u(0) = uo =
ψσ(0) + wo and define w(t) = u(t) − ψσ(t) where for each t ≥ 0, ψσ(t) is the
minimizer of infψ∈O(ϕω) ‖u(t)− ψ‖H1 (i.e., ψσ(t) is the closest point in O(ϕω)
to the solution u(t)). Note that ψσ(t) = eib(t)ϕω(x− c(t)) for some functions
b(t) and c(t).

We define the energy functional E(ψ);

E(ψ) =
∫
Rn

(
1

2
|∇ψ|2 +

1

2
F (|ψ|2) +

ω

2
|ψ|2

)
, where F ′ = f.

One can show that for any ε′ > 0, if δ is sufficiently small (δ given in (9)),

0 < E(uo)− E(ψo) < ε′.

Now,

ε > E(uo) − E(ψo)
= E(u(t)) − E(ψo), conservation of energy

= E(e−ibu(• + c, t)) − E(ψo), scale invariance

= E(ψo + w̃(t)) − E(ψo), u = ψ + w, w̃ = e−ibw(•+ c)

= E ′(ψo)[w̃(t)] +
1

2
E ′′(ψo)[w̃(t), w̃(t)] + r, Taylor exp about ψo

=
1

2
E ′′(ψo)[w̃(t), w̃(t)] + r, E ′(ψo) = 0

= 〈Lw̃(t), w̃(t)〉 + r, L = E ′′(ψo)
≥ c2‖w̃(t)‖H1 , w̃(t) ∈ N⊥

g (L) via b(t) , c(t) *

= c2d(u(t),O(ϕω)) 2

To obtain the inequality in the second last line we used the hypothesis that
‖wo‖H1 , and hence ‖w(t)‖H1 is sufficiently small. N⊥

g (L) denotes the orthog-
onal complement (in H1) of the generalized null space of L (see below).
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Orbital stability does not imply that the solution converges to a particular
(travelling) soliton. This stronger notion of stability is asymptotic stability.
To prove this we need the extra degree of freedom offered by varying the
parameter ω. So let

M = {eibϕω(x− c) | (ω, b, c) ∈ R×R×Rn} (10)

Then asymptotic stability of soliton states means that

d(u(0),M) < δ =⇒ d(u(t),M)→ 0 as t→∞ (11)

and in fact that the solution u(t) converges to a travelling soliton. Note that
we don’t expect the solution to converge to a translate of the soliton it was
near initially (i.e., the parameter ω will typically change).

Outline of Proof of Asymptotic Stability

Notation:

σ = (ω, γ, v, D), σ(t) = (ω(t), γ(t), v(t), D(t))
ϕω(x) is a solution of time-dependent NLS; ∆ϕω + f(|ϕω|2)ϕω = ωϕω
ψσ(x, t) = ei(ωt+

1
2
v·x− 1

4
v2t+γ)ϕω(x− vt−D)

ϕσ = ϕσ(t) = ϕω(t)(y(x, t)), so ϕσ = ϕω(y) and ϕω = ϕω(x).
ϕ
′
σ = (∂ωϕω)(y)

y(x, t) = x−
∫ t
0 v(s) ds − D(t)

Theorem 1.5 [Cu1] (Asymptotic Stability)

There exists a δ > 0 such that if

d(u(0),M) < δ

then
u(x, t) = eiΘ(x,t)

[
ϕω(t)(y(x, t)) + R(y(x, t), t)

]
where

Θ(x, t) =
1

2
v(t) · x− 1

4

∫ t

0
|v(s)|2 ds +

∫ t

0
ω(s) ds + γ(t) (12)

y(x, t) = x−
∫ t

0
v(s) ds −D(t) (13)

‖R(t)‖Wm,∞ ≤ ct−n/2 (14)

|σ̇(t)| ≤ ct−n (15)

That is, the solution u(x, t) converges (in Wm,∞) to a particular soliton
state ψσ∞(x, t) ∈ M. d(u(0),M) < δ means ∃σo = (ωo, γo, vo, Do) such
that,

‖u(x, 0)−ei(
1
2
vo·x+γo)ϕωo(x−Do)‖H2m

1
+‖ · · · ‖H2m+1

1
+‖ · · · ‖W 2m1,1 < δ, (16)
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where Hs
a is the (1 + |x|2)a/2 weighted Sobolev space of order s and Wm,p is

the Lp Sobolev space of order m. So, u(x, t) starts near the soliton ψσo and
asymptotically approaches the soliton ψσ∞ .

Theorem 1.9 [Cu1] (Scattering)

For any sufficiently smooth R∞(x) and any σ = (ω, γ, v,D) ∈ O = R2n+2,
there is a unique solution u(t) of NLS which has the decomposition as in
Theorem 1.5 and

lim
t→+∞

σ(t) = σ and lim
t→+∞

‖R(t)− (eJ(−∆+ω)tR∞)(x− vt−D)‖
H[ n

2 ]+1
= 0

Remark: R∞(t) = eJ(−∆+ω)R∞ is the solution of i∂tR = −∆R + ωR with
R∞(0) = R∞. As we’ll see below, the asymptotic (in time) behavior of
solutions of i∂tψ = L±ψ is governed by the ’free’ equation ∂tψ = −∆ψ+ωψ.
L± are the linearized operators about the soliton, so Theorem 1.9 states that,
for solutions that are initially close to a soliton, the asymptotic behavior
of the ’radiation’ part of the solution is governed by the ’free’ part of the
linearized equation about the (asymptotic) soliton.

Modulation Equations

Modulation means that the parameters describing a soliton state are al-
lowed to vary in time; σ(t) = (ω(t), γ(t), v(t), D(t)). The task is to determine
the function σ(t), σ(0) = σo, so that u(x, t)− ψσ(t) converges to zero (in the
appropriate sense.

Plugging the ansatz u(x, t) = eΘ[ϕω +R] into NLS we obtain,

i∂tR− iḊ · ∇R = (17)

−∆R + ω(t)R− f(ϕ2
σ(t))R− f ′(ϕ2

σ(t))ϕ
2
σ(t)R− f ′(ϕ2

σ(t))ϕ
2
σ(t)R̄ +

v̇ · x
2
R

+
(
v̇ · x
2

+ γ̇(t)
)
ϕσ(t) − iω̇(t)ϕ

′

σ(t) + iḊ · ∇ϕσ(t) + γ̇(t)R + e−iΘN(eiΘR)

where ϕ
′
σ = (∂ωϕω)(y) and R = R(y, t) are evaluated at y = y(x, t), and

N(s) satisfies |N(s)| ≤ c(ϕσ|s|2 + |s|p), p ≥ 3, for |s| small.

Define

J =

[
0 1
−1 0

]
, Hσ =

[
L+ 0
0 L−

]
(18)

where

L+ = −∆ + ω − f(ϕ2
σ)− 2ϕ2

σf
′(ϕ2

σ), (19)

L− = −∆ + ω − f(ϕ2
σ). (20)

Hypothesis (for Theorem 1.5): If σ ∈ O = R2n+2,
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(ND) the only eigenvalue of JHσ and HσJ is 0

(NR) neither of ±iω is a resonance for JHσ or HσJ .

So the spectrum of JHσ and HσJ is i(−∞, −ω] ∪ {0} ∪ i[ω, ∞ ).

Theorem 1.3 [Cu1]

Ker L+ = span {∂jφσ}j=1,...,n

Ker L− = span {φσ}

(Note that L+∂jφσ = 0 can be seen by differentiating (3) w.r.t. xj, L+φ
′
σ =

φσ (differentiate (3) w.r.t. ω), L−φσ = 0 (differentiate (3) w.r.t. γ), and so
L−L+φ

′
σ = 0.)

Theorem 1.4 [Cu1]

span {φσ, Jφ
′

σ, J∇φσ, yφσ} = Ng(HσJ)

Hσ ≥ c > 0 on N⊥
g (HσJ)

(Here, Ng(H) denotes the generalized eigenspace ofH; Ng(H) = ∪∞j=1N(Hj).)

Let R = R1 + iR2 where R1 = <R and R2 = =R and interpret R as the
column vector (R1, R2)

t. Re-write (18) as

∂tR = JHσ(t)R + Ḋ · ∇R + J
v̇ · y
2
R + J ˙̃γ(t)R (21)

+J

(
v̇(t) · y

2
+ ˙̃γ(t)

)
φσ(t) − ω̇(t)φ

′

σ(t) + Ḋ · ∇φσ(t) + JeJΘN(e−JΘR).

Here,

˙̃γ(t) = γ̇(t) +
1

2
v̇(t) ·

∫ t

0
v(s)ds +

v̇(t) ·D(t)

2

Θ(x, t) =
1

2
v(t) · x− 1

4

∫ t

0
|v(s)|2 ds +

∫ t

0
ω(s) ds + γ(t)

To determine equations describing the evolution of σ(t) and R(t) we im-
pose the orthogonality condition R(t) ∈ N⊥

g (Hσ(t)J) ∀t ≥ 0. As can be seen
from (22), the evolution of R(t) is (primarly) governed by JHσ. The orthog-
onality condition assures that R(t) lies in the continuous spectral subspace
of JHσ where the evolution eJHσt is dispersive (the solution of ∂tψ = JAψ is
ψ(t) = eJAtψo.)

As can be seen from Theorem 1.4, the orthogonality condition is

〈R,ϕσ〉 = 0 ∀t ≥ 0

〈R, Jϕ′σ〉 = 0 ∀t ≥ 0

〈R, J∇ϕσ〉 = 0 ∀t ≥ 0

〈R, yϕσ〉 = 0 ∀t ≥ 0
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Let ξ be any one of ϕσ, Jϕ
′
σ, J∇ϕσ, yϕσ. Note that

〈R, ξ〉 = 0 ∀t ≥ 0 =⇒ ∂t〈R, ξ〉 = 0⇐⇒ 〈∂tR, ξ〉 + 〈R, ∂tξ〉 = 0 ∀t ≥ 0.

Plugging (22) in for ∂tR in these inner products, we obtain the modulation
equations;

ω̇〈ϕσ, ϕ
′

σ〉 = 〈JeJΘN(e−JΘR), e−JΘϕσ〉 + O( ˙̃σ‖R‖W 1,∞)
˙̃γ〈ϕσ, ϕ

′

σ〉 = −〈eJΘN(e−JΘR), e−JΘϕ
′

σ〉 + O( ˙̃σ‖R‖W 1,∞)

v̇j〈yjϕσ, ∂jϕσ〉 = −〈eJΘN(e−JΘR), e−JΘ∂jϕσ〉 + O( ˙̃σ‖R‖W 1,∞)

Ḋj〈yjϕσ, ∂jϕσ〉 = −〈JeJΘN(e−JΘR), e−JΘyjϕσ〉 + O( ˙̃σ‖R‖W 1,∞)(22)

The system of modulation equations and equation (22) are solved together
(for R(t) and σ(t)) to obtain the desired result, namely, that for sufficiently
small δ,

|σ(t)− σo| < δ (23)

‖R(t)‖H2m+1 < δ (24)

‖R(t)‖Wm,∞ < δ(1 + |t|)−
n
2 (25)

| ˙̃σ(t)| < cδ2(1 + |t|)−n (26)

‖〈y(t)〉R(t)‖H2m < δ(1 + t) (27)

Idea of Proof:

Write
∂tR = JHσR + E(t) (28)

where
E(t) = E(σ̇ϕω, σ̇R, ϕωR, R

p) (29)

The form of E(t) suggests the norms

M1(t) = sup
0<s<t

(1 + |s|)n|σ̇(s)|

M2(t) = sup
0<s<t

(1 + |s|)‖〈x〉R(s)‖H1

M3(t) = sup
0<s<t

(1 + |s|)n/2‖R(s)‖L∞

The modulation equations can also be estimated using these norms. Our
goal is to show these norms remain bounded for all time.

By variation of parameters (or Duhamel’s formula),

R(t) = eJHσtRo +
∫ t

0
eJHσ(t−s)E(s) ds, (30)

so that

‖R(t)‖X ≤ ‖eJHσtRo‖X +
∫ t

0
‖eJHσ(t−s)E(s)‖X ds

≤ ‖eJHσtRo‖X +
∫ t

0
d(t− s)‖E(s)‖Y ds (31)
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where

‖eJHσtu‖X ≤ d(t)‖u‖Y (dispersive decay estimate for eJHσt ) (32)

Recall the dispersive estimates for the free Schrödinger operator;

‖e−∆+ωu‖Lp ≤ d(t)‖u‖Lq = ct−
n
2
+n

p ‖u‖Lq ,
1

p
+

1

q
= 1, 2 ≤ p ≤ ∞ (33)

From this follow the dispersive estimates for the free matrix Schrödinger

operator eJHo , Ho =

[
−∆ + ω 0

0 −∆ + ω

]
;

‖eJHotu‖Lp ≤ ct−
n
2
+n

p ‖u‖Lp (34)

However, what we require are dispersive estimates on the matrix Schrödinger
operator eJHσt. The wave operator, W+, provides this:

Theorem 2.1 [Cu1]

W+u = lim
t→+∞

eJHσte−JHot (35)

The wave operator is a bounded operator from Lp(Rn) to Lp(Rn)∩N⊥
g (HσJ)

for all p ∈ [1,∞] along with its inverse. It satisfies the intertwining property;

eJHσtW+ = W+e
JHot.

Thus we have,

‖eJHσtu‖Lp = ‖eJHσtW+v‖Lp = ‖W+e
JHotv‖Lp

≤ c‖eJHotv‖Lp

≤ ct−
n
2
+n

p ‖v‖Lq

≤ ct−
n
2
+n

p ‖u‖Lq (36)

Using these estimates in (32) we obtain an inequality of the form,

M2(t) ≤ C(M)[(M2(t) +M2
2 (t) +M1(t) +M1(t)

2 +M3(t) +M3(t)
2] (37)

where C(M) depends on M1(0),M2(0),M3(0) with C(0) = 0. There are
similar inequalities for M1(t) and M3(t). Thus it follows that for sufficiently
small initial data, the Mi(t) remain bounded for all time.

Remark: Notice that the operators JHσ and HσJ are time-dependent through
σ = σ(t). To get rid of this time dependence, σ(t) is fixed at some time T ;
σ(T ), and the analysis is done with these time-independent operators. Thus,
we need to know apriori that |σ(t)−σo| remains sufficiently small for all time
(so the operators JHσ(t) and Hσ(t)J do not differ significantly from JHσ(T )

and Hσ(T )J).
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Resonant Case

Here we assume the existence of an eigenvalue ±λ of JHσ between 0 and
the edges of the continuous spectrum ±iω; JHσζ = λζ. To insure the reso-
nant interaction between the bound state and the continuous spectrum, we
assume that 2λ > ω and that the Fermi Golden Rule holds (these conditions
are described below).

Now the ansatz is

u(x, t) = eiΘ(x,t)[ϕω(x) +R(x, t)], with (38)

R(x, t) = a(t)ζ(x) + η(x, t) (39)

where ζ(x) is the eigenvector associated to λ and η(x, t) is in the continuous
spectrum for all t (orthogonality condition). Actually, we should write ζ(x, t)
since λ = λ(t), but we will fix the parameters at some time t = T and thus
reduce to a time independent problem.

Theorem [Cu2] (Dim = 3). For initial data u(x, 0) close enough to a
soliton state, we have that

u(x, t) = eiΘ(x,t)[ϕω(t) +R(x, t)]

where σ(t) has limiting value σ∞,

R(x, t) = a(t)ζ(x) + η(x, t), with (40)

‖a(t)ζ(x)‖L∞ ≤ c(1 + t)−1/2, (41)

‖η(x, t)‖Lp ≤ c(1 + t)−3/2+3/q‖η(x, 0)‖Lq . (42)

Thus, the solution u converges to a travelling soliton.

The estimates on the parameters ω(t), γ(t), v(t) and D(t) are as before, as
is the estimate for η(x, t). The new feature in this problem is proving decay
of the localized part a(t)ζ(x). Thus, we want to show that a(t) decays.

Sketch of proof:

For simplicity we will consider a ‘toy’ problem (full details - and there
are lots of them! - can be found in [SW2] and [SW3]). Let’s assume the
nonlinearity has Taylor expansion f(x) = x + · · ·, and let’s work with the
NLS equation i∂tu = −∆u − f(|u2|)u. Let H = −∆ + ω − f(|ϕ2

ω|) with
Hζ = λζ and let Pc and Pd be projections onto the continuous and discrete
spectral subspaces ofH respectively (note that Pd(g) = 〈g, ζ〉ζ). Set Pcη = η
(orthogonality condition) and write a(t) = A(t)e−iλt. Plugging the ansatz
u = eiωt[ϕω + R] into NLS and using the fact that eiωtϕω is a solution, we
obtain equations describing the evolution of η and A;

i∂tη = Hη − A2e−2iλtPcζ
2ϕω + · · · (applying Pc to the equation) (43)

Ȧ = ie2iλĀ〈ζ̄ηϕω, ζ〉 + · · · (applying 〈 • , ζ〉 to the equation)(44)
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(these obtained by looking at the terms linear in ϕω and quadratic in R on
the right hand side of NLS). Duhamel’s formula gives,

η = e−iHtηo − i
∫ t

0
e−iH(t−s)A2(s)e−2iλsPcζ

2ϕω ds + · · ·

= e−iHtηo − ie−iHt
∫ t

0
ei(H−2λ)sA2(s)Pcζ

2ϕω ds + · · · (45)

Regularizing the integrand before integrating by parts leads to,

η = e−iHtηo + ie−2iλtδ(H − 2λ)A2(t)Pcζ
2ϕω + · · · (46)

where we’ve used the formula (interpreted in the sense of distributions);

lim
ε→0

1

x− xo + iε
= lim

ε→0

x− xo
(x− x0)2 + ε2

− i lim
ε→0

ε

(x− x0)2 + ε2

= P.V.
(

1

x− x0

)
− iπδ(x− x0). (47)

* * Note that if 2λ > ω then δ(H− 2λ) 6= 0 * * . Plugging expression (47)
for η into the A equation (45) and using that P2 = P,P∗ = P, and ϕω ∈ R
gives,

Ȧ = −Γ|A|2A+ · · · (48)

where
Γ ≡ 〈δ(H − 2λ)Pcζ

2ϕω, Pcζ
2ϕω〉 ≥ 0 (49)

If Γ > 0, equation (49) implies that A(t) ∼ t−1/2. The condition Γ > 0 is
called the resonance condition, or nonvanishing of the Fermi Golden Rule
(FGR). (See [RSIV] and [SW2] for discussion of time-dependent resonance
theory and FGR.)

14



References

[A] Adams, Robert A., Sobolev Spaces. Academic Press (1975).

[AG] Amrein, W.O. and Georgescu, V. On the Characterizaation of Bound
States and Scattering States in Quantum Mechanics. Helvetica Physica Acta,
Vol. 46, 635- 658 (1973).

[BP1] Buslaev, V.S., Perel’man, G.S., Scattering for the Nonlinear Schrödinger
Equation: States Close To A Soliton, St. Petersburg Math. J. Vol. 4, No.
6, 1111-1142 (1993)

[BP2] Buslaev, V.S., Perel’man, G.S., On the Stability of Solitary Waves
for Nonlinear Schrödinger Equations, Amer. Math. Soc. Transl. (2) Vol.
164, 75-98, (1995)

[CFKS] Cycon, H.L., Froese, R.G., Kirsch, W., and Simon, B., Schrödinger
Operators. Springer-Verlag, 1987.

[CP] Campbell, D.K. and Peyrard, M. Chaos and Order in NonintegrableField
Theories. In, CHAOS/XAOC. Edited by D.K. Campbell, Amer. Inst. Phys.,
N.Y. (1990).

[Cu1] Scipio Cuccagna, Stabilization of Solutions to Nonlinear Schrödinger
Equations, preprint, 2001
http://www.math.siu.edu/preprints/cuccagna/SSNSE.pdf

[Cu2] Scipio Cuccagna, On Asymptotic Stability of Ground States of NLS,
preprint, 2001
http://www.math.siu.edu/preprints/cuccagna/asgsnls.pdf

[CVZ] Cheng, P-J., Venakides, S. and Zhou, X. Long-Time Asymptotics for
the Pure Radiation Solution of the sine-Gordon Equation. Comm. P.D.E.,
24 (7&8), 1195-1262 (1999).

[DEGM] Dodd, R.K., Eilbeck, J.C., Gibbon, J.D., and Morris, H.C., Soli-
tons and Nonlinear Wave Equations, Academic Press (1982).

[DJ] Drazin, P.G., Johnson, R.S., Solitons: An Introduction, Cambridge
University Press (1989).

[DZ] Deift, P. and Zhou, X. Perturbation Theory for Infinite-Dimensional
Integrable Systems on the Line. A Case Study. Preprint (1999).

[FT] Faddeev, L.D., and Takhtajan, L.A., Hamiltonian Methods in the
Theory of Solitons, Springer (1987).

[HisS] Hislop, P., and Sigal, I.M., Introduction to Spectral Theory With
Applications to Schrödinger Operators, Springer-Verlag, 1996.

[HunS] Hunziger, W., Sigal, I.M., The General Theory of N-Body Quantum
Systems, CRM Proceedings and Lecture Notes, Vol 8, 1995.

[JSS] Journe’, J.-L., Soffer, A., and Sogge, C.D., Decay Estimates for
Schrödinger Operators, Comm. Pure Appl. Math., 4 (5), 573-604 (1991).

[MM] Martel, Y., and Merle, F., A Liouville Theorem for the Critical
Generalized KdV Equation, J. Math., Pures Appl. 79,4 pp339-425 (2000).

15



[N] Newell, A.C., Solitons in Mathematics and Physics, SIAM (1985).

[NMPZ] Novikov, S., Manakov, S.V., Pitaevskii, L.P., and Zakharov, V.E.,
Theory of Solitons, The Inverse Scattering Method, Consultants Bureau, New
York (1984).

[P] Perry, P., Scattering Theory, Mathematics Reports, Vol 1, 1983.

[PS] Pyke, R., Sigal, I.M., Nonlinear Wave Equations: Constraints on Fre-
quencies and Exponential Bounds for Periodic Solutions, Duke Math. J., Vol
88, No 1, 133-180, 1997.

[PSW] Pyke, R., Soffer, A., Weinstein, M., Stability of the Kink Soliton of
the ϕ4 Nonlinear Wave Equation, in preparation.

[PW] Pillet, C.-A., Wayne, C. E., Invariant Manifolds for a Class of Dis-
persive, Hamiltonian, Partial Differential Wave Equations, J. Diff. Eq., 141,
310-326 (1997).

[R] Ruelle, D. A Remark on Bound States in Potential Scattering Theory.
Nuovo Cimento, 61A, 655-662 (1969).

[Rem] Remoissenet, M., Waves Called Solitons, Concepts and Experiments,
Springer (1999).

[RSIII] Reed, M. and Simon, B. Methods of Modern Mathematical Physics
III. Scattering Theory. Academic Press, New York (1979).

[RSIV] Reed, M. and Simon, B. Methods of Modern Mathematical Physics
IV. Analysis of Operators. Academic Press, New York (1979).

[S] Strauss,W., Nonlinear Wave Equations, Conference Board of the Math-
ematical Sciences Regional Conference Series in Mathematics Number 73,
American Mathematical Society (1989).

[SS] Sulem, C. and Sulem, P.-L., The Nonlinear Schrödinger Equation; Self
Focusing and Wave Collapse, Springer-Verlag, 1999.

[SW1] Soffer, A., Weinstein, M., Multichannel Nonlinear Scattering for
Nonintegrable Equations, Comm. Math. Phys., 133, 119-146 (1990), and
Multichannel Nonlinear Scattering II. The Case of Anisotropic Potentials
and Data, J. Diff. Eq. 98, 376-390 (1992).

[SW2] Soffer, A., Weinstein, M., Time-Dependent Resonance Theory, GAFA,
vol.8, 1086-1128 (1998).

[SW3] Soffer, A., Weinstein, M., Resonances, Radiation Damping and In-
stabilities in Hamiltonian Nonlinear Wave Equations, Invent. Math., vol.
136, 9-74 (1999).

[W1] Weinstein, M., Modulation Stability of Ground States of Nonlinear
Schrodinger Equations, SIAM J. Math. Ana. 16,5, 472-491 (1985).

[W2] Weinstein, M., Lyapunov Stability of Ground States of Nonlinear
Dispersive Evolution Equations, Comm. Pure Appl. Math., 39, 51-68 (1986).

[Wh] Whitham, G.B., Linear and Nonlinear Waves, Wiley-Interscience
(1999).

16


