
Capturing and Supporting the Analysis Process

Nazanin Kadivar, Victor Chen, Dustin Dunsmuir, Eric Lee, Cheryl Qian, John Dill, Christopher Shaw, Robert
Woodbury

School of Interactive Arts and Technology

Simon Fraser University

ABSTRACT
Visual analytics tools provide powerful visual representations in
order to support the sense-making process. In this process,
analysts typically iterate through sequences of steps many times,
varying parameters each time. Few visual analytics tools support
this process well, nor do they provide support for visualizing and
understanding the analysis process itself. To help analysts
understand, explore, reference, and reuse their analysis process,
we present a visual analytics system named CzSaw (See-Saw) that
provides an editable and re-playable history navigation channel in
addition to multiple visual representations of document
collections and the entities within them (in a manner inspired by
Jigsaw [24]). Conventional history navigation tools range from
basic undo and redo to branching timelines of user actions. In
CzSaw’s approach to this, first, user interactions are translated
into a script language that drives the underlying scripting-driven
propagation system. The latter allows analysts to edit analysis
steps, and ultimately to program them. Second, on this base, we
build both a history view showing progress and alternative paths,
and a dependency graph showing the underlying logic of the
analysis and dependency relations among the results of each step.
These tools result in a visual model of the sense-making process,
providing a way for analysts to visualize their analysis process, to
reinterpret the problem, explore alternative paths, extract analysis
patterns from existing history, and reuse them with other related
analyses.

INDEX TERMS: I.3.8 [Computer Graphics]: Applications-Visual
Analytics, I.6.9 [Visualization]: information visualization, H.5.2
[Information Interfaces & Presentations]: User Interfaces -
Graphical User Interfaces (GUI)

KEYWORDS: Visual Analytics, Sense-making, Analysis

Process, Visual History

1 INTRODUCTION
In the investigation of large collections of text documents, an
analyst must often make connections between disparate bodies of
evidence in order to learn about observations that have been
made, and to form hypotheses about how these observations are
linked. An analyst will want to discover unknown information
embedded in the document corpus, investigate different

evidentiary trails, weigh their quality, and compare their strengths
and weaknesses. For example, an intelligence analyst may analyze
field report documents, or a computer scientist may investigate
reports written about a software library.

For situations where the document collection is small, the
question is tightly constrained, and the period of investigation is
short, an investigator can easily develop sufficient knowledge of
the domain to come to a high-quality answer to the question at
hand. With large document collections, open-ended questions or
long periods of investigation, management of the document
corpus, the hypotheses formed, and the avenues investigated
become much more problematic. The complexity of the analysis
process itself must be managed so that the analyst can review
former analytical steps, explore new avenues, and maintain a
record of what prior analysis paths succeeded or failed to generate
useful knowledge. As new data arrives, the analyst will want to
update the state of the current analysis, rerunning previous queries
and validating previously drawn conclusions.

Significant research has been conducted on improving the
sense-making process by providing more convenient visualization
techniques [7, 13]. Most of these efforts focus on visualizing
datasets to more easily reveal the narratives within. There also
exists a growing body of research on capturing and understanding
the analysis process [22]. So far there has been relatively little
effort focused on improving the analyst’s awareness and
understanding of the analysis cycles by allowing them to easily
review their analysis interactions.

 In this paper, we introduce CzSaw, a visual analytics tool that
captures and visualizes the analysis process and history of user
interactions with the data. CzSaw includes a number of visual data
representations that allow analysts to explore and understand the
data. During the data exploration process, all of the interactions
with these data representations are both captured by CzSaw in a
scripting language and visualized in a visual history view so that
analysts can look at the history of their interactions to find
repetitive patterns and identify alternative investigative avenues.
These other directions can then be explored without losing track
of previous work. It also provides the ability to explicitly program
the process, so that the end result conveys a chain of analytic
logic. Steps in the analysis can be replayed on new data or in
variations to remove the burden of repetitive actions.

Providing the visual history benefits analysts in several ways.
First, the analysis process is usually meticulous and tedious.
During this process, the analyst may get distracted by other issues
and have to pause and resume again later. With a visual channel
of analysis history, we can take advantage of human visual
memory to help the analysts recall the process after a hiatus [26].
Second, the analysis process involves exploring multiple
possibilities. Our visual representations of the history help
analysts to see these alternative possibilities and take steps back to
change the state of the system to a previous state which can also
be useful for correcting errors. At the same time, annotation on a
visual representation of the views is more effective than making

• E-Mail: {nka23, yvchen, dtd, ela10, cherylq, dill, shaw,
rw}@sfu.ca

notes outside of the system. The importance of note taking within
the system is seen by its inclusion in many recent visual analytics
programs [10, 14, 15, 24].

Another way CzSaw helps analysts understand their analysis
process is by maintaining a dependency graph of the data that the
analyst has explored and made linkages between. A common
example of a dependency graph is the spreadsheet, where a
numerical change in a cell propagates updates in all formulas that
refer to that cell. In CzSaw, any result set of data generated in the
analysis process is represented in the script as a variable and in the
dependency graph as a data object. Changes in an “upstream” data
object propagate updates to data objects that depend on it (located
“downstream” from it in the dependency graph). CzSaw presents
a visualization of the dependency graph. Using the script, analysts
can edit the properties of data objects directly and the dependency
graph helps them understand the consequences of this action (such
as changes in the views displaying the objects).

To summarize, CzSaw presents four main advantages by
• Capturing and visually representing dependencies among

primary and inferred data items.
• Recording an editable sequence of analysis steps,

supporting review and editing of an analysis process.
• Visualizing the analysis process through history, script and

dependency views, maintaining consistency among these
views.

• Enabling higher level analysis through its scripting
language.

This paper overviews related work, describes CzSaw and the
function of its visual history view, dependency graph and script
language, and presents our plans for future work.

2 RELATED WORK
There is an increasing interest in understanding the components of
the analysis process, and in capturing and visualizing the sense-
making cycles [19, 28].

The first step towards understanding, capturing and visualizing
the analysis process is to characterize its elements. In an attempt
to do just that, Gotz et al. [11] developed a taxonomy of
“semantically meaningful analysis actions”. They define these as
user interactions with the system which are on a higher semantic
level than mouse clicks. Actions such as query, explore and zoom
are used to pursue an analytical task like confirming or rejecting a
hypothesis. Gotz divides analytical actions into three levels based
on intent and defines the middle level as the semantically
meaningful level. They categorize these actions and present a
scripting language for such interactions, integrated into a visual
analytics application, HARVEST, which shows a history trail both
in graphical and text representations. Similarly, Amar et al.’s [5]
work is focused on user-oriented activities and describes a set of
ten low-level analysis task types that capture interactive visual
analysis actions. They state that these tasks can be used as a
common language in the field and as a measure for the
capabilities of the tools. Soo Yi et al. [28] also propose a
taxonomy of analytical interaction techniques which are organized
around users’ intents during their interaction with the system.
These research studies lay an initial foundation for CzSaw’s
scripting language. In CzSaw, elements of the analysis process are
defined based on a combination of taxonomies that these studies
propose.

Another focus area of CzSaw is providing a visual
representation for the history of the analysis process. Such
representations appear in many applications such as Adobe
Photoshop [2] and Adobe Illustrator [1] which include history
capturing mechanisms. These applications record defined user
interactions with the system in a linear stream which can be
replayed to show the history of development of a piece of artwork.

These applications contain a limited memory stack which captures
a limited number of interactions and removes older interactions
from the bottom of the stack as new interactions are added to the
top of it. They also abandon branching history by overwriting the
history thread if the user steps back and resumes the interaction
from a previous state. Many visual analytics applications also
represent the history of user interactions in a visual format. Heer
et al. [14] present a method of capturing and showing the history
of interactions for Tableau [12] that is similar to CzSaw’s visual
history view. Each state in their system consists of a VizQL
statement and a record of the action taken to reach it. While
branches in the history are recorded, unlike CzSaw, only the
current branch is shown in the history interface. This interface
shows thumbnails of the Tableau visuals which can be
bookmarked and annotated. Kreuseler et al. [17] describe a history
visualization mechanism for visual data mining, somewhat similar
to CzSaw’s history view. A tree shows the action hierarchy, with
nodes indicating changed views. Like CzSaw, selecting a node
activates the node’s data view. More relevant to our work is
Derthick et al.’s [8] proposed design for representing branches in
the history through a tree-view diagram [8]. They designed a
branching history mechanism which is applicable to a variety of
different software applications – e.g. text editor applications - and
includes a tree-structured visualization for navigating across time
and scenarios. The visualization also allows browsing the history
and selectively undoing/redoing events within a scenario or across
scenarios. Robinson et al. [20] propose Re-Visualization
(ReVise), a method that captures low-level state changes of the
data views. ReVise captures low-level mouse clicks and mouse
traces and the history of interaction with the visual analytics tool
and shows them as a layer on top of the data view. Unlike ReVise,
in CzSaw we capture the history in terms of analytically
meaningful statements like “showRelations” and “relatedNodes”
instead of recording mouse movements and every single click.

Besides showing temporal history of the analysis process,
CzSaw and a number of other research projects visualize the
exploratory model of the analysis process and the relationships
between the elements and parameters that exist in the dataflow or
get generated as a result of exploring the existing elements.
VisTrails [23], like CzSaw, is a tool for exploratory visualization,
which visually tracks dataflow and workflow changes. It is more
of a descriptive representation of a dataflow, whereas the
dependency graph in CzSaw is more of a visual representation of
how entity collections depend on one another. Bier et al. in their
Entity Workspace system likewise support intelligence analysis
and sense-making generally through their Think Loop model [6,
19, 25]. CzSaw, like Entity Workspace, helps analysts build an
explicit model of important entities (people, places, organizations,
phone numbers, etc.) and their relationships. Our focus is to add
more control and understanding of the analysis process by adding
analysis process views which are built by the process rather than
the data. Design systems such as GenerativeComponents [4]
support a transaction-based scripting language as the primary
system representation. The system records all actions in a human-
readable and editable form. Users can (and do) replay and edit the
transaction record as an integral part of design work.

Weaver’s DEVise [27] uses a relational data model to
coordinate multiple views of large datasets. Views and data are
linked as logic chains. Users can manipulate multiple coordinated
scatter plots interactively using a small number of coordination
mechanisms. Jankun-Kelly et al. [16] propose a model to describe
the visualization exploration process and a representation to show
this model. Their model shows the relations between the elements
of the analysis process and how parameters in every sense-making
cycle affect the rest of the parameters in the process. Sanfilippo et
al. [21], based on data gathered on actual workflows of real

analysts, built a system to help uncover scenario content by
constructing a "scenario content ontology". In effect their system
helps the analyst analyze a document collection, and construct
hypotheses from such an analysis, whereas the focus in CzSaw is
on visualizations to help analyze the analysis process itself.

Providing analysts with manual annotating facilities is another
aspect of CzSaw. Much research has been done on annotation
facilities and how they should be embedded in visual analytics
systems to be more convenient for analysts. Jigsaw uses Microsoft
OneNote for this purpose. Other approaches include Geotime
[10], which allows the analyst to manually add notes to the
visualization of the story flow, and Analyst’s Notebook [15]
which also provides manual capturing utilities for adding charts
and notes about the analytical reasoning and sense-making
process.

CzSaw builds on the ideas represented in these tools in addition
to capturing semantically meaningful interactions with the system
in terms of a scripting language. It attempts to build a model of
the process itself, via history and dependency-graph views.
CzSaw enables analysts not only to view the analysis history; it
supports modification and replay of captured analysis sequences.

This enables easy comparison of alternate approaches, as well as
the re-use of appropriate sequences with different data.
3 DESIGN AND CONTEXT
CzSaw, like Jigsaw, is aimed at supporting sense-making through
investigative analysis of document collections and the entities
contained in them.

CzSaw is implemented in Java using a model-view-controller
methodology. The data views described in this section were
developed by our group, modeled on the data views of Jigsaw.
The underlying data representation is somewhat different,
however, and is described in the following sections. The current
version of CzSaw can read XML files that contain both
documents and the entities extracted from them. CzSaw keeps
track of every occurrence of an entity in the dataset separately and
assigns unique identifiers to each. This allows merging entities if
an analyst later believes that multiple occurrences refer to the
same entity, as well as splitting entities if they turn out to be
different things that appeared with the same name. Like Jigsaw,
we consider two entities connected if they appear together in one
or more documents. Likewise, two documents are connected if
they share at least one entity.

Extracted entities should have a defined type to which CzSaw
automatically assigns a colour to help identify the entity type
throughout the views. The colour-coding legend is always
available for the analyst as a reference.

A likely first step in CzSaw is to perform a search. In the search
window, the analyst can choose which views display the search
results. CzSaw searches among all the extracted entities and then
updates the desired views with the results. Inspired by Jigsaw, we
provide several data-oriented views, including enhanced graph,
lists, and document views.

The graph view is a node-link diagram showing connections
between entities and documents. We use the Java Universal
Network/Graph (JUNG) library [18] to implement the graph view
with a force directed layout. After a layout of the graph is done,
the graph is scaled if needed in order to include all graph nodes
within the window. Additionally the analyst may display a set of
entities or reports as a grouped node instead of several nodes.

Figure 1 demonstrates the grouping technique which is
controlled by the analyst and reduces clutter on the screen by
hiding details unnecessary to the current analysis.

The list view, also based on one of Jigsaw’s views, contains
lists of entities and documents with edges used to show
connections between items in different lists. A list shows all the
entities of one type or can be filtered by a search term. CzSaw
adds the capability to move and resize lists, giving analysts the
power to view connections between multiple pairs of lists
simultaneously. Long scrollable lists often have connections to
off-screen list entities and these are shown by an edge connected
to the bottom of the visible portion of the list. Buttons at the top
and bottom of the list then provide automatic smooth scrolling
down or up to the next connected off-screen entity.

The CzSaw document view, like Jigsaw’s, displays the full text

Figure 1– Grouping in graph view. a) A graph showing Madame

Montpellier and all the documents she is in and the people
mentioned in those documents. b) Upon grouping the documents
into a single node, we have a much simpler view showing all the
people in these documents with the grouped document node at

center.

Figure 2 – Document View

of documents (Figure 2). The left panel shows the set of
documents currently being viewed while the right shows the text
of the current document with entities highlighted. The middle
panel shows a list of entities in the document currently being
viewed. The document view is useful because reading the
documents provides the context of a connection between entities.

Communication among views is essential in CzSaw. Each view
updates based on changes made in other views, providing a
foundation for brushing and linking, and higher level visual
analytics techniques. Internally, CzSaw treats views as links
between interface objects and underlying data and thus view
creation is explicitly recorded in the script. Thus an analyst can
review and change how views relate to data, with the implication
that views persist across sessions.

3.1 Analysis Process Views
Prompted by the oft-repeated request for overviews of the analysis
process (“I need to see the state of the analysis yesterday noon
when I was last working on…”), CzSaw has new process and
model-based views that both visualize the ongoing analysis
model, and allow direct interaction with that model. These views
are also motivated by the success of systems like Gotz’
HARVEST which attempts to capture the semantics of user
interactions, and in particular by the success of systems in the
computer-aided design area [3] to show a ‘generative’ view of the
development of an underlying model of the analysis process.

This set of views of the analysis model is based on an
underlying ‘semantic’ level representation of the sequence of user
actions. It comprises three related views and the objects they
represent:

• Script view: a view of the captured script statements
in a reviewable, re-playable and editable manner.

• History view: a visual history of the analysis process;
a collection of the temporal sequence of data views.
The history view is also the place where an analyst
can add notes, in a manner similar to Heer et al. [14].

• Dependency graph: a special graph view showing as
nodes the various entities, collections of entities etc.
generated during the analysis, with links indicating
dependencies.

We describe each of the analysis model views in the following
subsections.

3.2 Scripting driven propagation system
The process of investigative analysis can be compared to the
process of writing a story. In this case the story is the analysis
process and its components are the steps taken in CzSaw, so
reading the story may help an analyst better understand how and
why they arrived at a result and how accurate or significant it
might be.

Based on this idea, we defined a scripting language for
performing operations meaningful to the analysis process. The
language consists of commands that a user may enter directly.
Users of course also interact directly with data views, and,
analogous to HARVEST [11] each such user interaction is
translated into a block of one or more commands that we call a
transaction. Thus analysts perform the analysis process by either
interacting with views or by directly typing script commands.

Transactions are at the level of meaningful tasks completed in
the system; script commands are programming elements that
implement transactions. Only actions which modify the visual or
data model of the system are recorded. Thus no script commands
are generated based solely on non-dragging mouse movement or
the typing of a word in the search window.

When the analyst presses the search button then a block of
commands is recorded. Some script commands such as “search”

and “relatedNodes” describe system actions on the data structures.
Other commands describe system actions that directly result in
data view changes such as “showNodes” and “hide”. Commands
in this second group will be interpreted differently depending on
the particular data view. An example is given in section 3.2.1.

The script is not just a passive recording of the system actions.
The script is actually what drives CzSaw. Rerunning this script
step by step will replay the analysis process. The data views only
update based on the script regardless of whether the commands
were generated from an analyst’s interactions with the data views
or typed directly in. One way of thinking of this script is as an
application created by the analyst while using CzSaw. Editing it
allows quick refinement of the analysis process, since any later
steps after the edit do not have to be retaken by the analyst. In this
way, the script can be modified to see alternatives or fix mistakes.
An important aspect of the script is that it makes analysis
interactions reusable, especially since analysis processes often
consist of many repetitive actions [22]. Additionally an analyst
may find exploration patterns applicable to different datasets or an
updated version of the same dataset. Such tasks are easily
accomplished by simply extracting the appropriate set of script
commands and running them on different datasets. Suitably tested
script blocks should decrease errors in sequences of analytical
actions.

Within a script, new data can be added, such as adding a new
report just received by the analyst. In the real world, data is
dynamic, growing and changing. Current analysis results may
change, or road blocks be removed. Adding new data and
rerunning the script allows adaptation to such data changes which
can reveal new results. Also it is possible to explore alternatives
by adjusting parameters in the script. For example, an analyst
could iterate a predefined analytical process over a list of people.

In CzSaw, experienced analysts who wish to directly program
part of the script may do so within the script view. The script view
is where the analyst can create, copy, edit and run script
commands. Thus CzSaw enables a much greater control over the
analysis process itself than would be possible using only the data
views.

3.2.1 Example Scenario
We present an example analytical scenario derived from the novel
The Day of the Jackal, as follows. In the story, an assassin has
been secretly hired in 1963 to kill President De Gaulle. Inspector
Lebel is trying to discover the assassin’s identity. Through British
police, Lebel learns that a passport has been issued to Paul
Duggan, who died 30 years earlier. A week after this discovery, a
person bearing the Duggan passport enters France. The next day,
Duggan is discovered to have stayed at a hotel in southern France.
Police interview the hotelier, and discover that “Duggan” left with
Madame Montpellier. Madame Montpellier, when interviewed
admits only an affair with Duggan. The next day, Madame
Montpellier is discovered murdered. Lebel now has a suspected
murderer (Duggan), and his description, but no name, since the
assassin assumes a new identity.

The analyst now needs to discover the new identity of the
assassin. A pattern that the assassin uses is to stay with people he
befriends so that he does not have to give identity documents to
hotels. Another analytical pattern is the “fake passport” pattern, in
which a passport is obtained for someone who died as a child. In
the real world scenario, we can not simply look for “fake
passport” because there may be many people bearing a fake
passport that are irrelevant to this case. Therefore, we start from
the most significant event in the data - Madame Montpellier’s
murder and see what connections we can find.

CzSaw‘s search function is available both in the graphical user
interface (GUI) and in the scripting language. The script form of a
search for person “Montpellier” is:

entPerMont = search(Montpellier, person)

The left side of this equation is the variable name which can be

used by later commands. It contains a list of entities that have
type “person” and value “Montpellier”. Below is the full script of
the investigation from Madame Montpellier to the fake passport
bearer organized by transaction, interlaced by screenshots of the
graph view (Figure 3, Figure 4, Figure 5, Figure 6, and Figure 7)
which were captured while executing this script. Also included are
descriptions of how the same actions could be taken by direct user
interaction with the graph view.

Transaction 1:

 gView = newView(GraphView)
Transaction 2 (Figure 3):

entPerMont = search(Montpellier, person)
sPerMont = showNode(entPerMont, gView, GRAPH)

Figure 3 – In a new graph view, show search results for people
named “Montpellier”.

Transaction 3 (Figure 4):
 repMont = relatedNodes(entPerMont, report)
relPLMont = relations(entPerMont, repMont)
sRepMont = showNode(repMont, gView, GRAPH)
sRelPLMont =showRelations(relPLMont, sPerMont,

sRepMont)

Figure 4 - Get all related reports for “Madame Montpellier” by

expanding this node in graph view.

Transaction 4 (Figure 5):
entPerRelMont = relatedNodes(repMont, person)
relPerMont = relations(entPerRelMont, repMont)
sEntPerRelMont = showNode(entPerRelMont, gView, GRAPH)
sRelPerMont =showRelations(relPerMont,

sEntPerRelMont, sRepMont)

Figure 5 - Find all persons within these reports. In the graph view

this is done by choosing to expand each report node only for type
person (through right-click menu). It looks like Duggan is the person

to be examined further.

Transaction 5:
entPerDuggan = search(Duggan, person)
sPerDuggan = showNode(entPerDuggan, gView, GRAPH)

Transaction 6 (Figure 6):
repDuggan = relatedNodes(entPerDuggan, report)
sRepDuggan = showNode(repDuggan, gView, GRAPH)
relDuggan = relations(entPerDuggan, repDuggan)
sRelDuggan = showRelations(relDuggan, sPerDuggan,

sRepDuggan)

Figure 6 – Search for Duggan and find all the related reports. All
related reports could be found by expanding each Duggan node.

Transaction 7 (Figure 7):
entPerRelDuggan = relatedNodes(repDuggan, person)
sEntPerRelDuggan = showNode(entPerRelDuggan, gView,

GRAPH)
relPerDuggan = relations(entPerRelDuggan, repDuggan)
sRelPerDuggan = showRelations(relPerDuggan,

sEntPerRelDuggan, sRepDuggan)

Figure 7 - All related reports and people: people in reports with

Duggan can be found in the graph view in the same manner as in
Figure 5. “Charles Calthrop” may be the suspect.

The above script can be saved to a text file. CzSaw can import
this file to be replayed on a new set of data. In the real world, new
reports will continue to arrive as the investigation progresses.
Rerunning this script will reflect the most up-to-date information
to show the new reports and new entities. Figure 8 shows this in a
retrospective way – suppose we were in the middle of the
investigation, and some report were not there yet (report 196308-8
does not yet exist).

In CzSaw, analysts can also modify and edit the script, e.g. by
varying parameters in the command to explore different results.
After the changes in the dataset or the script, the whole script may
be unable to run completely. For example, some reports may have
been removed if they were found to be untrue. Then their related
entities turn into empty (null) results, and this may also prevent
subsequent operations from continuing. We argue that this is not
necessarily a bad thing for the analysis process. It actually warns
the analyst that either their hypothesis is wrong, or there is some
information missing that needs to be investigated further.

Figure 8 - Result of running the script with a report missing.

Analysts do not need to know anything about scripting as all the
above work can easily be accomplished through direct interactions
with the data views. The script will be generated based on these
interactions with CzSaw. However, we believe, for the expert
user, this scripting ability will give them a more direct, precise,
and easier way to work on complex tasks.

3.3 Visual History
Sense-making is an iterative process and analysts add to their
understanding about data through multiple cycles of analytical
reasoning [22]. During the analysis process, analysts may realize
that a particular line of reasoning needs to be changed, and they
need to step back and adjust the process. The visual history view
supports adjusting the analysis process by allowing it to be
resumed from any state in the current analysis history.

The visual history view shows the history of the analysis
process in temporal order. This view provides an overview of the
analysis paths to help analysts understand where they are in the
analysis process. Zooming into a history node shows details of the
visible data views at that time. Whenever analysts commit model-
altering interactions with the system – interactions that have an
equivalent transaction (sequence of commands in our scripting
language) – we capture a screenshot of the state of all of the open
CzSaw data views. These screenshots are time-stamped and
appear in the history view window in a linear layout. Each node in
this history view corresponds to the state of the system at the end
of completing a script transaction. Whenever the analyst needs to
step back to adjust the analysis process, or when he or she needs
to step back to explore an alternative analytical avenue, they first
find the history node at which they wish to try a different analysis
path. Then, selecting that history node triggers CzSaw’s script
engine to replay the generated script of the analysis process from
the beginning to the end of the selected node’s transaction. This
will update the state of all of the views to the state that they had at
the selected time. This method (running the script from the
beginning every time that a new branch is added) is relatively
slow and we are working on improvements.

Resuming the analysis process from a node causes a new line of
history nodes to start from that node as a branch. Each branch
shows an alternative path in the history. Figure 9 shows a sample
history view window. The top row shows the first branch of the
history. Each branch line is displayed from left to right. The first
node on the left of the top row shows the state of the system at the
time which is stamped on the node. From the small dependency
graph on this first thumbnail we can see that the analysis process
has just started. The second node of the top row shows the analyst
has generated more script by opening an empty graph window
(which has been added as a node in the dependency graph). The
third node on the top row shows that the analyst has shown a
person in the graph view (by searching for a person). The top row
ends here because the analyst stopped the analysis process or
started a new branch. In this case, we can see that the analyst has
clicked on the second node of the top row and started a new
branch. The first node on the second row shows a different graph
diagram, one which contains more graph nodes (as this new
search returned more results). Arrows highlight the direction that
nodes are added to the view (Left to right, top to bottom) to add to
the readability of the diagram. Analysts can annotate any history
node to keep track of their decision-making. They can also
bookmark nodes in order to highlight decision points. An icon
appears beside each node that has an annotation or bookmark.
Analytic reasoning includes numerous interactions with CzSaw.
This will cause the history view to grow very rapidly, which
makes the visualization harder to follow. Addressing this issue
while minimizing the use of screen space is a challenging task.
Although initially we use a variant of a simple pan and zoom, we
plan to supplant this with a variant of the continuous zoom
algorithm [9], a hierarchical detail-in-context method. We hope
that showing detail and context of the visual history may help
analysts more easily recall “where they were” in longer analysis
processes on resumption after a hiatus or distraction.

Figure 9 – CzSaw adds nodes to the History View from left to right
in a linear layout. New branches start on new lines under the node
from which they are branched. The history nodes are time-stamped

and the arrows show the direction of the analysis process.

3.4 Dependency Graph
As described before, an important goal of CzSaw is to capture and
visualize a model of the analysis process, so the analyst can
interpret and edit it—we view this explanation of an analytical
process and result as a major product of analysis. As part of
supporting this goal, we developed a “dependency graph” view, a
node-link diagram of the relationships among the results of every
analytical interaction. The design of this view was inspired by the
Symbolic Model view in Bentley’s parametric CAD application
GenerativeComponents [3] in which a node-link diagram shows
components as nodes while edges show dependencies between
them. The symbolic diagram not only helps users understand the
logic structure of the 3D model, but more importantly it serves as
an additional and new view of the design of the analysis story.

Figure 10 - Dependency Graph – based on the script in section
 3.2.1

ess and what consequences may occur from editing
th

sis
a y vi an external view.

d, and many research questions
re

by

with larger numbers and we need
w

ient. We are investigating other ways
fo

age, as the single view will be able to
y

Figure 10 shows the dependency graph for the script in section
 3.2.1, where variables are shown as nodes and dependency
relationships as directed edges. This graph maintains the integrity
of objects during the analysis process: when a variable’s (node’s)
value is changed, descendent values will be updated
automatically. The root node “project” represents the original data
and project name; “entPerMont” and “entPerDuggan” come from
the original data and were created by the search action; “repMont”
is based on “entPerMont; “relPLMont” is derived from “repMont”

and “entPerMont”, etc. The dependency graph thus helps users
better understand the logic underlying the steps taken during the
analysis proc

is process.
We believe the combination of dependency graph, visual

history and script together will help the analyst gain insight into
the analysis process itself. The dependency graph represents the
current state of the analysis process as an active graph of objects
and relations. It represents an “internal” view of the analy
process where s the histor ew represents

4 DISCUSSION AND FUTURE DIRECTIONS
We believe that the current CzSaw prototype is a good start
toward our goals of capturing and visualizing the analysis model,
of providing a ‘design pattern’ capture and reuse capability for
advanced analyst-developers, and of course providing effective,
interactive data visualizations for investigative analysis. We will
determine how well we achieve these goals through user studies,
though integration of key features will be needed first. Our main
contribution is in the development of a system that provides
support for capturing the semantic structure of an analysis session,
and in making this visible to and interactively modifiable by the
analyst. While we have established the basic framework, clearly
much development is neede

main to be explored.
Our scripting language for example, though potentially

powerful, is still at a primitive stage and needs much
development. More importantly we need to design and carry out
the experiments necessary to validate and tune our choices of
language elements and structure. After this we intend for the
script to become a fully functioning programming language with
conditional control, iteration, etc. Use of these advanced functions
may replace repetitive analytical actions taken as part of the
sense-making process. Currently repetitive action can be repeated

 replicating script transactions and changing the variables used.
There are several scalability issues to address as well. For

example the graph structure of a visual history grows rapidly and
we will need to use hierarchical detail-in-context methods to
allow the analyst to navigate the analysis history without losing
their place. We also need to consider issues of dataset size: CzSaw
works with tens to hundreds of documents with a limited number
of entities but is less effective

ays to alleviate these issues.
Note taking is currently limited to notes added to nodes in the

history view. It might be distracting to move between data and
history views to add notes and some analysts may still find using
paper and pen more conven

r convenient note taking.
One area of future research concerns combining data views to

form a hybrid view that gives the analyst a greater ability to
control the level of semantic zoom of each part of the
visualization. For example bringing lists into a graph view should
have advantages over both graph view and list view. The
combination of views to form one generic view also simplifies the
rules of the script langu
handle an visual item.

5 CONCLUSION
Various analyses of the analytic reasoning and sense making
process with visual analytics tools suggests there are a limited
number of semantically meaningful actions that users of these
systems take; see for e.g. [16, 17]. Looking at patterns of these
actions may provide helpful information to analysts about the
analysis process. To this end, we have presented CzSaw, a visual
analytics tool focused on capturing the analysis process and

visualizing it. CzSaw includes several data views that allow
analysts to explore document collections and better understand
connections between entities in the documents. Within this system
we have developed a scripting language covering many
semantically meaningful analytic interactions and illustrating
them both in temporal and dependency sequences. Analysts may
extract and run script transactions on different datasets to perform
common tasks quickly or adapt to new data. The idea behind
CzSaw is to give the clinician greater support in navigating their
past analyses and controlling their future processes.

NSERC PGS, and we gratefully
ac

ia
Tech for kindly providing us with a running version of Jigsaw.

R
www.adobe.com/

pr
Incorporated. Photoshop. www.photoshop.com.

A
a Design Tool for

Ex
tric

D

of the IEEE
Sy

n Tools
fo

l Analytics Science and
Te

 Intelligent
us

ology’,
19

, “Stories in
G

ium on Visual
An

hinking for
B

IE

s on Visualization and Computer Graphics,
vo

rporated. Analyst’s Notebook. www.i2inc.com. Accessed
15

ns on
Vi

ium on Information Visualization,
20

 and S. Card, “The Sensemaking Process and Leverage
Po

nson, C. Weaver, and G. Center, “Re-Visualization:
In

mation Discourse
In

. 185-186, 2008.

alysis through Interactive Visualization", Proceedings of
IE

r Society Press: Silver Spring, MD;
13

005.

, "Metavisual Exploration and Analysis of DEVise
C

cko,
"T ard a Deeper Understanding of the Role of Interaction in Information
Visualization", IEEE Transactions on Visualization and Computer
Graphics, Vol. 13, No. 6, pp. 1224-1231, November/December 2007.

ACKNOWLEDGEMENT
This work is supported in part by grants from The Boeing
Company (“Visual Analytics in Canada”), NSERC (STPG
336506, “Visual Analytics for Safety and Security”), NSERC
Discovery Grants and

knowledge this support.
We also thank Professor John Stasko and his group at Georg

EFERENCES
[1] Adobe Systems Incorporated. Illustrator.
oducts/illustrator/?promoid. Accessed 15 July 2009.
[2] Adobe Systems

ccessed 15 July 2009.
[3] R. Aish.. “Bentley’s GenerativeComponents:
ploratory Architecture”, Bentley Systems Inc. 2003.
[4] R. Aish and R. Woodbury, “Multi-level Interaction in Parame

esign,” Lecture Notes in Computer Science, vol. 3638, p. 151, 2005.
[5] R. Amar, J. Eagan, and J. Stasko, “Low-Level Components of

Analytic Activity in Information Visualization,” Proceedings
mposium on Information Visualization, pp. 111–117, 2005.
[6] E. Bier, S. Card and J. Bodnar. "Entity-Based Collaboratio
r Intelligence Analysis". In IEEE VAST 2008, pp. 99-106, 2008.
[7] A.M. Cuadros, F.V. Paulovich, R. Minghim, and G.P. Telles, “Point

Placement by Phylogenetic Trees and Its Application to Visual Analysis of
Document Collections,” IEEE Symposium on Visua

chnology 2007 (VAST 2007), pp. 99–106, 2007.
[8] M. Derthick and S.F. Roth, “Data Exploration across Temporal

Contexts,” Proceedings of the 5th international conference on
er interfaces, ACM New York, NY, USA, pp. 60-67, 2000.
[9] J. Dill, L. Bartram, A. Ho, and F. Henigman, “A Continuously

Variable Zoom for Navigating Large Hierarchical Networks,” Systems,
Man, and Cybernetics, 1994. 'Humans, Information and Techn

94 IEEE International Conference on, vol.1 pp. 386-390, 1994.
[10] R. Eccles, T. Kapler, R. Harper, and W. Wright

eotime,” Information Visualization, vol. 7, pp. 3-17, 2008.
[11] D. Gotz and M. Zhou. “Characterizing Users’ Visual Analytic

Activity for Insight Provenance,” Proc. IEEE Sympos
alytics Science and Technology, pages 123–130, 2008.
[12] P. Hanrahan, “Tableau Software White Paper-Visual T

usiness Intelligence,” Tableau Software, Seattle, WA, 2003.
[13] Hao, M.C., Dayal, U., Keim, D.A., Morent, D., and J.

Schneidewind, “Intelligent Visual Analytics Queries”, Processings of the
EE Symposium on VAST2007, Sacramento, CA, USA, pp. 91-98, 2007.
[14] J. Heer, J. Mackinlay, C. Stolte, and M. Agrawala, “Graphical

Histories for Visualization: Supporting Analysis, Communication, and
Evaluation,” IEEE Transaction

l. 14, pp. 1189-1196, 2008.
[15] i2 Inco
 July 2009.
[16] T.J. Jankun-Kelly, K.L. Ma, and M. Gertz, “A Model and

Framework for Visualization Exploration,” IEEE Transactio
sualization and Computer Graphics, vol. 13, pp. 357-369, 2007.
[17] M. Kreuseler, T. Nocke, and H. Schumann, “A History Mechanism

for Visual Data Mining,” IEEE Sympos
04. INFOVIS 2004, pp. 49-56, 2004.

[18] J. O’Madadhain, D. Fisher, and T. Nelson. JUNG: Java Universal
Network/Graph Framework. http://jung.sourceforge.net/. Accessed 15 July
2009.

[19] P. Pirolli
ints for Analyst Technology as Identified Through Cognitive Task

Analysis,” Proceedings of International Conference on Intelligence
Analysis, 2005.

[20] A.C. Robi
teractive Visualization of the Process of Visual Analysis,” Workshop on

Visualization, Analytics & Spatial Decision Support at the GIScience
conference, 2006.

[21] A. Sanfilippo, B. Baddeley, A. J. Cowell, M. L. Gregory, R.
Hohimer and S. Tratz. "Building a Human Infor

terface to Uncover Scenario Content", In the 2005 International
Conference on Intelligence Analysis, https://analysis.mitre.org/
proceedings_agenda.htm, accessed on 29 March 2009.

[22] Y. Shrinivasan and J.J. van Wijk, “Supporting Exploration
Awareness for Visual Analytics”, Processings of the IEEE Symposium on
VAST2008, Columbus, Ohio, USA, pp

[23] C.T. Silva, J. Freire, and S.P. Callahan, “Provenance for
Visualizations: Reproducibility and Beyond,” Computing in Science &
Engineering, vol. 9, pp. 82-89, 2007.

[24] J. Stasko, Görg C, Liu Z, Singhal K. "Jigsaw: Supporting
Investigative An

EE Symposium on Visual Analytics, Science, and Technology (VAST’07)
(Sacramento, CA), IEEE Compute

1–138, 2007.
[25] J.J. Thomas and K.A. Cook. “Illuminating the Path”, IEEE

Computer Society: Chicago, 2
[26] C. Ware, A. Gilman, and R. Bobrow, “Visual Thinking with an

Interactive Social Network Diagram.”, Diagrams 2008, Herrsching,
Germany, pp 118-126, 2008.

[27] Chris Weaver
oordination in Improvise," Fourth International Conference on

Coordinated & Multiple Views in Exploratory Visualization (CMV'06),
pp.79-90, 2006.

[28] Ji Soo Yi, Youn ah Kang, John T. Stasko and Julie A. Ja
ow

	1 Introduction
	2 Related Work
	3 Design and Context
	3.1 Analysis Process Views
	3.2 Scripting driven propagation system
	3.2.1 Example Scenario

	3.3 Visual History
	3.4 Dependency Graph

	4 Discussion and Future Directions
	5 Conclusion

