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Abstract

We present a formalism for constructing integral identities involving time almost-
periodic solutions of nonlinear wave equations. As an application we prove a nonexis-

tence theorem that is applicable to a large class of nonlinearities.

1 Introduction

A virial relation is an integral identity involving the solution of a differential equation. The
identity can be derived from the equation itself or, if the equation can be formulated as a
variational problem, from infinitesimal variations of the action functional associated to the
equation. A well known example from physics relates the time-average kinetic and potential
energies of an n-particle system under the influence of central forces (usually referred to as
the virial theorem; see for example [LL]). In mathematics virial relations have been used
extensively, for example, in deriving necessary conditions for the existence of solutions of

differential equations beginning with the work of Pohozaev [Po].
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In this article we present a systematic approach to deriving virial relations for almost

periodic solutions of nonlinear wave equations (NLW’s) of the form

O — Ap + f(p) = 0. (1.1)

Here ¢ : RY xR, — R, 02 = 0%p/0t?, Ap =N, 0%p/0zx2, and f: R — R with f(0) = 0.
By an almost periodic solution we understand a solution that is almost periodic in time ¢
and L?(R") in space . Almost periodic solutions have special significance in field theories
because they represent bound states, i.e., solutions that are localized in space uniformly in
time (cf. below). Our objective is twofold. First, we want to illuminate a method that has
been known and used in various guises for many years in mathematics and physics and is
well-suited for problems arising in nonlinear differential equations. Second, we apply this
method to derive necessary conditions for the existence of almost periodic solutions of NLW.

We remark about the notion of an almost periodic solution. Due to the invariance of
NLW under the Poincaré group, an almost periodic solution may not appear to be almost
periodic in another Lorentz frame, although it still satisfies NLW in this frame. For example,
if the second frame is moving at a constant nonzero velocity with respect to the first frame
(in which the solution is almost periodic) then the solution is not almost periodic in this
moving frame. This means that when we are considering an almost periodic solution we are
tacitly referring to a particular Lorentz frame (it is not unique). Thus, for us an almost
periodic solution of NLW is a solution that is almost periodic in some Lorentz frame.

In this paper we are concerned solely with almost periodic solutions and do not address
the question of the existence of general solutions. In particular, our results are that NLW’s
with certain nonlinearities do not possess almost periodic solutions. Never the less, global
(in time) existence theory does apply to some of these equations (for a survey see [GV] or
[Str2]). Thus, together these two results imply that there are NLW’s that possess global
solutions but that none of these solutions are almost periodic - that the set of solutions of
these NLW’s do not contain functions with a certain temporal behavior (almost periodicity).
An example of such a NLW is given below (cf. Example 1 in Section 3).

When NLW is viewed as an evolution equation it is natural to attempt to characterize



solutions by their temporal behavior. The work of this article is a start in that direction. In
deciding what sorts of behavior are appropriate for such a characterization we are motivated
by two observations. The first is that L?(RY) valued almost periodic functions have the
property of being uniformly bounded with respect to time. That is, for any € > 0 there

exists a ball B(p) C RY of radius p = p(¢) such that

/c(,,) lp(z, D)2 de < e (1.2)

for all ¢ (cf. Definition 4.5 and Lemma 4.7 below). We refer to functions satisfying this
condition as being bound states. Secondly, an important theorem in quantum mechanics
due to Ruelle [R] asserts that bound state solutions of the Schrédinger equation are almost
periodic in time. The converse is true as we have just seen. Thus, for the Schrodinger
equation bound states are characterized by their temporal behavior and by this alone. We
believe that a similar statement can be made for some nonlinear equations such as NLW
and the nonlinear Schrédinger equation [Py]. That is, solutions of these equations that are
bound states, as defined above, are almost periodic in time (we may have to first transform
to an appropriate coordinate system via a symmetry of the equation). Therefore, from this
perspective the work presented in this article aims to contribute towards a classification of
nonlinear wave equations according to whether they possess bound states or not.

One of the few NLW’s known to possess periodic solutions that are localized in z (often
referred to as ”breathers”) is the sine-Gordon equation 87 — d2p + sin(p) = 0. Here the

solutions are given by the formula

esinwt

o(z,t;w) = 4tan™! ( > , &+w =1 (1.3)

wcosh ex

Being an integrable system, these solutions can be found using techniques related to the
inverse scattering transform [NMPZ]. However, many NLW’s of interest are not integrable,
for example, the ”p*” equation 92¢ — 8%p + ¢ — ¢® = 0, which is an important model in
particle physics. It is not known whether this latter equation possesses periodic solutions.
The method we describe in this article does not depend on the integrability properties of the

particular equation in question.



We briefly review previous studies concerning periodic solutions of nonlinear wave equa-
tions. The structural stability of the sine-Gordon breather has been an object of study
for a number of years (for recent work see [BMW] and [D], for an earlier study see [MS]).
Here one looks for periodic solutions of the perturbed sine-Gordon equation 82 — d2¢p +
sin(p) + €g9(p) = 0 that are close to the sine-Gordon breather. Because the sine-Gordon
breather is known explicitly, a detailed analysis can be carried out. These references reveal
a complex interaction between the breather and nonlinearity sin(y) that is easily upset by
a perturbation. The conclusion is that typically the perturbed equation does not have a
periodic solution close to the sine-Gordon breather. This result is corroborated by the work
[Ki] in which the sine-Gordon equation is singled-out as essentially the only NLW on R!*!
having (analytic) breathers. In the same vein one can look at how periodic solutions of
linear equations behave under nonlinear perturbations. This was investigated in [Si] where
it was shown that these solutions, like the sine-Gordon breather, are generically unstable
under nonlinear structural perturbations. A necessary condition for the existence of periodic
solutions on R! follows from a result of Coron’s [Co| which states that if ¢ € C?(R?) is a
27 /w -periodic solution of NLW, then w? < f/(0). Recently, we have been able to extend
this result to multi-spatial dimensions [PS].

The situation is very different on a bounded or semi-bounded spatial domain; here pe-
riodic and almost periodic solutions are abundant. In [SV],[V2],[V3], and [We|, periodic,
quasiperiodic, or almost periodic solutions of NLW on the half-line R, were constructed us-
ing methods from centre manifold theory. Here the one dimensionality of the spatial variable
is essential as NLW is treated as a dynamical system in a phase space of periodic functions
with z playing the role of the dynamical variable. The (one-sided) exponentially decaying
periodic solutions are points in the stable or unstable manifolds of the zero solution. The
failure of these manifolds to intersect prohibits extending these existence results to the entire
real line [V3]. [Sc| and [Sm] apply a similar analysis for radially symmetric periodic solutions
on RY. Other existence results using a variety of methods from KAM theory, Lyapunov-
Schmidt bifurcation theory, and variational methods, can be found in the references [Wal,

[CW], [BCN] and [H].



Although the above results indicate that almost periodic solutions of nonlinear wave

RN*! are rare, the question of existence is still very much open. With this in

equations on
mind we set out to investigate what conditions the nonlinearity must satisfy in order for
NLW on the infinite spatial domain R to support solutions that are time periodic or, more
generally, time almost periodic. Although in this paper we will be considering the unbounded
spatial domain, we could also carry out our analysis on bounded or semi-bounded spatial
domains.

Our approach to this problem was motivated by the study [V1] where NLW on R'*!
was formulated as a variational problem. Since periodic solutions are critical points of the
action functional, the Fréchet derivative of the functional is zero at these points. Evaluating
the Fréchet derivative on certain functions derived from the solution itself results in integral
identities involving the solution and nonlinearity. From these identities several nonexistence
theorems for classical (i.e., C%(R?)) periodic solutions was proven. Subsequently, the devel-
opment of our ideas in the direction of describing virial relations as infinitesimal variations
of the action functional (cf. the appendix to the present paper) was aided by a recent article
[M] which surveys the role of virial relations in physical theories that are based on an action
principle.

The work presented in this paper extends the results of [V1] in several directions. At first
we work with more general quasiperiodic solutions (multiple, but finitely many, frequencies
instead of one), and in several spatial dimensions. Our admissible set of solutions is also
larger, being of class H' in space and time (weak solutions). After deriving a class of virial
relations for quasiperiodic solutions and using these to state necessary conditions for the
existence of such solutions, we will see that by using ideas from ergodic theory we can
express our results in a way that makes sense for the larger class of almost periodic solutions
(i.e., allowing for infinitely many frequencies). In a latter section of this paper we show that
these formulae are in fact valid for almost periodic solutions.

Historically, the idea of formulating a nonlinear equation as a minimization problem
to obtain necessary conditions for the existence of solutions has its origins in a work of
Pohozaev [Po] who used the method to study solutions of a nonlinear elliptic boundary

problem. Subsequent applications of this technique can be found, for example, in [Strl]



and [B] where it was used to study stationary states of some nonlinear wave equations, and
in [BL] and [BrLi] where it was used in a study of a class of nonlinear elliptic variational

problems.

The main results of this article are the following. We first derive a class of integral
identities that must be satisfied by almost periodic solutions of NLW (Theorems 2.7 and
4.10). Then, by choosing a particular subclass of these we are able to prove the following

theorem, which we state here without all the technical details (cf. Theorems 3.5 and 5.1).

Theorem Suppose ¢ is an almost periodic solution of NLW such that o(-,t) € H'(RYN).
Let F(z) = [{ f(w)dw. If F(z)—czf(z) <0 for some c € [E=2,1] and for all z such that

|z| < |lo||lpeerr+1), then ¢ is independent of time.

Application of this theorem can be widened by considering small amplitude solutions
since then only properties of the nonlinearity near zero enters. For such solutions we present
two nonexistence results (Corollaries 3.6 and 3.7). The first has relevance, in particular, to
nonlinear Klein-Gordon equations (i.e., f'(0) > 0) with odd nonlinearity. For the second we
combine Wirtinger’s inequality with virial relations to obtain a result similar to Coron’s [Co]
in multi-spatial dimensions. By taking advantage of the decay of solutions as |z| — oo we
can, by ”localizing” the virial relation in a neighborhood of spatial infinity, extend some of
the results about small amplitude solutions to solutions of arbitrary amplitude (Corollary

3.8).

Before concluding this introduction we present some heuristics to help motivate and
describe our approach. We begin with the observation that a function ¢(z,t) e H'(RN ')
can be viewed as a function from R to H'(R") via the map t — (-, t). Furthermore, if ¢ is
27 /w -periodic then we can write ¢(x,t) = v(z,wt) where v : St — H(RY) is a function
defined on the unit circle S'. From this it is clear how to define quasiperiodic functions:
¢ is quasiperiodic if ¢(z,t) = vy(z,wt) for some v : T' — H'(RY) where T' is the I-torus
S1x...x 81 and for some w € R.. We call y the generating function of ¢ and w the frequency

of . Given a quasiperiodic solution ¢ of NLW with frequency w € R!, by the chain rule we



derive an equation satisfied by its generating function ~;

D2y — Ay + f(y) = 0.

Here D2 = Zé,jzl w;w;D;Dj, D; = d/db;, and 6y, ...,6; are coordinates on T'. We call this
equation the nonlinear wave equation on RY x T = Qy,; with frequency w. To derive virial
relations for quasiperiodic solutions ¢ then, we derive virial relations for solutions v of NLW
on Qy; and transfer these back to ¢ using the identification ¢(z,t) = vy(z, wt).

In general, an almost periodic function is a quasiperiodic function with infinitely many
(independent) frequencies. Almost periodic functions ¢ can be characterized by generating
functions v that are defined on the infinite dimensional torus T®; ~ : T® — H'(RN).
Then, there is a dense embedding I' : R — T such that ¢(t) = v(I'(¢)). For general almost
periodic solutions though, we will work directly with the function itself rather than with its
generating function. This is facilitated by passing from T* to R via the Bohr compactification
of the real line which is realized by the formula

/Tw v(0)d§ = lim %/OT (yoT)(t)dt. (1.4)

T—o00

Here df is the (normalized) Haar measure on T*. That is, instead of integrating v over the
torus T, which is its ”space” average, we take its time average along the curve T'(R).

To illustrate the general strategy as well as to describe some aspects of our approach,
we present an example of a virial relation. Suppose v is a solution of NLW on Qy; with
frequency w and let 8 : T' — H'(RY) be some function on T!. Then, multiplying NLW by

(B and integrating we have,

/T,/N(Div—A“Hf(v))ﬁ = 0

Integrating by parts we obtain

L o { = PrDuB+ V7 98+ f(8} = 0,



which expresses that v is a weak solution. Now take for the multiplier # some combination
of v and its derivatives, for example, 3 = z-V~. Using this § in the latter formula and

removing a divergence term we arrive at the virial relation

J G+ G 199 o)} = 0, F=g 15)

We see right away that in spatial dimensions 1 or 2, F' cannot be a nonpositive function.
Thus, we have a necessary condition on the nonlinearity for the existence of solutions of
NLW on ;. The virial relation for the quasiperiodic solution ¢ can be recovered from this
with the identification ¢(z,t) = v(x,wt) and replacing the integral over T! by the time-mean
over R (cf. (1.4)).

What is required to make this argument rigorous is that v be sufficiently regular and
integrable. How regular and integrable depends on how [ is defined. One could, at the start,
consider only those solutions for which the formal manipulations remain valid. However, the
final formula (the virial relation) that one obtains requires less of the solution than the
rigorous analysis asks for. In the above example we see that the virial relation makes sense
(i.e., the integral in (1.5) is finite) if v € H*(Qy,) and F(y) € L*(Qn;). In our analysis
we assume from a solution and nonlinearity only what is needed to make the (formally
derived) virial relation a well-defined formula. This defines then the largest possible class
of solutions (for a given nonlinearity) for which the virial relation is valid. To make the
derivation rigorous we regularize the multiplier G — (., [y = [, derive the virial relation
corresponding to (3., and then regain the virial relation corresponding to (3 in the limit ¢ — 0.

Because we allow for infinitely many frequencies in the almost periodic case, the con-
struction of virial relations for almost periodic solutions differs from that for periodic and
quasiperiodic solutions. But since periodic and quasiperiodic solutions are also almost peri-
odic, the latter results include the former. However, the method of proof for quasiperiodic
solutions is different than the proof for almost periodic solutions. We have included both
proofs here because the method for quasiperiodic solutions could be adapted to handle
other partial differential equations; those defined on open subsets 2 of R™ (bounded or un-

bounded) where the solutions are in L?(Q2). The technical tools for this are a regularization



of the solution and Lebesgue’s dominated convergence theorem. The dominated convergence
theorem cannot be applied to almost periodic solutions because they are not integrable on
RN*1. Instead, we utilize the uniform boundedness of almost periodic functions (cf. (1.2))
in conjunction with the uniform (in ) convergence of 3. on compact subsets of RV.

In the above example we used the function 8 = x - V~ to derive a virial relation. One
can view z as a vector field v on RY: v(z) = z. Conversely, for any vector field v we
may derive a virial relation by setting 8 = v - V~. In our study we use this identification
to characterize a class of virial relations. Furthermore, these vector fields generate flows
®, : RY — R" which in turn define transformation groups 7 acting on functions via the
formula Th¢ = ¢ o ). In general, every transformation group will lead to a virial relation
via the infinitesimal variations of the action associated to NLW under this group. If 7} is a
symmetry of the action then there is a corresponding differential identity (a conservation law:
Noether’s theorem) which can be thought of as a ”trivial” virial relation. This is discussed

more thoroughly in the appendix.

We outline the contents of this paper. The next section deals with quasiperiodic solutions
of NLW. We define quasiperiodic functions and the types of quasiperiodic solutions we will
be concerned with, as well as discuss our hypothesis on the nonlinearity. Then we state
and prove the main result of that section (Theorem 2.7): a class of virial relations for
quasiperiodic solutions of NLW that are characterized by vector fields on RY. In the following
section, Section 3, we use these virial relations to derive several nonexistence results. Sections
4 and 5 deal with more general almost periodic solutions. The main results there, Theorems
4.10 and 5.1, characterize a class of virial relations for almost periodic solutions by vector
fields on RY and state a necessary condition for the existence of such solutions. Finally, in the
appendix we show how virial relations may be derived by formulating NLW as a variational

problem. This will elucidate the relationship between virial relations and conservation laws.

Notation: V denotes the gradient operator on RY: V = (8y,...,0y), 0; = 8/0z;, and for
multi-index a € zZV > 0, 8 = 9{*,..0%". By the vector w € R! we will always mean an

I-tuple of incommensurate numbers (”frequencies”). 1 will stand for the identity matrix. T!
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will denote the [-torus S* x --- x % and Qn; = RN x T!. Given a frequency vector w € R’
we define the differential operator D, = w - D on T' where D = (Dy,...,D;), D; = 8/06;,
is the gradient operator on T!. ||¢}||, is the LP(R") norm and H®P the LP Sobolev space of
order s which for p = 2 we write simply as H*. The space LP(R, LIRN )) denotes the set of
functions ¢ : R — LI(R") such that [g[l¢(t)[17.@my) = llelh, < 00. C°(RY) denotes smooth
functions on R with compact support. (LI(R))™ is the set of n-dimensional vector valued
functions on RV, each component being an element of LI(RY). For v : RN — RV, dv = dv(z)
denotes the matrix-valued function with entries [dv];; = d;v7; then, V -v = tr dv where tr A

is the trace of the matrix A.

Acknowledgements: I would like to thank Professors .M. Sigal and I. Kupka for stimulating

and helpful discussions. Financial support from NSERC of Canada, the Ontario Ministry of

Education, and the University of Toronto is gratefully acknowledged.

2 Virial relations for quasiperiodic solutions

2.1 Quasiperiodic solutions

Definition 2.1 Let Qy; = RY x T'. ¢ : R¥*! = R is an [-quasiperiodic function with
frequency w € R! if ¢(z,t) = y(z,wt) = (fy o Fw> (t) for some function v € C(Qy,) where
[, : R — T! is the continuous dense embedding of R into T' given by t — (wt) mod2m. We

call v the generating function of ¢.

To fix what we mean by a classical quasiperiodic solution of NLW we state the following

definition.

Definition 2.2 An [-quasiperiodic function ¢ : RNt — R is a classical quasiperiodic
solution of NLW on RV*! (equation (1.1)) if ¢ solves NLW and its generating function is of
class C*(Qny) N H2(Qy,).

To motivate our notion of a weak quasiperiodic solution of NLW we first derive an

equation satisfied by the generating function of a classical quasiperiodic solution.
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Lemma 2.3 Suppose ¢ is a classical l-quasiperiodic solution of NLW with frequency w.

Then its generating function vy solves the equation
Diy—Ay+f(7) =0 (2.1)

on Q. Here D2y = Zé,j:l wiij?,jfy. Conversely, if v is a member of C*(Qy,;) N H2(Qy,)
and solves (2.1), then the function p(z,t) = y(z,wt) is a classical l-quasiperiodic solution of

NLW with frequency w.

Proof:
The curve I' = {(z, (wt) mod 27) | (z,t) € RV} is dense in Qy,; and by the chain rule
7 solves (2.1) along I'. By the continuity of +, Afy,Dfﬂ and f we conclude that v solves

(2.1) on Qu,. The converse is just the chain rule. O

Definition 2.4 Equation (2.1) is the nonlinear wave equation (NLW) on Qy; with frequency w.

Definition 2.5 ~ : Qy; — R is a weak solution of NLW on Qy; with frequency w if
S Hl(QN’l) and

/T/Rn{—pwwwﬁ + Vy-VB + f(B) = 0 VBeH'(Qyy). (22

Definition 2.6 A quasiperiodic function ¢ : RN*! — R is a weak I-quasiperiodic solution of
NLW on RV*! with frequency w if its generating function «y is a weak solution of NLW on

Qn; with frequency w.

Using standard arguments from the calculus of variations, if v € C?*(Qny) N H*(Qny)

then (2.1)a(2.2).

We will work with the generating function v from now on in this section, deriving virial
relations for solutions of NLW on 2y ;. The virial relations for solutions ¢ of NLW on RVH1
will be recovered from these through the identification ¢(z,t) = v(z, wt).

Conditions on the nonlinearity

11



For the derivation of virial relations for solutions 7 of NLW on {ly; we require that
f be continuous with f(0) = 0, and that f(y) € L?*(Qu,) and F(y) € L'(Qy,) where
F(z) = [5 f(w)dw. The latter two conditions will depend on two factors, the growth of
f and the integrability of y. If | f(2) | < ¢(| z| + | 2 [#/%) for some ¢ € [2,00), then
fo L2(Qnyg) N LY(Qny) — L2(Qny) and F @ L2(Qny) N LI(Qny) — LY(Qny). This is true

by virtue of the inequalities

F@P < (2P +] 2@ 4] z]2),

[F()| < (]2 +]z @)

and the fact that L2(Qn;) N LI(Qn,) C LY (Qn,) for all ¢’ € [2, ¢]. If f satisfies a Lip-
schitz condition at the origin, then f : L%(Qn;) N L®(Qn;) — L*(Qny) and F : L2(Qn;) N
L>*(Qn,;) = L' (). Indeed, let ¢ and d be such that | f(z)|< c¢|z| for |z|< d. Then,

1F g = [, 1FOP = [ I P+[ 1) P

< sy + 0P meas({| vz d}) =M,

where b = sup{| f(2) | ; |2 |< [[Vllee@ny}- I [[Vllz=@y,) < oo the continuity of f
implies that b is finite and so M is finite. A similar argument applies to F' since in this case
|F(2)|< £ |z]* for |z|< d.

After these considerations we now state our hypothesis on f which will guarantee that

f : L2(QN’1) qu(QN,l) — Lz(QN’l) and F': Lz(QN’l) qu(QN,l) — Ll(QN’l) where q e [2, OO]

Hypothesis (H) f € C(R,R) with f(0) = 0. Either there exists a g € [2,00) such that
| f(2)|< c(|z| + | 2|9?), or f satisfies a Lipschitz condition at the origin, a property which

we designate by setting g = oo.

Recall the Sobolev embeddings [A]: H'(Qy,1) C LI(4,1) for ¢ € [2,00), and H'(Qy,) C
Li(Qy,) for g € [2,2(N +1)/(N + 1 — 2)], where N + 1 > 2. Therefore, because we are

assuming that v € H'(Quy,), a priori the parameter ¢ in (H) can be any number in the

12



interval [2,00) in the case N = [ = 1, or any number in the interval [2, 2(N +1)/(N +1—2)]
in the case N + 1 > 2. We include the parameter ¢ in the hypothesis (H) so as to make
special consideration when the solution v possesses additional integrability than that given

by the Sobolev embedding.

2.2 Virial relations for quasiperiodic solutions

A virial relation involving the solution vy of NLW on Qy; results when in equation (2.2)
we take for # some combination of v and its derivatives. A class of such virial relations
can be characterized by vector fields on RY (the spatial domain): given a vector field v, set

B = v - V7. The resulting virial relation is the content of the following theorem.

Theorem 2.7 Let N and | be positive integers, w € R' any vector of incommensurate fre-

quencies, and v a smooth vector field on RN that satisfies

sup | 0%(z) || z |7 < oo |a|=0,1,2. (2.3)

zeRN
If
(i) N=1=1withy € H'(Q1) satisfying (2.2) and f satisfying (H) for some (any)
q €[2,00), or
(i) if N+1>2 and if y € H'(Qny) N LY(Qny), for some q € [2,00], satisfies (2.2) and
f satisfies (H) with this same q,
then

/"D /RN {tr dv (;(Dw’yﬁ — F(’y)) + Vy - [dv— ;tr dv 1]V’y} = 0, (2.4)

where F(z) = [5 f(w) dw.

13



Remarks: Equation (2.4) is the virial relation for the solution y of NLW on Qy; associated

to the vector field v. The corresponding virial relation for ¢, where ¢(z,t) = v(z,wt), is

T%OT/ / {trdv (Brp)” — (90)) + Vc,o-[dv—;trdvl]V<p} = 0.

The derivation of this formula from equation (2.4) follows from some results of ergodic theory

and will be presented in Section 4.

During the proof of Theorem 2.7 we will require the following Lemma.
Lemma 2.8 Ifhe (H"'(RY))N then [RvV-h =

Proof of Lemma 2.8:

There exists a family {h.} C (C=(RY))Y that converges to h in (H"'(RV))N as e — 0.
In particular this means that lim. o [gv V- he = Jgv V - h. For each h. we have, via the
divergence theorem, that gy V - h, = 0. Therefore [pv V-h =0 O

Proof of Theorem 2.7:

Our motivation in deriving equation (2.4) comes from proceeding formally: take § =
v - V7 in equation (2.2) and apply the standard rules of calculus (without justification)
to arrive at equation (2.4). In the proof below we show that this procedure can be made
rigorous after a suitable regularization of v and v.

To this end we introduce the family of operators R, = R.(—¢iV) on L*(R") defined
through the Fourier transform: R.i) = (1 + e2p?)~4(p). Because R. dampens the high
frequency components of zﬁ, it acts as a smoothing operator. We have that R,y — 9 in
L2(RYN) as ¢ — 0 with ||R.%||2 < ||¥]]2, and that R, commutes with V. Using the Fourier
transform we see that R, acts as a bounded self-adjoint operator from H*(RY) to H*T?(RY).

We begin by regularizing v - V. For €,6 > 0 define

Pes = vs - Vey (2.5)

14



where
v(z)

vs(z) = T+6|ap (2.6)

and

V.=VR. (2.7)

By condition (2.3), vs € L®(R") for § > 0 while for |a|> 0, 8%} € L®(RYN) with ||0°0}| e
bounded uniformly in §.

The end result of the regularization (2.5) is that V-~ gains an additional derivative while
retaining its integrability properties even under multiplication by vs. This is precisely what

is required to make the formal manipulations rigorous.

Since 8.5 € H'(Qy,) for €,8 > 0, we have (cf. equation (2.2))

/T /RN {=DADuBes + VY- VBes + f(MBes} = 0, Ve, 6>0. (2.8)

Formally, we derive equation (2.4) from equation (2.2) (with 8 = v - Vv) by writing the
integrand in equation (2.2) as g + div (h) for some RV*! valued function h on Qu;. Here
div = (V,, V) is the divergence operator on Qy;. The divergence term vanishes after
performing the integration and we are left with fQN,l g = 0; this is equation (2.4). But since
we are dealing with weak solutions we begin with the regularized equation (2.8) instead
of (2.2). To derive equation (2.4) from this, then, we will write the integrand in (2.8)
as § = g + ges + div (h) + div (hes) where g and h are as before. We will show that
lim. 550 fo,, 9c6 = 0 and that [ div (hes) = 0 for alle,6 > 0. Therefore, lim. 50 Jo,, § =
fQN,l g. To prove that lim, 5,9 fQNJ ges = 0 we first show that when this term is integrated
over RY the resulting function of § € T! converges pointwise to zero and can be dominated
by an L!(T!) function. Then we apply the dominated convergence theorem to estimate the

integral over T'.

Consider the term (we suppress the dot product initially)

VyVB.s = VyVus-VR2y
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= Vyus-VIVR2y + Vydvs VRZy. (2.9)

In this formula, and for similar formulae in the sequel, the expression vs- V1, to the immediate
left of the vector V R27y, denotes the n x n diagonal matrix with diagonal entries v -V, while
for adjacent vectors the dot product is implied.

We will show that

lim /T - Vvy-VB,s = /P - V- [dv — %tr dvl]) V7. (2.10)

€,0—0

Commuting R. through the operator V and commuting vs with R., we write the first

term on the right side of equation (2.9) as
VAyvs- RV1VR.,y = VvyRuws-V1VR.y — V~[R.,vs|- V1R V7. (2.11)
Using the self-adjointness of R,,
/R VyRws-VIVRsy = /R (VRey)vs- VIVR.y (2.12)

(where we recognize the integral on the left as the inner product (Vv, R.vs- V1VR.7) in
(L2(RN))N). By the chain rule,

_ 1 2 1 2
J (VR 05 VIVR = /N{ﬁv-(v5|VR57| )—EV-v5|VR€7|}

]‘ 2
= —§/RNV-U5|VR€7| . (2.13)

Here we've used Lemma 2.8 to conclude that gy V - (vs | VR.y [2) = 0.

Furthermore,

Vevs |[VRy P = V.o |Vy]? + [V-v5=V-0] | Vy]?
+2V - v[(R. — 1)VAIVY + V-us[(R. —1)VA]%.  (2.14)

16



Note that for almost all § € T!, Vy = Vy(z,0) € (L*RY))". Since V-vs — V -0
pointwise as § — 0 and ||V - vs — V - v|| can be bounded uniformly in §, Js(z,0) =
[V-vs—V-v] |[Vy|?>= 0in L'(RN) as § — 0 for those @ in which V~y € (L?(RY))". Thus the
function Js(0) = fgw J5(z,0) converges pointwise to zero almost everywhere in T! as § — 0
and is dominated pointwise by J(6) = ¢||Vy||? € L*(T!). Here c is the uniform bound on
|V - vs — V - || Lebesgue’s dominated convergence theorem then implies that fq Js — 0
as 0 — 0. That is, Js — 0 in L' (Qy).

To treat the third term on the right in equation (2.14) we note that ||(R. — 1)V7|l2 = 0
for almost all § while ||V - v5]| is uniformly bounded in §. Using the Schwarz inequality
on (L*(RY))N we see that this term, when integrated over RV, converges to zero in L'(R")
pointwise #-almost everywhere as ¢ — 0 uniformly in §. Since ||V - v5/lec < ||V - 9|00 + ¢,
we can dominate this term by 4(||V - v||e + ¢)||V7||3 € L*(T') and hence conclude that it
converges to zero in L'(Qy,) as € — 0, uniformly in §. A similar argument with the same

conclusion applies to the last term on the right hand side of equation (2.14).

We expand the commutator on the right hand side of equation (2.11);

VA([R.,vs] - VI R.Vy — / VAR.2[A, vs]R. - V1 R.V
/m 7[R, ve] gl o V1R [A, v v

- fR  VyR.e*(Avs - R.V1+2V0sV - R.V1)R.V7.(2.15)

Here we have written [R.,vs] as —R.[(1 — €2A),vs]R.. The expressions Avs and VusV
denote the vectors (Av}, ..., Avd) and (Vv} - V, ..., Vol - V) respectively.
Before estimating the two terms in this equation we first note that for | a |= 1,2 the

—2lal

function | p® |* (1 + €2p?)™2 is bounded by ce 4, ¢ = c(a), so that, using the Fourier

transform, for ¢ € L2(RY)

10°Repll2 < ce™ ]2, (2.16)

and
l' |a|60«R 2 _ 1' 82|a| | pa |2 h 2 0 2 17
51_{%”5 Yl = e Ry (14 e2p?)? | ¥(p) IF = (2.17)
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by dominated convergence. Using equation (2.16) we estimate

| /R V4R.Avs - R.V1R.Vy|
< &(|Vylle |Avs - R-V1 R.V7ll,
< ce?||Vyllz V1 RVl

< cel| V7|3 (2.18)

Since ||V7||2 € L(T!) we see immediately that the first term on the right in the last line of
equation (2.15) converges to zero in L!(T') as ¢ — 0. The constant ¢ here is derived from
||0%vs|| and is independent of § because these norms are uniform in 4.

For the second term on the right of equation (2.15) we have,

2
| /R @VR.V;V - R.V1R.V|
< VAls [|€3V05V - R.V1 RVl

<c[VA2 |E2VP1 RV [lz — 0 (2.19)

for almost all § as € — 0 by (2.17), where c is independent of ¢ (for the same reason as

before) and V21 denotes the matrix diag(3];_, 8%). Since ||[e2V2R.V7|ly < || V]| for all

i,j=1
e > 0 (cf. equation (2.16)) we can dominate the left hand side of (2.19) by ¢c||V~v||2 € L(T')
to conclude that it converges to zero in L'(T') as € — 0 uniformly in §.

Combining this with the preceding result (cf. equation (2.14)), we have shown that

1
tim [ [ VIVE:y = [ [ - 2, 2.2
im RNV’yU(; V1VRIy o Jre 2trdv | Vv | (2.20)

£,0—0

The term Vv dvs VR%y in equation (2.9) we write as

VydvsVR?>y = VydvVy + Vy(dvs—dv)Vy
+ V(R2—1)ydvs V7. (2.21)
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We have : dvs — dv pointwise with ||dvs — dv||w and ||dvs||e (matrix norm) bounded
uniformly in §, while V(R2—1)y — 0in (L?(R"))" for almost all . Therefore, by arguments
similar to those made above, the last two terms on the right hand side of equation (2.21)

converge to zero in L'(Qy;) as ¢ — 0 uniformly in §. We conclude then that

I / / dvs VRZy = / / d 2.22
im ) - Vydvs VR.y 1 Jre Vydv Vy (2.22)

£,0—0

and equation (2.10) is shown.

Considering now the first term in equation (2.8), commuting D,, with R, and V we obtain

D,YD,Bes = D,D,vs-VR2y = Dyyvs- VRZD,y
= Dy,YRvs-VR.D,y — D,y[Re,vs5]- VRD,n. (2.23)

Integrating the first term on the right hand side over R" yields

[y PoARs - VRDy = [ ReDoyvs: VRDury

_ 1 2 1 2
= fo A5V (o5 | Dy ) = 5V 05 | RDY |}
1
- —Z/RNV-U5|R5DH|2. (2.24)

Treating this and the second term on the right hand side of equation (2.23) as above (cf.
equations (2.13) and (2.15) respectively) we conclude that

1
1i / DD Bes = f/ / D)2 2.9
m [ DD = 5[ [ v (D) (2.2

€,60—0

Finally, we consider the nonlinear term f(v)03;s in equation (2.8) which we write as

f(NBes = f(y)vs- RZVy
= f(¥)vs - Vy + [f(0)vs - B2V — f(7)vs - V7. (2.26)
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Since V7 exists (in the classical sense) almost everywhere with Vyf(y) € L'(RY) and
F € C'(R,R), we can write VF(y) = Vv f(v). That is, F(y) € H"'(rR"). Thus,

Jo POV = [ s VE()
= / {V (vsF (7)) V"U&F(’Y)}

== -V. ’U5F()

= / -V -vF(y) + /RN(V"UJ—V"U)F(’)/). (2.27)

In going from the second to the third equality we have used the fact that vs F(y) € (H(RY))Y
(Lemma 2.8). The last integrand on the right tends to zero in L!'(RY) as § — 0 and by dom-
inated convergence tends to zero in L'(Qy,).

For the remaining terms on the right hand side of equation (2.26) we have

S [F0s - B2V = f)es- V7] = [ fOvs - (BEVy = V7). (2:28)

Because R2Vy — Vv in L2(RY) with [|[R2Vy — Vqlla < 2||Vyll2 and f(y) € L*RY),

the Schwarz inequality and the boundedness of vs for § > 0 imply that this last integral
converges to zero as € — 0 for almost all 8 and for each 6 > 0, and hence by dominated
convergence converges to zero in L'(T') as € — 0 for each § > 0.

We conclude that

//N )fes = _// trdvF(y) + Eu(e0) (2.29)

where Fj(g,d) can be made arbitrarily small first by choosing ¢ sufficiently small and then

¢ sufficiently small.

Combining all of the above results, we have shown that

[ Jo { = DoADubs + V7 - Vg + £(1)Bes)
Al /RN {tr dv (%(Duﬁ)? - F(’Y)) + V- [dv — %tr dvl]Vy)}
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+ E(z,96), (2.30)

where E(e,60) can be made arbitrarily small by choosing § and ¢ sufficiently small. This,

together with equation (2.8), completes the proof of Theorem 2.7 O

3 Nonexistence of quasiperiodic solutions

The dilation group on R” is the one-parameter group of diffeomorphisms ®,(z) = Az, z €
RY, X > 1. Tts infinitesimal generator, the vector field v(z) = z, satisfies the hypothesis
of Theorem 2.7. Here dv = 1 and trdv = N. The following corollary then follows from
equation (2.4).

Corollary 3.1 Let v(z) = = be the generator of dilations on RN. If v and f satisfy the
hypothesis of Theorem 2.7, then

/TI/N{%(D”)Q (22N )|V [ - (7)} = 0. (3.1)

Remark: In the case when 7 is independent of 6, so that 7 solves the nonlinear elliptic
equation Ay = f(v), equation (3.1) is the well known Pohozaev identity [Po].
The next proposition describes a class of virial relations that are not derived from a

vector field on RY.

Proposition 3.2 (Gauge transformations) Let v € H*(Qn;) satisfy (2.2). If h is a smooth

function on RN that is bounded along with its derivatives, then

//N{ DA+ | V7 + 1)) = %(Ah)“ﬁ} = 0. (3.2)

Proof:
Since hy € H'(Qy,), from equation (2.2)

Jo o { = PAPult) + V7 V() + FG)RY} = (33)
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Expanding the second term in the integrand,

Vv -V(hy) = (Vy:-Vh)y+h|Vy[?
1 1
= V- (PVR) + [ VY [ =5 (AR

The first term on the right vanishes when integrated over R" and equation (3.2) follows O

By combining the previous two virial relations, take h = ¢ in equation (3.2) and add this
to equation (3.1), we obtain the following identity that allows us to prove several nonexistence
theorems for quasiperiodic solutions. A special case of this identity was obtained in [V1] for

periodic solutions on R!.

Proposition 3.3 Let v and f satisfy the hypothesis of Theorem 2.7. Then for any c € R,

LG ooz v e M v} = [ re) ey, 39

Proposition 3.4 Let vy be a weak solution of NLW on Qn; (cf. Definition 2.5) with v and
f satisfying the hypothesis of Theorem 2.7. If for some c € [B32, 1], F(z) —cz2f(2) < 0
for all z such that | z |< ||||L~(y,), then 7 is independent of 0.

Proof:
By hypothesis (on ¢) the left hand side of equation (3.4) is nonnegative while the right

hand side is nonpositive. Hence, both sides must be zero. For ¢ € (%2, 1] this implies that

v 3]
J1 IV7|/32 = 0 so that for almost all , V+ = 0 almost everywhere on RY. That is, v(z, §) is
constant almost everywhere on R for almost all §. Because 7 is continuous, + is therefore
constant on Qp;. Since v € L*(Qy,), 7(0) € L*(RY) for almost all § so that this constant
must be zero.

In the case ¢ = % equation (3.4) implies that D,y = 0 almost everywhere on Q.
This implies that for almost all z € RV, + is invariant under the flow # +— 6 + wt. Since
this flow is ergodic (w is incommensurate), 7 is constant on T for these z ([Pe], Prop 2.4.1).

Therefore, v is independent of § almost everywhere on RY O

22



Remark: Let Z2 = {z € R ; F(z) —czf(z) = 0}. Then, under the hypothesis that
F(z) — czf(2) < 0 for all 2 such that |z| < ||V[|ze(any:  Joy, {F(7) —cvf(7)} = 0 implies
that y(z,0) € Z for almost all (z,0) € Qy;. If Z is composed of isolated points then by
continuity v must be constant on Qy;. If Z contains an interval then this argument does

not imply that + is constant.

If ¢ is a weak quasiperiodic solution of NLW (Definition 2.6), then applying Proposition
3.4 to its generating function we obtain the following theorem concerning the nonexistence

of quasiperiodic solutions.

Theorem 3.5 (Nonexistence of quasiperiodic solutions of NLW) Suppose ¢ is a weak -
quasiperiodic solution of NLW on RNt with frequency w (cf. Definition 2.6). Let vy be the

generating function of ¢ and assume that v and f satisfy the hypothesis of Theorem 2.7. If

for some c € 232, 1],
F(z) —czf(2) <0 for all z such that |z|< [|@|| e ®et1) (3.5)

where F(z) = [ f(w) dw, then ¢ is independent of time.

Remarks:

We point out that condition (3.5) is compatible with our hypothesis (H) on the non-
linearity. For instance, if we are considering bounded solutions then any polynomial is an
admissible nonlinearity, i.e., bounded solutions and polynomial nonlinearities satisfy the hy-
pothesis of Theorem 2.7. In Example 1 below we exhibit a polynomial satisfying (3.5) for
all z.

A sufficient (but not necessary) condition such that the nonlinearity satisfies the inequal-
ity F(z) — czf(z) < 0 is as follows. Suppose F(z) = H(z*) for some convex function H.
Then

F'(2) = f(2) = az* 'H'(2).

Since H is convex, H'(w) < H'(y) when w < y. Integrating this inequality with respect
to w from 0 to y gives H(y) < yH'(y). Setting y = 2% F(z) — 2°H'(2*) < 0, and
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hence F(z) —a 'zf(z) < 0. In particular, for a pure power law nonlinearity f(z) = az®,
F(z) — ;+72f(2) = 0. The condition 25 € [ZF2, ] implies then that NLW with this
nonlinearity has no quasiperiodic solutions for any @ > 1 in the case N = 1,2 or for
1§a§%inthecaseN>2.

The proof of Theorem 3.5 makes no use of the frequency w of the solution: If the nonlin-
earity satisfies condition (3.5) then NLW will not support any kind of quasiperiodic solution,
where by ”any kind” we mean quasiperiodic functions with any frequency. From the point

of view of virial relations the nonlinearity does not distinguish between different frequencies

or dimensions in the time variable of quasiperiodic solutions.

Examples and Applications

1) Let f(2) = a1z + az2® + -+ + agm; 122! be a polynomial containing only odd powers

of z. Then

F(z) —czf(2) = (JLl(l —c)2? + a3(1 — )2t + -+ agm (

2m—+2
5 1 c)z :

2m+2
Here | f(2) | < (| z| + | z |*™"2) so that, referring to the hypothesis of Theorem 2.7,
the generating functions that are covered in our analysis for this particular nonlinearity are
those that are of class L*™+1)(Qy,;) if N+1 > 2. If N = [ = 1 then any generating function
is admissible. If ageyq > 0, k = 0,...,m, then by choosing ¢ = 1/2 we conclude, using
Theorem 3.5, that NLW with this nonlinearity has no weak [-quasiperiodic solution, for any
I, whose generating function is of class H'(Qy;) N L4™+1)(Qy;) in spatial dimension N > 1,
or whose generating function is of class H!(Q;;) if N = [ = 1. In particular, generating
functions that are bounded satisfy these criteria.
Remarks:

Other possibilities for the choice of ¢ to derive necessary conditions for existence may arise
if the coefficients are not all positive. For example, if a; < 0 and agxy1 > 0,k =1,...,m,
then we reach the same conclusion with any ¢ € [1/4, 1/2], which is a valid interval for c if

N < 4 (that is, we can apply Theorem 3.5).
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Global (in time) existence for some equations of this form is proven in [GV] (see also
[Str2]). The class of solutions considered there is somewhat different than that considered
here but our results suggest that these equations possess no quasiperiodic solutions even
though the Cauchy problem leads to global solutions. In Section 5 we will extend Theorem
3.5 to almost periodic solutions (Theorem 5.1) so that in fact these equations may not have
almost periodic solutions either. Consequently, these nonlinear wave equations may have no

bound states (cf. the discussion in the introduction).

2)  Small Amplitude Solutions

If a solution has small amplitude, i.e., if it has small L®(RV¥*!) norm, then only the
properties of f in a neighborhood of the origin contribute to the dynamics. In particular,

referring to equation (3.5), if F'(2) — czf(z) < 0 in a neighborhood of zero for some ¢ €

N—2 1
2N 72

|, then NLW has no small amplitude quasiperiodic solutions. A particular case where
small amplitude solutions arise is when NLW has a family of localized, periodic solutions
that originate from the zero solution (see, for example, [BMW],[SK]). An example of such a
family is provided by the sine-Gordon breather (equation (1.3)).

We now present two nonexistence results for small amplitude quasiperiodic solutions

based on Theorem 3.5 by using a more detailed description of the nonlinearity. Here we

assume that f can be expanded in a Taylor series about the origin as

F(0)

@t TRE) (3-6)

) = £+

where fZ*+1(0) # 0, k > 1 and R(z) = O(]z|**2). To state the next two corollaries we will

require the following definition.

Condition A  With reference to (3.6), the three numbers (f**1(0),k, N) satisfy the
following conditions (N is the spatial dimension). If f2**1)(0) < 0, then N < 3; in the case
N =1 or 2, k can be any positive integer, in the case N = 3, k = 1. If f2**1)(0) > 0 then

k and N can be any positive integers.

Corollary 3.6 Let f have a Taylor series at the origin of the form (8.6). If either (i)
f'(0) <0, or (i) f'(0) > 0 and f@*+V(0) > 0, or (i) £'(0) = 0 with (fZ+1(0), k, N)
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satisfying Condition A, then NLW has no weak l-quasiperiodic solutions ¢ of sufficiently
small amplitude for any | € N and for any frequency w € R.. This result holds in any spatial
dimension in the cases (i) and (i) and in those spatial dimensions determined by Condition

A in the case (iii).

Proof:

We work with the generating function v of ¢. Since ¢, and hence 7, is of small amplitude
it is, in particular, bounded. Therefore, as we will apply Proposition 3.3 it is enough that f
satisfy a Lipschitz condition at the origin (cf. statement (ii) in Theorem 2.7 with ¢ = 00),

which it clearly does. We have that

F() - exf(5) = PO~ 92+ O (L )ik )
z)—czf(z) = 5~ O 2k \2k 12 clz z :
where R(z) = [§ R(w)dw — czR(z). We have expanded the integrand on the right hand

side of (3.4). Basing our analysis on (3.7), our goal is to adjust the parameter ¢, within the

interval [%, %], according to the properties of the Talor series of f so that the right hand
side of (3.4) is strictly negative for sufficiently small solutions 7y, v # 0. Then, because the
left hand side of (3.4) will be nonnegative, this contradiction will imply that v must in fact
be zero.

We first consider the case f'(0) < 0. Thus, the lowest order term on the right hand side

of (3.7) is negative. In this case we set ¢ = ﬁ (any ¢ € [2=2,1) will do, though).
If f/(0) > 0 then we set ¢ = 3. Then since 5\ — 3 < 0, if f@*1)(0) > 0, regardless of

k, the lowest order term on the right hand side of (3.7) will be negative.

If f'(0) = 0, then if f@**1(0) < 0 we set ¢ = 32 which is less than ' for those k and
N specified in Condition A. If fZ**1(0) > 0 we set ¢ = 1. In either case the second term
on the right hand side of (3.7) is negative for z # 0.

With ¢ specified in this way the lowest order term on the right hand side of (3.7) is strictly
negative for z # 0. Now we show that the remainder term R(z) does not upset this for z

sufficiently small. Applying the mean value theorem to the remainder term in the Taylor

series of F', we see that

e _ 1)
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for some u = u(z), |u| < |z|. Therefore, in the case when ¢ = there is a d; > 0 such

that for |z| < dy, z # 0,

1
2k+2

~ 1 1
! - - 2
BE) | < |FOG - 5|2
In the case when ¢ = 1 or ¢ = =2, there exists a d2 > 0 (which depends on c¢) such that for

|Z|S d2, < 7£ O,
2k+2

5 f(2k:+1)(0) 1
IR < g <2k+2_c> ‘

Therefore, for |z| < d = min{d;,ds}, z # 0, and with c specified as above, the right hand

side of equation (3.7) is strictly negative. This implies that if  is a nonzero solution of
NLW on Qu, such that |||z~ (y,) < d, then for this c the right hand side of (3.4) is strictly
negative. However the left hand side of (3.4) is nonnegative. Therefore, there cannot be

such a solution O

Remark: If one is considering nonlinear Klein-Gordon equations (i.e., f'(0) > 0) with odd
nonlinearity, which is typical in physical applications, then by statement (ii) of the corollary
a necessary condition for the existence of small amplitude quasiperiodic solutions in any
spatial dimension is that the next highest term in the Taylor series after the linear term have

a negative coefficient.

We now demonstrate how a priori information about the solution can be used in con-
junction with virial relations to derive a nonexistence result for periodic solutions on RY.
We will obtain a result similar to Coron’s [Co], that is, that w? is bounded above by f’(0),
in multi-spatial dimensions, but only for small amplitude periodic solutions with zero mean.

We assume here that f'(0) > 0; the case f'(0) < 0 could be covered in a way analogous
to how it was treated in the previous corollary. Referring to (3.7), the virial relation of
Proposition 3.3 (equation (3.4)) can be written as

1 9 9 2—-N 9
(5 = (I 2200y = FOINEean) + e+ 55 IV Ern

/ /RN {f(;ljj) (le_}_ 9~ C) 7R+ R(V)}- (3.8)
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From this we see that if we had some a priori estimate on how ||Dw'y||%2(QN71) compares to
[VM172(0y,) SO as to make definite the sign of (|DY||22(y,) = f'(0)[[VIl72(ay,)); then we
would not be forced to set ¢ = 1/2 to obtain a necessary condition for existence (as in the
previous corollary). An instance of when this is possible is provided by Wirtinger’s inequality
for periodic functions along with an additional hypothesis on the frequency of v. We first
ikt

recall this inequality. ~ has a Fourier expansion v = Y, vx(z)e** (we are writing ¢ instead

of ). Then, since v € H'(Qn1), Oy has the Fourier expansion 8,y = ¥ ikvyg(z)et*t.
Therefore, [|0:7]72(0y,) = Tk K217l Z2@y)- If in addition 5o = 0 (i.e., if ¢ has zero mean)
we derive the inequality [97|Banyy = |12y Which implies that D2y ) =
W?|0Y] 20y ) = WPV II72(0y,) (vecall that D, = wd; in this case).

Substituting this inequality into (3.8), if w? > f’(0) then (||’Du,'y||%2(QN’1)—f'(0)||7||%2(QN71)) >
0 with equality holding if and only if v = 0. Thus, if w? > f/(0) the left hand side of (3.8)
is nonnegative for ¢ € [2=2,1]. Actually, the left hand side of (3.8) is strictly positive for
c €[22, and v # 0; that this is true when ¢ € [£2,1) was just pointed out, while if

= 1, then ||V} Z2(ay, = 0 implies that 7 = 0, as explained in the proof of Proposition
3.4.

Now we determine conditions under which the right hand side of (3.8) is nonpositive. If
these conditions are met, then the assumptions w? > f’(0) and ¢ having zero mean, together
which we have just seen leads to the conclusion that the left hand side of (3.8) is strictly
positive if ¢ # 0, will imply that ¢ must be zero.

First note that because R(y) = O(|y|?*3), if v is of sufficiently small amplitude the right
hand side of (3.8) will be dominated by the first term in the integrand (as described in the
previous corollary). We choose ¢ so as to make f(Q’““)(O)(ﬁ — c) < 0. If fC1(0) > 0
then set ¢ = . If f(**1)(0) < 0 then set ¢ = £=2. In either case the left hand side of (3.8)
is strictly positive if v # 0, while if (f®**1(0),k, N) satisfies Condition A, the right hand

side of (3.8) is nonpositive for sufficiently small y. Therefore, there cannot be such solutions

~. This completes the proof of the following corollary.

Corollary 3.7 Let f have a Taylor series at zero of the form (3.6). Assume that f'(0) > 0
and that (f®**19(0),k, N) satisfies Condition A. Let ¢ be a small amplitude weak 27 /w -

periodic solution of NLW on RN*L. In addition suppose that ¢ has zero mean, i.e.,
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o%/w o(z,t)dt = 0 for allz € RN. Then w? < f/(0).

Remarks:

The proof of this corollary was carried out by contradiction and was outlined above. We
required ¢ to have zero mean so as to be able to use Wirtinger’s inequality, which provided
us with an a priori estimate.

By a small amplitude solution we mean that ¢ has sufficiently small L>®(R¥*!) norm,
sufficiency being determined by the values of f'(0), f?**1(0) and the parameter ¢ whose
value was assigned during the proof above. To illustrate this precisely let {¢, } be a sequence
of positive numbers converging to zero and suppose that for each n, € N there is an n > n,
such that there exists a (nontrivial) 27 /w-periodic solution ¢; of NLW with zero mean and
with [|¢a||re@y+1) < e7. I f/(0) > 0 and if (f*+1(0),k, N) satisfies Condition A, then
w? < f(0).

One may try to prove a similar result for small amplitude quasiperiodic breathers. How-
ever, a Wirtinger-type inequality for quasiperiodic functions is generally not possible for the
following reason. Let v € H'(Q2y,), I > 1, be the generating function of ¢ with Fourier series
Skez ()€™ (50 that p(2,) = See w(2)e™). Then, Ih[3zay,y = Sucz [l and
D22 (ns) = Zkez [ k- w[? [[7]l3. Suppose that 4o = 0. Because w is incommensurate,
k - w becomes arbitrarily small infinitely often as k ranges over Z'. Thus it is impossible to

bound |k - w|? from below by a strictly positive number ¢ and obtain an inequality of the

form || DuylZ2(0y ) = VT2 -

3) Local vector fields

The preceding examples assumed that the solutions were of small amplitude. Since
solutions are a priori in H'(Qy,), they decay in an average sense as | z|— oo. Making the
additional assumption that this decay is pointwise and uniform in ¢, we could obtain some
of the previous results without any assumptions of small amplitude provided that the virial
relation was localized in a neighborhood of infinity. We illustrate this idea with an example

concerning quasiperiodic solutions on R!'*1,

Corollary 3.8 Suppose ¢ is a weak I-quasiperiodic solution of NLW on R'*! with frequency
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w that converges to zero as |xz| — oo uniformly in t. If F(z) < 0 in a neighborhood of zero,

then ¢ = 0.

Proof:

Let p > 1 and define g : R — R by

g(z) = 622+ (4—12p)z + (6p> —4p+ 1) p<
= (z—p+1)* p—1< z <p
=0 —p+1< z <p-—-1
= (z+p—1)* —-p< z <—-p+l1
= 622 — (4—12p)z + (6p> —4p+ 1) r <—p

On R define the vector field v(z) = ¢'(z). Then v satisfies the hypothesis of Theorem
2.7 except that Av has a finite discontinuity at |z |= p. This does not affect the validity
of the theorem, however (see equations (2.15) and (2.23): this is the only place in the proof
where derivatives of v of order greater than one are encountered). Here we have v = 0 on

{|z|< p— 1} with dv = ¢" > 0. For this vector field equation (2.4) reads

/11 /|m|>p1 dv {%(D”)Q + % [V —F(v)} = 0. (3.9)

If F(z) < 0 in a neighborhood of zero then, by taking p sufficiently large, equation (3.9)
implies that v = 0 on the support of v. The conclusion of the corollary then follows from the
next Proposition, the proof of which we leave as an open problem (see, however, Theorem
5.5 of [PS] which states that periodic solutions of NLW with compact spatial support are

identically zero - we expect the same to be true for quasiperiodic solutions).

Proposition 3.9 Suppose v satisfies (2.2) and vanishes in a neighborhood of infinity on RN
uniformly in 8. Then v = 0.
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4 Virial relations for almost periodic solutions

4.1 Almost periodic solutions

To motivate our approach to almost periodic solutions we return for a moment to the quasi-
periodic case. Recall that our definition of a weak solution v of NLW on Qx; with frequency

w was that v € H'(Qy;) and for all 8 € H'(Qy,),

/11 /RN { - DADB+ VY- VB+ f(1)B} =0. (4.1)

We set
ho) = [ {=DirDuB+Vy-VB+F()B) € LN(T).

Because w is incommensurate the flow § — 6 + wt on T! is ergodic. It follows, therefore, by
a result from ergodic theory (see for example [Pe] Thm. 2.2.3) that

(2m)™ /T h@)dd = lim % /0 " h(wt) dt. (4.2)

T—o0
Defining ¢(t) = v(wt) and ¥(t) = B(wt) we have that D,y(wt)D,LB(wt) = Owp(t)0b(t).
Combining equations (4.1) and (4.2) we obtain

lim — | ' o { =000 + Vo Vo + (o)} =0 (4.3)

T—o0 T

Similarly, we can also cast the virial relation of Theorem 2.7, equation (2.4), in terms of ¢ ;

lim %/OT /RN {tr dv (%(8,5@)2 —F(p)) + Ve-|dv— %tr dvl] V(p} = 0. (4.4)

T—o00

The property that limy_,c Ji h(t) exists is shared by functions from a larger class than
the quasiperiodic functions - the almost periodic functions (for an introduction to almost
periodic functions see [C] or [LZ]). We will see that formula (4.4) holds for solutions from
this larger class. For any Banach space B we denote by AP(R,B) the Banach space of B
valued almost periodic functions on R. AP (R, B) is a closed subspace of the space of bounded

continuous functions from R to B with the uniform norm ||h|| = sup,cg ||A(t)||3. The class of
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almost periodic solutions we consider is described in the following definition.

Definition 4.1 For any Banach space B let AP (R, B) denote the space of B valued almost
periodic functions on R. Let AP = {¢ € AP(R, H'(RY)) such that O, ezists in the strong
sense as a uniformly continuous map R — L*(RN)}, and for q € [2,00] let AP, = {¢ €
AP(R, HL(RN) N LI(RY)) such that 8,p exists in the strong sense as a uniformly continuous

map R — L?(RN)}.

That 0, is uniformly continuous as indicated implies that 8,0 € AP(R, L2(RY)) ([LZ]
pp3). Equation (4.3) motivates our definition of weak almost periodic solution to NLW, but

first we state what we mean by a classical almost periodic solution.

Definition 4.2 ¢ : R¥*! — R is a classical almost periodic solution of NLW if ¢ solves

NLW and such that 82¢ € L} (R, L*(RN)), ¢ € C2(RNT) N AP, for some q € [2,00].

Definition 4.3 ¢ : RV*! — R is a weak almost periodic solution of NLW if ¢ € AP and

Tligo%/oT/RN{—atgoat¢+vgo-v¢+f(go)¢} — 0 Ve AP (4.5)

Our definitions of weak and strong almost periodic solutions are compatible, that is, a

strong almost periodic solution is a weak almost periodic solution.

Proposition 4.4 If ¢ is a classical almost periodic solution of NLW then ¢ is a weak almost

periodic solution of NLW.

Proof:

Since ¢ is a solution of NLW, for any ¢ € AP and any T > 0,

%/OT/N(83¢—A¢+f(90))¢ — 0.

Interchanging the order of integration for the first term ( we can use Fubini’s Theorem since

1070)Yll 1wy € Lige(R) ),

7 e ;@00 = 7 o [} 100000)  upi.
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Since (fpn(0:0)9)|E is bounded independently of T' ( 8,4 and ¢ are both in L*°(R, L*(RY))
so that (9,p)y € L®(R, LY(RY))), limre % Jrw Jo 0:(Osptb) = 0. Integrating the next
term by parts,

w00 = [ VeV,

we conclude that

[ [ {00 + Vo Vi + ()} =0 0

T—)ooT

Remark:

In the references [C] and [LZ], AP (R, B) is defined as the uniform closure of the set of
trigonometric polynomials of the form p(t) = ¥7_, a;e'** where n € N, a; € B and \; € R.
There is another way of viewing almost periodic functions which is in keeping with the
point of view we have adopted in treating quasiperiodic functions. For any almost periodic
function ¢ € AP(R, B) there is a curve I' : R — T, dense in T* (T* is the compact abelian
group I122,5%), and a continuous function vy : T — B (the generating function of ¢) such
that (¢ ) = (yoT)(t). Then, limr_ e = JT @ dt = fpey du where dyu is the (normalized)
Haar measure on T* (see [HR] or [DS]). When almost periodic functions are looked at this
way, from the point of view of generating functions, their special nature becomes apparent.
We are referring to their ” compactness” in the time variable: Although an almost periodic
function is defined on the entire real line, the generating function is defined on the compact
space T, in which the real line is embedded: T'(R) C T*. This is the Bohr compactification
of the real line [HR]. Thus, almost periodic functions are ”effectively” defined on the compact
space T® (through their generating function). It is this fact which makes almost periodic
functions a generalization of periodic functions and is responsible for them sharing many
properties, an example of which is their uniform boundedness as described below in Lemma

4.7. This is a key property that we use to derive virial relations for almost periodic solutions

(Theorem 4.10 ).

Definition 4.5 A set K C LP(R") is uniformly bounded if for any € > 0 there exists a ball
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B, C RY such that
P < e VepekK. (4.6)
BC

Definition 4.6 For a function ¢ : R — LP(RYN), the set {o(t); t € R} C LP(RYN) is the orbit

of .
Lemma 4.7 If ¢ € AP(R; LP(RY)), then the orbit of ¢ is uniformly bounded.

Proof:

A basic property of almost periodic functions is that their orbits are relatively com-
pact ([LZ] pp.2). Relatively compact subsets of LP(R") are uniformly bounded ([DS] Thm.
IV.8.21) O

Remark: That is, if ¢ € AP(R, LP(RY)), then for any ¢ > 0 there exists a ball B, C R" such
that

P <
| el < <

£

for all ¢.

In this section we are treating the almost periodic function ¢ as the primary object rather
than its generating function 7. Consequently, we have lost the ability to apply Lebesgue’s
dominated convergence theorem which was the main tool in the proof of Theorem 2.7. This
is because ¢ is defined only on the set I'(R) which has measure zero in T* so that pointwise
convergence of ¢ on I'(R) (that is, pointwise convergence in ¢) does not imply the convergence
of the integral of its generating function over T*°. For the proof of Theorem 4.10, below, in

place of dominated convergence we use the fact that the orbit of ¢ is uniformly bounded.
Definition 4.8 Fory € AP (R, B) the mean value of ¢ is denoted by M(p) = limr_oo & [ ¢(2).
Remark: Because almost periodic functions are bounded, M(y) is finite.

Lemma 4.9 Let ¢ € AP,. Then
(i) ¢, Vo € AP(R, L*(RY)),
(ii) ¢, Vo € AP(R,L2(RY)), where ~ denotes the Fourier transform,
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(iii) R.o € AP(R, H'(RY)), where R, is as in Theorem 2.7,

(i) [10wells", [Vl € AP(R,R) for m € 2 >0,

(v) if h is a differentiable function on RN that is bounded along with its derivatives then

he € AP(R, H'(RYN)),

(vi) if f satisfies (H) then f(p) € AP(R,L2(RYN)) and F(p) € AP(R, L'(RY)).

Proof:

If L: By — B, is a continuous map between Banach spaces and ¢ € AP(R,B;), then
L(y) € AP(R,B,) ([LZ] pp- 3). Parts (i) — (v) are a straightforward consequence of this.
Similarly for part (vi) after realizing that if f satisfies (H) then the maps f : L?*(RM) N
LIRN) — L2(RN) and F : L2RN)NLIRY) — L'(R"N) are continuous (this follows from the

proof of Theorem 1.2.1 in [K]).

4.2 Virial relations for almost periodic solutions

Theorem 4.10 Let ¢ € AP,, for some q € [2,00]|, satisfy (4.5), f satisfy (H) with this

same q, and v be a smooth vector field on RY satisfying the hypothesis of Theorem 2.7. Then

%E&%/OT /RN {tr dv (%(atgo)Q - F(go)) + Vo ldv - %tr dvl] Vgo} = 0. (4.7)

Proof:

Our approach begins as in Theorem 2.7. Set
Yes = V5 - VRZ, (4.8)

where v5; and R, are as in Theorem 2.7. Then .5 € AP Ve, § > 0 and so (cf. equation

(4.5))

1T
lim —/ / { — OupOpthe s + Vo - Vihe 5 + f(‘/’)lbs,&} = 0 Ve d>0. (4.9)
0 N

T— o0 T

We write

3t808t'¢s,5 = 0,045 - VR?SD = Oupvs - VR?&&‘P
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= OwpRvs VRO p — 0yp[Re,vs]- VROyp. (4.10)
For the first term on the right,

/RN 8,0R.vs - VR.Opp — / R.8,0v5 - VRO, (self-adjointness of R,)
— 2/ (vs(R.0y0)?) — %/RNV'UJ(RaatQO)Q
= —E/RNV-U (Oyp)? —% RN(V'Ué—V'U)(3t<P)2
— /RN V - vs[(Re — 1)0yp]0p

—; oV wl(Re = Dol (4.11)

Let B(p) C RN denote the ball of radius p. By Lemma 4.7, for any n > 0 there exists a p > 0
such that [pe,)(0ip)* < n/[IV -vs =V - || for all t. Because V -v; — V - v uniformly on
compact sets there is a d,(n) > 0 such that |V -vs —V -v| < non B(p) for § < d,. Then,

for any such § and any T,

1 /T 9 1 /T 9
‘f,/o /RN(va—Vv)(atgo)‘ S ?/0 /B(p)|Vv5—Vv|(8tg0)
1 /T
— V-vs—V- 0,0)?
S A SR AICT
< l/T/ @)?  + (4.12)
< "7T o Jry tP UL .
Taking the limit 7" — oo,
Jm [0 [ (V v V0)@e| < M ol) + (4.13)
Since n was arbitrary we conclude that
lim Th_I)I;OT/ / (V05— V -0)(0ip)? = (4.14)
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Bounding ||V - vs]|ec < ¢ uniformly in 4,

.1 T 1 T
tim = [ [ Vul(R - Daglag] < Jim = [ el(R - Dol (@415)

T—o0

Using the Fourier transform,

2,22
. 2 _ (e°p%)
I(Re — 1)0s||5 = ./RN (1 + e2p?)?

@p)? = [ h@)@GE)®.  (416)

Since h. — 0 as € — 0 uniformly on compact sets with h.(p) < 1, and since {9,p; t € R} is
uniformly bounded in L?(RY), applying the same argument as above we conclude that, for

any 2 > 0 and ¢ sufficiently small,

6ol + n?
7 (|10well2 +1)* V. (4.17)

I(R: = 1)dupll3

IN

IN

Therefore,
.1 T 1 4T
Jim = (R = Daelbllagl: < Jim [ nlowl + Dol
= g (MUlgl3) + MIDigl),  (418)
and so
. 1T
iy tim — [ [ Vwl(R = Dowlde = 0 (4.19)

uniformly in §. The last term in equation (4.11) is treated in a similar way while the second
term on the right hand side of equation (4.10) can be treated as below (see equation (4.25));

the result being that both of these terms converge to zero. Thus,

_ 1T 1T 1 )
E%(ISI_I)IO Th_r)I;oT/o ./RN OrpOithes = Tll—?olof/o ./RN —§tr dv (Oyp)“. (4.20)
Considering the next term in equation (4.9),

Vo Vi s = VoVus- VR2p
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= Vyuvs - VIVR2p + Vo dvus VR p. (4.21)

We write the first term on the right hand side as

Vouvs - VIVR?p = VoR.vs - VIVR.o — Vo[R.,v5] - V1 R. V. (4.22)
Furthermore,
1 2 1 2
V@Rs’ué V1 VREQD = _§v Vs | VRE@ | +§V : (’U5|VR6§0| )

1 1
= —§V-U|Vgo | —E[V"UJ—V"U]|VQO |
1
— V-us[(R: — 1)Vy|Vp — EV v5[(R. — 1)Vy]?

1
+ 5V (v VRepl). (4.23)

Ignoring the divergence term, the terms on the right can be treated in the same way as was

done for equation (4.11) whence we conclude that

limy Tlg%/j@ V@Rsvg-VlVstlei_r&%/oT/RN—%trdv Ve 2. (4.24)
Considering now the second term on the right hand side of equation (4.22), we write
/R V¢[R.,vs] - VIRV = /R VeR.*(Avs - RVL+2V0;V - RVLR. Ve (4.25)

(cf. equation (2.15)). We have

‘./RN 62V90R6A05-R5V1R5Vg0‘ < cg||Vyll3 (4.26)

(cf. equation (2.18)) so that this term will converge to zero in the time mean as ¢ — 0,
uniformly in §.

The other term in equation (4.25) we treat in a similar way as in equation (2.19);
\/RN EVeR.Vu;V - RVIR.Vy| < ¢|Volal|e*V?1 RV,
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< ollVolleozlle® VAL RV o2 (4.27)

where c is independent of §. Note that ||Vl||w,2 is a constant. Passing to the Fourier

transform, for |a| = 2 and ¢ € AP(R, L2(RY)),

0 ml = [ P i (4.28)
||8 € 2 RN (1+52p2)2 p7 . .

The function e* |p®|? (1+&2p?)~2 converges to zero uniformly on compact sets and is bounded
by a constant ¢ that depends only on a while 1)(¢) is uniformly bounded (in L2(RN)) so that,

by the same arguments as made before (cf. equation (4.17)), for any n > 0 and sufficiently

small ¢,
l20°Reypll; < n(l[¢lla+¢)* Vi (4.29)
Thus,
1T 272 2, )
qlglgof/o c[Volloo2lle® VIR Volls < ne|[Velloo2M([[Vellz +¢) (4.30)
and so
lim  lim T/ 2VyR. VsV - R.V1IR.Vy = 0 (4.31)
g Jim 2 [ SVeRuy - RVIRY, = 0 -

The second term in equation (4.21) we write as
VodvsVR2p = Vo dv Vi + Vo(dvs — dv)Ve + Vo dus (R2 — 1)Vep. (4.32)
Applying Schwarz’s inequality to the second term on the right we find that
IVe(dus — dv)Vell1 < [[Vellzll(dvs — dv)Vepl|a. (4.33)

Since (dvs — dv) — 0 uniformly on compact sets with ||dvs — dv||« uniformly bounded, by

familiar arguments we conclude that for any n > 0 and ¢ sufficiently small,

[(dvs — dv)Vllz < n([Vellz +¢) (4.34)
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so that

Jim = [ IVeldu —d) Vel < n(MVel+eMIVel)  (435)
and hence
i TIEEO_ / / V(dvs —dv)Vep = 0. (4.36)

The third term on the right hand side of equation (4.32) is treated analogously by noting
that ||dvs||eo is uniformly bounded and then using the Fourier transform to show that

I(R2 = 1)Vo|l2 < n(|[Ve|lz + 1)Vt for any n > 0 and ¢ sufficiently small (cf. (4.17)). Thus,

lim  lim - / / Vodo VRV — lim ~ / / VodvoVe.  (4.37)

€60 T—oo T T—oo T

To treat the nonlinear term we begin by writing

[ F@es = = [ V-uF@)+ [ (Vv V-0)F()

Jo F@)vs - (2= 1)V (4:38)

Since F(p) € AP(R, L'(R")) (Lemma 4.9) with (V - vs — Vv) — 0 uniformly on compact

sets we conclude, by arguments made before, that

lim lim —/ / (V-vs—Vu)F(p) = 0. (4.39)

§—0 T—oo T

Using the Fourier transform as before we can show that
(R =1)Vel: < n([Velz+1) Vi (4.40)

for any n > 0 and ¢ sufficiently small. Now apply Schwarz’s inequality to the third term on
the right hand side of equation (4.38) to conclude that

\/ P)vs - (RZ—=1)V¢| < nlluslleol £ @) 12 Vellz + 1). (4.41)

Both || f(¢)]|2 and (||[Ve]]2 + 1) are numerical almost periodic functions (Lemma 4.9), i.e

C.y
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are members of AP(R,R) and hence their product is almost periodic ([LZ] pp 6). Then, for

any 1 > 0 and ¢ sufficiently small,

tim = [ [ fs (B2 = 19¢] < alloleM(IF@ 0Vl + 1) (442

T—o00

Since ||v5||ooM<||f(<,0)||2(||V80||2 + 1)) is bounded uniformly in &, we have that

lim lim —/ / (R2—1)Vy = 0 (4.43)

e=0 T—oo T

uniformly in §. Thus,

. )
Th_r)rolof/ /N O)es = 7152@/0 /N—trdvF(go) + E(s0) (4.44)

where E(g,d) can be made arbitrarily small first by choosing § and then ¢ sufficiently small.
This, along with equations (4.9), (4.20), (4.24) and (4.37), completes the proof of Theorem
4.10 O

5 Nonexistence of almost periodic solutions

We use the virial relation equation (4.7) to prove a nonexistence theorem for almost periodic

solutions. A special case of this result (N = 1 and ¢ = ;) was proven in [SV].

Theorem 5.1 (Nonezistence of almost periodic solutions of NLW) Let ¢ € AP, for some
q € [2,00] be a weak almost periodic solution of NLW (cf. Definition 4.3) with f satisfying

(H) with this same q and, for some c € [2-2,1], the inequality
F(z) —czf(z) <0 for all z such that | z |< ||| Lo ®V+1)-

Then ¢ is independent of time.

Proof:
As in Proposition 3.3, we use the vector field associated to dilations on R along with the

Gauge transformation to derive the following identity valid for any ¢ € R (we use Lemma 4.9,
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part (v) for the Gauge transformation);

Jm = [0 [ G- a@er+ e+ 1o Py = tim = [ [ 1P(0) — cof(o))
(5.1)

By hypothesis both sides of this equation must be zero. In the case ¢ € (232, 1] this implies

2N )9
that

1 /1
- 2 _ — O 2
lim / / Vo | lim /0 IVeoll3- (5.2)

Parseval’s relation for Hilbert space valued almost periodic functions ([LZ] pp 31) states that

tim - [ 163 = Znakm (5:3)

T—o0

where Y°5° | axe™*! is the Fourier series associated to V. By the uniqueness of these series
it follows from equations (5.2) and (5.3) that Vi(t) = 0 (in L2(RY)) for all ¢+ which implies
that, since o(t) € L2(RY), ¢(t) = 0 for all t.

Ifc= % then a similar argument applied to 9,¢ leads to the conclusion that 9;p(t) =0
(in L%(RN)) for all ¢. That is, p(t) = ¢ for some v € L*(RY) and for all ¢ O

Remark: Example 1 in Section 3 and Corollary 3.6 hold also for almost periodic solutions,

and by the same proofs as presented there.
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6 Appendix

In this appendix we illustrate how virial relations for NLW can be derived and understood
in a natural way by formulating NLW as a variational problem. From this aspect the vector
fields characterizing the virial relations derived in this paper define infinitesimal generators
of transformation groups on the space H'(RM) on which the action functional is defined.
Our purpose here is to describe virial relations and conservation laws from a common point
of view; in terms of the behavior of the action under such transformation groups. All trans-
formation groups generate virial relations. If the transformation group happens to leave the
action invariant, i.e., is a symmetry group of the action, then the associated virial relation
is ”trivial” in the sense that it is merely the consequence of the fact that the integrand is
a divergence. At the same time from this one can infer a conservation law for the asso-
ciated Euler-Lagrange equation (Noether’s Theorem). For general transformation groups
the integrand is not necessarily a divergence. How far from a divergence it is produces the

"nontrivial” virial relations derived in this paper.

Variational Calculus and Transformation Groups

Let X be a Banach space of functions defined on R™ and S an action functional X — R

of the form

Slel = [ 8o, Vo) (A1)

where § : R X R™ — R, (u,p) — S(u, p) is the Lagrangian, V,, denotes the gradient with
respect to all the variables, and 2 C R™. We consider S as being associated to a differential
equation K (¢) = 0 through the relation S'[p] = 0 & ¢ is a (weak) solution of K(yp) = 0,
where S'[p] denotes the Fréchet derivative. In this case K(p) = 0 is the Euler-Lagrange

equation associated to S;

oS 0 0S
K — — . — - — == A2
(P) =Su=Vn-S, 90 " 0500 (A.2)
where @; = 8%%- and summation over ¢ = 1,...,m is implied.

For example, if we are interested in [-quasiperiodic solutions of NLW with frequency w,
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then we formulate a variational problem on a space of (generating) functions defined on Q

by defining the Lagrangian,

1 1
S =8(v,V7,Dv) = —=(D.7)* + 5| V7 > +F(v). (A.3)

2

From this formula we see that a natural choice for X is H'(Q2y,). Then,

Shl = [ {= @0+ 51VaP + F)} (A4)
and
SEN®) = [, - DD+ V-V + f)8}: (A.5)

(cf. equation (2.2)). To formulate NLW as a variational problem for almost periodic solutions

o € AP we define the action,

T
Skl = Jim = [0 [ {= 3@+ 51 Ve P +F(p)} (4.6)
so that
STelw) = Jim [ [ {0+ Vo Vo - f(o)v) (A7)

(cf. equation (4.5) ).

We can show that the actions (A.4) and (A.6) are positive at critical points;
S'[v] = 0 = S[y] > 0 (cf. equation (A.4)) (A.8)

and

S'lg] = 0 = S[p] > 0 (cf. equation (A.6)) . (A.9)

This follows from the virial relation associated to the dilations in = (equations (3.4) and

(5.1) with ¢ = 0) from which we infer that

aw, T ) = /QNI{%(D 7)’ +2—IV’y| 1 (A.10)

44



and
1T 1T 1., 2-N_
dim = [0 Flo) = Jim = [0 [ {S00)+ =IVel), (A
for solutions v of NLW on Qy; and almost periodic solutions ¢ of NLW on RV *! respectively.

Substituting these into (A.4) and (A.6) justifies the claims (A.8) and (A.9).

Returning to the abstract set-up, variations of S are defined through transformation
groups actingon X. Let T) : X — X; ¢ — @) = Thp, with Ty = 1, be a strongly continuous
1-parameter group of transformations with infinitesimal generator A, A: D(A) C X — X,

D(A) denoting the domain of A. Here A is defined by Ay = %@\ . Ifpe D(A)is a

A=0
critical point of S, then applying the chain rule to the function S[p,] : R — R we find that

9 steil,, = Slellde) = 0. (A12)

If A is a differential operator then this equation is an integral formula involving the solution
¢ and its derivatives. It is the virial relation associated to the transformation group 7 and
corresponds to equation (2.4), as we will describe in more detail below.

A particular class of transformations on X arise from diffeomorphisms of R™. Suppose
v : R™ — R™ is a vector field on R™ that generates a global flow ®, : R X R™ — R™, (&g = 1).
Then the map ¢ — ) = p o &) = T defines a 1-parameter group of transformations 7’
on X with infinitesimal generator v - V,,. For the remainder of the appendix we will always
assume that 7T is of this form.

Formally,

d

aS[QOAHA:O = Sl(v- Vmp) = /Q{Su(v-Vmw) + 8 V(v Vmp)}.  (A13)

We use the word formally here because v - V,,¢0 may not lie in X (that is, ¢ may not lie in
D(v-V,,)) in which case a regularization procedure is required, as was done in the proof of

Theorem 2.7. If ¢ is a critical point of S, then we have the virial relation

0 = /Q (8,0 Vi) + S5 V(v Vinio) ). (A.14)
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We will see that this equation is precisely the virial relation (2.4) of Theorem 2.7 correspond-
ing to the vector field v. The hypothesis of Theorem 2.7 concerning vector fields on RN (cf.
(2.3)) guarantees that these vector fields generate global flows on R", which in turn defines
transformation groups on H'(Qy ;). We now consider how such transformation groups affect
the action S and in this way we will distinguish between transformation groups that preserve

S or not and the consequences thereof for the associated virial relations.

Symmetries, Conservation Laws, and Virial Relations

Definition A.1 T : X — X is a symmetry group of S if S[p,] = Slp] for all ¢ € X and
for all A € R, where o\ = Thp = po ®,.

Lemma A.2 (Noether) IfT), is a symmetry group of S with infinitesimal generator v-V ,,
then for any ¢ € X the expression

Su(v - Vimp) + Sp+ V(v Vi)

is a divergence (cf. (A.13)).

In fact ([GF] Thm 2 §37),

Su(V-Vinp) + Sp- V(v Vi) = Vi, - Su. (A.15)

Therefore, if T} is a symmetry group of S and ¢ is a critical point of S, then using the
Euler-Lagrange equation (A.2) we obtain from (A.15)

0 = Su(v-Vnp) + 8 Vn(v-Vyp) — V- Sv
= (Su—Vn -8)v Vup + Vy  (Spv - Vi — Sv)
= Vn - (Spv- Ve —Sv). (A.16)

We describe how this formula leads to a conservation law.
Consider NLW on Qp,, where the action S is defined by (A.4). Here V,, = (V, D).

Writing v = (v,, ) € RV where v, is a vector field on R and v, is a vector field on T!
g ) )
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the last line in (A.16) reads

oS
oV~

oS
0D~

0=V (5520 Vmy = 80) + D (55-0 Viny — Suy). (A.17)

Here 0S/0V+~y and 0S /0D~y denote the vectors (0S5 /01, - ..,08/0vn) and (0S /0N 11, - - -, 0S8 /0YN+1)
respectively, where v; = 0v/0x;, i =1,...,N, and yy4; = 07/060;, j =1,...,1. If we set
( oS

V- V7 — va>, (A.18)

E,(7) E/ 9D~

RN

and if (0S/0Vy)v - Vv — Sv, vanishes sufficiently rapidly as |z| — oo, then from (A.17)

and the divergence theorem we then have the conservation law
D-E,(y) =0. (A.19)

As an example, let vy be the infinitesimal generator of translation on T' along T, (cf.
Definition 2.1); vr = (0, w). Then,

1

B () = ~w [ {30+ 5IVaP + F3)} = ~wB() (4.20)

where E() is the energy of 7. In this case D, E(y) = D - E,.(y) = 0. Therefore, E(7) is
constant along T',, (D,, is the directional derivative along T',)). If E(v) is continuous, then
because I',, is dense in T!, FE(v) is constant on T!. Considering quasiperiodic solutions ¢
of NLW; o(z,t) = v(z,wt), the argument just given shows that the energy E(p) of ¢ is

conserved;

d

%E(w) = 0 where E(p) = /RN {%(6,:@)2 + %|V<,0|2 +F(<p)}. (A.21)

The energy of a solution +, like any functional of v that is constant on T!, can be used

to derive an integral identity simply by integrating it over T';

en'EG) = [(BO) = [ {G0aP+ ViR PO} (a2)
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Using (A.10) we derive the inequality

B = @0 [ (@ + 51V 2 0, (423

which shows that the energy of a quasiperiodic solution is positive, and zero if and only if
the solution is zero. By performing the same arguments with the action defined by (A.6) we

can see that the energy of almost periodic solutions is positive also.

We return to general transformations on X (i.e., not necessarily symmetry groups of 5).
For an arbitrary transformation group 7T} the formula (A.15) may not be true. In this regard,
to each T, we define a function g on X, g = g(¢, Ve, v) where v - V,, is the infinitesimal

generator of Ty, by the following formula;
9(p) = Su(v-Vmp) + & V(v Vinp) = Vi - Sv. (A.24)

Then, when T} is a symmetry group of S, g = 0 by Lemma A.2. Otherwise g may not be
zero. This motivates us to think of the function g as measuring of how far 7) is from being
a symmetry of S.

Let us now consider the variational problem associated to NLW on Qy; and let v be
the vector field on RY that generates the flow ®, through which T} is defined. Here the
independent variables are space-time variables (z,0) € Qu, so that V,, = V.o = (V,D).
With g defined by (A.24), and noting that a divergence term vanishes when integrated over
Qn, (viz. the term V,, - Sv), if v is a critical point of S the virial relation associated to the

vector field v (equation (A.13)) can be written as

0= SPw-Vy) = o, I (A.25)

If in addition - solves the Euler-Lagrange equation, then rewriting (A.24) we have

g = (Su—Vae -S)v-Vo+V,o-(Sv-Vy—Sv)
= Vi (Spv- Vo —8v)
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= D-e+ V:-p (A.26)

where e = (0S§/0D~y)v-Vy and p = (0S5/0Vy)v-Vy—Sv (cf. (A.17)). With the definitions
E,(7) = [pve and G = [gv g, we see from (A.26) that G acts as source of E,(7);

D.-E,(7) = G. (A.27)

This corroborates the statement made above about g measuring how far 7}, is from being
a symmetry group of S: if T\ is a symmetry group of S then E,(v) as defined through
(A.26) is divergence free; if T) is not a symmetry group of S then the divergence of E, ()
is determined by g.

For the Lagrangian (A.3) associated to NLW on Qy, equation (A.24) is
1 ) 1
g =trdv (5 (D) — F(V)) + V- [dv — itr dv 1]V~ (A.28)

which was derived in Theorem 2.7 (cf. (A.25)). By Lemma A.2 this function vanishes if T)
is a symmetry group of NLW. For example, rotations and translations of RV are symmetries
of NLW. In the former case dv € so(IN) and in the latter v = constant. In both cases it is

apparent from (A.28) that g = 0.

As another application of the variational calculus, we point out that the formula (A.28)

may be derived directly from (A.13) (cf. (A.25)) as follows. First note that

1 1
Shnl = /Q {- 5 (Do)’ + 5[Vl + F(y3) } dzdf.
N,

By making the change of variables y = ®,(x), this becomes

1 1
Sl = /Q { = 5D’ + 5[Van 0 ® P + F(y) } det (Jy 0 ®_5) ™" dydf
N,l

where [Jy(z)];; = 09%/0z; is the Jacobian matrix associated to the transformation z — y
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and (Jyo®_,) ! is the Jacobian matrix associated to the inverse mapping y +— z. Note that

0
adet (JAo<I>_>\)_1‘ = trdv.

In addition,

N 5Pt 9P’
IV (z)]? = Va(z) - Via(z) = AVA(y) - V(y), where [A];; = 3 *a—A,
k=1 T Ok

and

%[Ao@” = dv+dvT,

which together imply that
9 2
alV’yAO(I)_)\l ‘}\:0 = 2V’)/ dUV’Y

Therefore,

d - o, 1 ., 1 ) B
55[’7/\]‘)‘:0 = ‘/QN,I *{ = 5P+ 5IVin o @ + F(V)}det (Jro®_,) ‘/\:0 dydeo

with g as in (A.28).
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