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Abstract 

This paper describes a framework we have developed for the visual analysis of large-scale phylogeny hierarchies populated 
with the genomic data of various organisms. This framework allows the user to quickly browse the phylogeny hierarchy of 
organisms from the highest level down to the level of an individual genome for the desired organism of interest. Based on this 
framework, the user can initiate gene-finding and gene-matching analyses and view the resulting annotated coding potential 
graphs in the same multi-scale visualization framework, permitting correlative analysis and further investigation. This paper 
introduces our framework and describes the data structures and algorithms that support it. 
 
1 INTRODUCTION 

The DNA sequencing revolution initiated the exponential 
growth of DNA and protein sequence data that are changing 
the paradigm of biological research. Thus, Biology has 
entered the realm of Big Data, where large-scale 
investments in technology, machinery, and infrastructure 
are needed to generate new scientific knowledge. The new 
challenge is to build tools that enable interactive analysis, 
exploration of complex data, and data-driven discovery. 

Currently, the process of annotating a genome (finding 
genes and estimating their function) in genomic sequences 
is increasingly labor intensive. Generally, about one half of 
a genome can be annotated automatically, one half of what 
is left requires twice as much effort. If functions of genes 
have to be identified, one half of what is left takes again 
twice as much time, and so on. Gene function prediction 
involves multiple steps, access to multiple tools, parsing 
and reconciling the outputs and inferences of relationships 
between genetic data using multiple pieces of evidence. 

In this paper we present a new framework for highly 
interactive visual analysis of comprehensive genomic data 
that supports the above analysis process and can be scaled 
to any number of genomes. The framework uses a 
zoomable, multiresolution approach that can handle 
genomes of any size from millions of nucleotides 
(eukaryote) to a few thousand (viral). Structures on these 
widely different scales can be efficiently accessed and 
visualized together. The navigable visual environment 
provides overviews and detailed views in a rich, dynamic 
context. Gene analysis tools, such as BLAST or GeneMark 
[Bor93] (which finds likely genes), can be launched from 
within the framework and can efficiently access the data 
stored there. The results from such analyses are 
immediately available for visualization and comparative 
study. This visualization framework significantly changes 
the genome analysis process by speeding it up greatly, 
removing tedious steps, and displaying unforeseen avenues 
of analysis. 

This framework permits a scientist to interactively 
explore, browse, compare and analyze many types of 
biological information. It helps researchers identify new 
information within DNA sequences about genes and 
encoded proteins and to establish relationships between 
pieces of genetic information across species. Our approach 
is to develop data structures and systems to create a spatial 
embedding for genomic data sets that can be accessed by a 
visualization procedure that employs level-of-detail 
techniques to rapidly display the data that the user is 

interested in. Its ability to combine visual exploration with 
efficient access to comprehensive data and embedded 
analysis tools is novel. 

The framework, called GVis, has the following properties, 
which will be described further in Sections 3 through 7: 
• A multiscale structure based on the Pad++ “infinite 

pan and zoom” paradigm, 
• A general tree structure capable of providing quick 

access to many thousands of genomes of any size, 
• A layout scheme for arranging genomic information, 

including annotations, at different scales that supports 
iterative analysis and comparison, 

• Level of detail techniques to continuously reveal 
increasing amounts of detail as one zooms in, 

• Multiple interaction techniques for presenting “details 
on demand” through direct interaction with the visual 
presentation, 

• Integrated analysis tools that can be launched within 
GVis and whose results can then be compared. 

We have first applied GVis to a database of 1330 
complete virus, archaea, bacterial, and eukaryote genomes. 
The viral portion of this database was recently reannotated 
by Borodovsky and colleagues and is a valuable resource 
for investigating viral function and behavior. Since then we 
have added several thousand additional genomes to the 
database. 

 
2 Prior Art 

Given the wealth of data generated by the Human 
Genome project for human and other species, there is a 
well-recognized need [Ste02] for powerful integration & 
visualization tools to explore massive genomic data, 
structures and gene networks. 

A number of visualization tools have been created to 
allow users to view genome-sized data in an integrative 
manner. These have been constructed such that the 
information can be scaled to the level of interest. One such 
tool is Ensembl, www.ensembl.org, which has a 
“Mapquest-like” interface (i.e., discrete jumps between 
viewpoints rather than the continuous method we employ), 
and contains a wealth of information about a particular 
genome down to the nucleotide sequence level. Another 
visualization program is GenDB [Goe03], which makes use 
of static databases to produce a dynamic interface, which 
the user can peruse. However, neither these nor other tools 
make use of highly interactive exploration (in particular 
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continuous zooming and panning through multiple levels of 
detail), real time analyses and comparative genome analysis. 
Instead, they merely display data that has already been 
analyzed and compiled into a database for future viewing. 
In addition, while many such tools are made for use with 
large-scale data, their actual visualization is primitive and 
not easily scalable, which often causes navigation through 
the data to be slow and views narrow. 

In the visualization community, tools for 
comprehensively handling large scale genomic data are rare. 
Chi et. al. [Chi95] developed a graphical representation for 
multivariate sequence similarity search results. A 3D 
viewer compared sequences obtained via BLAST, 
including frame numbers and frame shifts for protein 
encoding. Several results can be compared in this viewer, 
but there is no possibility of showing contextual data; only 
the results from the BLAST hits are displayed.  

There has also been some preliminary work on genome 
function analysis in an immersive virtual environment 
[Kan02]. Here a CAVE-like environment with 5 screen 
walls is used for pair-wise comparison of cluster sets from 
different gene expression datasets. These comparisons are 
visualized as a set of 3D histograms and overlapping 
clusters that surround the viewer.  

There has been work on genome visualization using a 
desktop "virtual environment" [Ada02]. This study uses a 
desktop environment similar to the one used here and has 
the capability to zoom in from overviews of chromosomes 
to individual genes and their associated proteins. The study 
supports our premise that a multiresolution genome 
visualization is useful and can be supported on off-the-shelf 
desktop computers (with 3D graphics cards), but it doesn't 
have the complete scalable hierarchy and large range of 
scales and resolutions supported in our framework. Finally, 
the challenges for interactive visualization posed by very 
large amounts of data and tasks such as comparing different 
genomes, studying variations between individuals, 
interpreting protein expression data, and other tasks has 
been emphasized [Tur01]. The authors promote 
interdisciplinary collaborations and level of detail 
approaches, both of which are part of the framework 
presented here. 

Our framework is based on the "Pad" [Per93] metaphor 
and its extension, Pad++ [Bed94, Fur95]. In this metaphor, 
the information space is considered as an infinite 2D plane, 
which can be stretched by orders of magnitude at any point 
to investigate details. This is an important capability 
because we have found, in other highly 
scalable interfaces [War99], that one 
often discovers new things to 
investigate while navigating somewhere 
else. Pad++ has been mostly explored as 
a highly interactive, zoomable 
alternative to windows and icons 
interfaces and in applications such as 
navigable Web interfaces.  

The Pad++ software has been used for 
genomic visualization [Lor02]. Here the 
zoomable capability is put to good use 
as a browser to investigate human 
genome data at different scales showing 
overall gene structure for some part of 

the genome and then gene marking, protein, sequence, and 
other annotations at different scales. Our approach has all 
of these capabilities but generalizes to multiple genomes, 
comparative analysis, and support for very large databases. 

 
3 Enhanced Gene Finding and Analysis Process 

We are applying a human-centered design process for the 
interactive visualization aspects of GVis [Dix98,Nor02]. In 
brief, the process we have followed is to iterate over the 
phases of Task Analysis, Design, and Rapid Prototping. 
Part of our findings from Task Analysis (developed in 
discussions with bioinformaticists) is that gene-finding is a 
multi-step process fraught with delays and that overviews 
plus fast access to genomes both in the vicinity of a target 
genome and at other locations in the database is quite useful. 
In addition, launching analyses and seeing their results 
from within the visualization are quite important. We have 
therefore focused on these aspects in the development of 
the GVis framework.  

The task analysis indicates a work flow shown in Figure 1. 
Here a researcher zooms in from the universe of genomes 
stored in the system (level 1) to a particular genome (level 
2), to a gene neighborhood (level 3), to an individual gene 
and its structure (level 4) to its nucleotide sequence (level 
5). In following sections, we explain how this rapid 
traversal in scale and context is accomplished. For example, 
the actual nucleotide sequence of a stop codon can only be 
checked by looking at level 5, while the presence of many 
possible start codons (marked by icons) may only be visible 
at level 4. Level 3 may reveal an unusually high G+C 
content that would otherwise be hard to detect at more 
detailed levels. Level 2 allows viewing of a whole 
geneome’s structure, and level 1 reveals possible similar 
genetic structure with related nearby organisms.  

Figure 1 shows protein sequence information in the center 
column and domain architecture in the right column. For 
simplicity, we have shown these as being at finer levels of 
scale. Although the user may initially follow a particular 
path through the genome universe, there will then typically 
be much branching, jumping across the genome space, or 
returning to higher levels to follow different paths. Detailed 
and often complex analyses occur at levels 4 and 5, which 
can result in recursive links and jumps to other levels. This 
will often be the result of analyses carried out as the user 
follows the path. In particular, tools such as BLAST 
establish connections to other genomes (often not in the 
neighborhood of the original genome). It is a main goal of 

Level 1: Set of (viral) genomes

Level 2: A whole genome

Level 3: Gene neighborhood
(from GenBank)

(GeneMark analysis (graph))

Level 4: A gene structure
(if available) (from GenBank)

Level 5: DNA sequence of the
gene (from GenBank)

Molecule: DNA Molecule: Protein

Protein sequence Protein domain architecture
(from Pfam and SMART)

BLINK or BLAST
(connection to other genomes)

Protein structure
(if known) (from PDB)

(using Cn3D)

  Figure 1. Overview major steps in the gene analysis process.  
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our GVis framework to effectively support this gene-
finding, analysis process, and resulting correlative analysis 
among genomes. The framework we present in this paper 
so far supports levels 1, 2, 3 and 5 of the genetic analysis 
represented in the left column of Figure 1, plus some 
analyses represented in the middle column. 

 
4 Multiscale Approach 

To support this general process, we require an interactive 
approach that encompasses both space and scale. We 
consider a "2D + scale" space that has two spatial 
dimensions and a scale dimension. The basic pan and zoom 
navigation modes are easy to use and understand, yet the 
2D + scale space is able to handle very much more data 
than a non-scalable 2D visualization. In addition the 
reduction to two spatial dimensions makes existing 2D 
layouts straightforward to use and dynamic models for 
clustering and general layout control simple. 

In our vision, the GVis framework allows the scientist to 
freely interact with data describing the genetic structure of 
any known organism, and trace the relationships between 
similar sequences, performing analysis and comparison at 
key points. As one zooms in on a particular region of the 
data, for example, the system brings forth and displays new 
detail for that region. Such a model is especially useful for 
exploration and discovery in large data, which has multiple 
scales and many different features.  

The exploratory visualization encompasses two types of 
scalability: scalability in the number and diversity of 
genomes, and scalability in being able to navigate freely 
from an overview to the level of detail (LOD) of the 
individual nucleotide. Interactivity must be maintained for 
both types of scalability and when comparing and analyzing 
genomes, which is the main use for our methods. We are 
applying multiscale, multiresolution methods to maintain 
interactivity while revealing necessary detail at each level. 
Our methods retain contextual information as one navigates 
the genomic space. Contextual information, including 
overviews so that one knows where one is in the overall 
genomic space and detailed views that show relevant 
information in the vicinity of one's navigation path, has 
been shown to be quite important in exploratory analysis, 
where one does not always know in advance what one is 
looking for [Fau00]. Most analyses of large and complex 
data have an exploratory component. This principle has 
been encapsulated in the dictum, 'Focus + Context' from 
information visualization [Pir01].  

For the gene finding task, maintaining scalability, 
multiresolution data, and interactivity in a visual interface 
requires a special type of data organization. We consider 
this data organization next and discuss how it can be 
coupled with existing genomic data structures. An 
important aspect of this data organization is a universal 
model that permits multiple data servers and users who 
have individual copies. Because individual users can build 
their own parts of the universal data model, it also supports 
a new form of annotation that captures the process of 
exploration and analysis, rather than just individual notes. 

 
5 Managing Big and Complex Data 

Since the total size of the GVis gene database will grow 
significantly as users start acquiring more data of interest to 

view, we have developed data management techniques that 
apply a level of abstraction approach across the genomes in 
the database. Clearly, there is no point in drawing millions 
of nucleotides per genome when we are viewing all of them 
at the broadest level of overview, since each nucleotide 
would project to a small fraction of a pixel. 

For efficient navigation and exploration, data should be 
stored in a spatial hierarchy for incremental access and 
multiresolution display. The Pad authors [Per93] mention 
that the 2D + scale layout is geographical, but they do not 
fully capitalize on this fact. In this work we have used the 
geographical layout in a specific way. We lay out this 
structure in such a way that it satisfies, for the universal 
genome knowledge organization described below, the 
criterion that the contents of children be totally contained 
spatially in their parents and not overlap each other. This 
makes the domain-specific structure especially efficient to 
traverse and query spatially. The domain-specific structure 
encompasses both the 2D spatial extent and the scale 
dimension (through use of tree depth). It lends itself to 
interactive navigation of the scalable data space, with 
incremental updates from out-of-core data storage.  

 
5.1 Taxonomy Layout and Data Structure 

We want to build a structure that is based on a universal 
model containing comprehensive domain knowledge 
appropriate for genomic investigations. A universal 
structure is quite important because it can be used 
everywhere, on servers or by individual users collecting and 
annotating data, and is known apriori by everyone. This 
means that everyone knows where to put a new genomic 
annotation or find an existing piece of data. A universal 
structure means that genomic data can be highly distributed 

Figure 2. Zoom in operation from root (all genomes) to a 
specific genome (Human herpesvirus 7). 
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and easily shared. Everybody knows the structure but 
nobody possesses all the data. However, parts of the 
structure can easily be compared between users or servers 
to coordinate their contents. We chose the comprehensive 
phylogeny tree for all organisms as the universal structure. 
This tree has a place for everything in its branches, 
including archaea, bacteria, viruses, and eukaryotes. The 
phylogeny tree is widely recognized by users. It tends to 
group genomes with similar characteristics in size and 
functional structures on nearby branches. The phylogeny 
classification structure embodies how biologists tend to 
think about organisms. Nevertheless, it is also true that no 
structure, even if comprehensive, can encompass all the 
relationships that genomic scientists discover and 
investigate. Indeed, it is increasingly true that scientist 
compare quite disparate species (e.g., viruses and bacteria) 
to discover common mechanisms. Finally, it is important to 
note that the data layout and organization mechanism does 
not depend on the details of the structure used. If a 
universal structure other than a phylogeny tree were 
deemed more useful, the data could be efficiently organized 
for this structure. 

The embodiment of the phylogeny structure is a 
taxonomy tree based on the taxonomy and directory 
structure defined in NCBI. Each directory is considered as a 
node in the tree, and each genome is considered as a leaf 
node. (A tree structure appropriate for navigating within a 
genome is then attached to these leaf nodes.) The storage 
scheme on disk simply uses the file system tree to create 
categories and subcategories, so that data for new genomes 
can be added with little effort.  

In GVis, each node is represented by an ellipse and each 
leaf node is represented by a genome structure as shown in 
Figure 2. GVis adopts a containment relationship between 
parent and children nodes, which is similar to a Venn 
Diagram. Figure 3 illustrates the conventional node link 
tree structure in this representation. The location and size of 
child nodes inside the parent node depends on the number 
of children nodes, with no child nodes overlapping. First, 
locations are assigned randomly around the origin and then 
each of the locations is considered as a particle that pushes 
others nearby. To prevent particles from moving too far 
away, we add a counter-force that attract particles towards 
the origin (and keeps them within the parent node). These 
two complementary forces move particles in equilibrium 
positions eventually, and we then store them.  

When GVis loads the tree structure, depending on the 
number of children, it reads the location table and assigns 
this spatial coordinate into the node. In this way, it 
accelerates the loading process because the system does not 
need to compute the location of the children and users can 

freely add or remove genomes from a directory without 
worrying about changing the spatial information. 

Because of the containment relationships between parent 
and child nodes, the tree can be efficiently traversed. When 
the root node is put into the visual query, GVis will decide 
if the root node needs to be drawn by checking whether the 
view window contains or intersects it. If so, GVis traverses 
to the next level of the tree and applies the same test 
recursively. At some level, the size of node on the screen 
will be too small compared to a screen-space threshold, and 
this is the point when the traversal stops. In this way, the 
tree can be traversed very quickly. 

 
5.2 Multiscale Objects in Scale-Space 

Interactive visualization within the scale-space depends 
on two types of multiscale methods. One, already discussed 
above, is semantic zooming [Per93], which is purely 
multiscale and the other is view-dependent geometry and 
image simplification, which is both multiscale and 
multiresolution. The central idea in semantic zooming is to 
allow the user to examine areas of the data space in greater 
detail by smoothly allocating more and more screen area to 
it. While this is happening, data outside the current area of 
interest are shrunk and represented more and more 
abstractly. View-dependent simplification involves 
continuous reduction (or increase) of geometric and image 
detail based on screen space errors that are updated as the 
viewpoint changes. We invoke semantic zooming when we 
wish to relate levels of abstraction without regard to a 
detailed relation between geometry or appearance at 
different levels. We invoke simplification when it is 
effective to simplify the detailed geometric representation. 
For example in our system, the various views of gene 
sequence structure in Figure 2 are connected by semantic 
zooming, while the similarity graphs in Figure 10 below 
use view-dependent multiresolution simplification. 

 
6 Overview Windows 

One of the drawbacks of a zooming interface is that it is 
easy to get lost as we navigate, especially with a rich 
information space with a wide range of scales. To resolve 
this problem, GVis provides two overview windows. One 
contains the tree structure by representing the hierarchy as a 
circular node link tree as shown in Figure 4, and the other 
overview uses the genome structure in the main window 
(Figure 2). Thus changes of view on the main window are 
displayed in this second overview. For large genomes, more 
overviews could be constructed. 

Two forms of the first overview are provided. In the 
circular node link overview, the child nodes of the root are 
distributed evenly around the root node. To prevent 
overlapping between node c and d in Figure 5, the length of 
the link between parents (a and b) and children nodes (c and 
d) are defined as less than the half of the distance between 
parent nodes (a and b). The remaining locations of child 
nodes can be obtained recursively and if the length of link 
between the nodes is very small, the algorithm stops 
drawing the following children and stops traversing the tree. 
By applying this algorithm, the upper two pictures in Figure 
4 can be generated, which correspond to zoom-in operation 
as shown in Figure 2. As the current node in the main 
window changes while zooming in, the path of the 
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Figure 3: Translation from tree structure to Venn diagram 
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traversed node is shown. The pink links indicate leaf nodes, 
representing genomes. 

The circular node link tree is good for providing the path 
information of traversed nodes, but it is a completely 
different representation from that of main window. GVis 
therefore provides another overview window, which 
contains the same representation as that of the main 
window. Instead of actually zooming in, this second 
overview displays the viewed region of the main window, 
which shows where the user is located in the taxonomy 
hierarchy. In the lower two images in Figure 4, the pink 
rectangle denotes the main window’s view area. (See the 
color plate.) When zooming and panning, the size and 
location of this rectangle change. To avoid shrinking the 
pink rectangle to invisibility, GVis also zooms in (or out) 
the overview by a certain amount when the pink rectangle 
size is too small (or too large) for the current overview. The 
lower right picture in Figure 4 corresponds to the last one in 
Figure 2. By using Figure 4, the user can clearly see what 
the path is of the genome in the hierarchy and where she is 
in the information space. This structure provides a 
contextual and understandable set of views that go all the 
way from a general overview of all genomes to individual 
nucleotides. 

GVis handles navigation between widely separated 
genomes by providing interaction between main and 
overview windows. For example, in the circular tree in 
Figure 4, users can click any node, and this action will 
cause the main window to jump directly into that 
information space or genome. In addition, for overview 2 in 
Figure 4, users can drag the desired viewing area on the 
overview window, and the main window will pan and zoom 

to that desired view. Through these interactions, users do 
not need to zoom-in, zoom-out, pan, and zoom-in again to 
go to different information spaces.  

 
6.1 GVis in Action 

The following example 
shows the highly interactive 
data navigation possible with 
GVis. The user starts off with 
an image of the collection of 
genomes in the database Our 
initial test database has some 
thousands of genomes and 
multiple Gigabytes of data. 
Note that because of the 
hierarchical structure and the 
multiscale views, described further next, the database can 
be scaled to any size. For any size database, the only data 
that need be rendered from active memory are those for a 
particular view and scale. These particular data can be quite 
efficiently retrieved from the multiscale spatial layout using 
a mechanism similar to one used for large scale geospatial 
data [Dav99]. 

This is represented as a hierarchical layout of clusters of 
genomes, divided by taxonomy. As shown in the top left 
image of Figure 2, a large oval encapsulates the different 
classes of organisms; Archaea, Bacteria, Eukaryotes, and 
viruses. From here, the user can immediately zoom in 
interactively to the class, family, sub-family, or genus for 
the organism of interest. As the user zooms in, more and 
more semantic detail is revealed, starting with the segment 
of DNA that holds a gene, the gene name, its nucleotide 
index number, and so on. 

The image sequence from the top left to lower right in 
Figure 2 shows screenshots of our prototype viewer running 
on a 2.4GHz Pentium 4 computer with an nVidia GeForce 
4 graphics card. Each succeeding image was taken at 
500ms intervals over the 3 seconds it took to zoom in from 
the overview to the single virus genome in the lower left 
small image. Note, because the zoom is logarithmic in scale 
[Bed94], even a database containing all known genomes 
could be navigated in seconds (presuming that one had fast 
access to the scalable data structure in Sec. 5).  

For the user, the effect of this interface is that one is 
smoothly flying in, as in an overhead view of a landscape, 
and increased detail is unfolding. (The reverse effect occurs 
as one flies out.) The entire E.coli genome can be navigated 
in a few seconds, permitting one to investigate any level of 
detail at any location in the genome. The entire genome 
appears to be a coherent and accessible whole that can be 
navigated in context. This is contrasted with the usual Web 
query structure, where each query produces a result after a 
(sometimes lengthy) pause and the genome appears to be 
composed of a set of unconnected images.  

 
6.2 DNA Strand Spatial Organization 

The fundamental unit of spatial layout for our 
visualization is the horizontal DNA strand. This is a well-
understood spatial organization, appearing in gene viewing 
websites, such as Ensembl, the sequence alignment output 
of BLAST, and in many other displays of genomic data. 
GVis allows immediate navigation of the DNA strand to 

Figure 4. Upper Left: Node link tree of our genome database
containing 500Mbytes of data and 1500 genomes. Lower Left:
Corresponding and overview image of zoomable phylogeny
tree. Upper Right: Node link tree with a virus highlighted in
green Lower Right: Corresponding zoomed-in view of 
unclassified bacteriophages. The pink rectangle represents
the view being displayed in the main window. 

a 

b 

root

c 
d 

Figure 5. Node link 
circular tree 
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the left or right by simply dragging the displayed scene left 
or right with the mouse. For simple display of genomes, 
this organization would have the disadvantage of requiring 
horizontal motion to see more data while the rest of the 
screen lay unoccupied. However, in GVis the screen space 
above and below the DNA strand is used for the unified and 
scaled display of multiple annotations of the DNA strand.  

Currently, each individual gene (Figure 6) is represented 
by a colored box (or button) that is simply an icon for the 
underlying sequence. Each color represents a different type 
of data. For example, a gray button is for gene and a 
magenta button is for CDS (coding sequence). Clicking on 
a box (Gene Button) will immediately pop up a little 
window with the text record for the item, including the 
name, the sequence start and end, the gene’s function, the 
protein it creates, and so on. Users can pan the text inside 
any pop-up window by dragging the text with the mouse. 
The buttons above the organism name represent the positive 
DNA coding strand and those below the organism name are 
for negative strand. The annotation windows align 
themselves dynamically in the 2D space, near the section of 
the genome they represent, so that overlap is minimized as 
several boxes are opened. 

We apply several guiding design principles. First, we 
locate related items as closely as possible to one another. 
Second, we seek to minimize direct screen space 
rearrangement by the user (mainly done to make occluded 
items visible) by dynamic rearrangement and by dynamic 
scaling (items in a collection next to the DNA sequence can 
be brought forward individually while others fall back to 
minimize overlap). All this permits the user to quickly get 
the maximum amount of information while not losing 
context. Third, we make a mouse selection of a feature in 
one type of display (sequence, say) result in the other 
related analyses or objects being highlighted in a brushing 
and linking interaction. 

6.3 Representing Gene Annotations 
GVis uses information on GenBank files to visualize 

genomes. Based on gene annotations by NCBI (National 
Center for Biotechnology Information, 

http://www.ncbi.nlm.nih.gov). The following is a small 
fragment of the GenBank file for E.coli. 

CDS         2046677..2048227 
                 /gene="ansP" 

 /function="transport; Transport of small 
molecules:    Amino acids, amines" 

 /note="Residues 1 to 516 of 516 are 100.00 pct 
identical to residues 1 to 516 of 516 from 
Escherichia coli K-12 

                 Strain MG1655: B1453" 
                 /codon_start=1  
This fragment of text refers to one of the coding 

sequences in E.coli. All other genes or misc_features, etc. 
are represented in this way. To represent this text file 
visually, the key words such as CDS, gene, etc. are 
represented by the gene buttons shown across the horizontal 
centerline in Figure 6. Other genomes (e.g., viruses or 
eukaryotes) are represented in a similar way. 

 

6.4 Data Management for One DNA Sequence 
Currently, the DNA sequences in our database range in 

size from 50Kbytes to 40Mbytes, and DNA sequences 
range in lengths from a few thousand to 20 million. 
Loading all of this data at once will exceed the memory 
size of many desktop machines and will not admit 
scalability. We therefore manage the data in a way that 
allows GVis to load and display only the data being viewed 
at the moment. 

To manage data for a single DNA sequence, we have 
built a data structure that manages the spatial detail 
according to the projected size of the information to be 
displayed. This data structure provides semantic zooming 
capabilities, which uses levels of abstraction rather than 
levels of detail, the goal being to transmit as much meaning 
as possible at each scale. Thus upon zooming in, the user 
sees not only more detail but also more types of 
information coordinated in a meaningful way. 

The data for each DNA sequence is preprocessed into a 
binary tree structure, and each level of this tree has an 
aggregate representation of the contents in its child nodes. 
Figure 7 illustrates this multi-resolution genome tree. The 

Figure 6. Representation of a small segment of the E. Coli 
genome. 

Level 0 

Level 1 

Level 2 

Level 3 

Level 3 

Level 2 

Level 1 

  Level 0 

Figure 7. Building a binary tree from bottom to top for a DNA 
sequence. As we go up the tree, gene buttons that are close 
merge into one box. 
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domain of the tree is the DNA sequence; with each node in 
a tree representing a range of DNA base pairs.  

At the leaf node level (Level 3 in Figure 7), each node 
represents a contiguous range of 64K basepairs. Each node 
also contains a list of visually salient items, so leaf nodes 
thus contain the highest level of detail. Thus, each leaf node 
has all the information of each gene in its range, such as 
start and stop sequence, direction, name, protein coding 
sequence, etc.  

When two nodes are combined at Level 2, those buttons 
(genes, CDS, RNA, etc) that are close together are clustered 
and are represented as one button, and those smaller than 
one pixel will disappear. This structure is intended to 
support a viewing program in which at least 1 or 2 nodes 
are visible at one of the levels in the tree. By comparing the 
view window size with the genome sequence length inside 
the view window, the level and node are determined and 
this is when the information of the node to be displayed is 
retrieved from disk. By representing a genome with several 
levels of abstraction, it can be explored efficiently, and by 
retrieving data only when it is needed, the system can 
lessen the memory load when handling large amount of 
data. This structure is entirely scalable to collections of 
genomes of any size with individual genomes of any length. 

We measured the real-time disk access for GVis as the 
user zooms in to a single large DNA sequence. Retrievals 
of 10KB are typical during the zoom when the projected 
size of the entire sequence is between a few pixels and 500 
pixels. As the DNA sequence stretches across the entire 
width of the display, retrievals are 80KB on average. On 
average, there are about 10 retrievals per second, each 
resulting from a traversal from parent to child. This 
retrieval rate is governed largely by drawing speed of the 
retrieved data, and retrieval causes no pauses in the drawing. 
In fact, on newer desktop PCs, the speed of retrieval and 
drawing is so fast that pauses must be inserted to keep 
navigation at a reasonable speed, which can be adjusted 
according to user preference.  

7 Analysis Within GVis 
One of the most powerful aspects of GVis is to analyze 

data found as a result of fast, interactive exploration and 
display the results in context for correlative analysis. All 
the data needed, including annotations, can be collected in 
one database and thus quickly retrieved and displayed. Here 
we demonstrate with BLAST results, but a variety of other 
gene or protein analysis tools could be inserted. 

Since BLAST and like tools find related nucleotide or 
protein sequences that might belong to widely different 
organisms, it is best to display results using a series of 
secondary windows, as shown in Figure 8. The secondary 
windows can all be panned and zoomed. In addition, the 
user has the option of selecting in one window and having 
the appropriate genome (including the relevant part of the 
genome) highlighted in the main window. 

The user, guided by the annotations, directly selects a 
nucleotide sequence of interest (Figure 9). The selection bar 
defaults to open reading frames (ORFs), likely sites for 
gene expression, but can also be interactively placed and 
sized. The selected area is sent off to BLAST. In the 
example shown in Figure 10, the nucleotide sequence is 
automatically expressed into possible proteins and BLAST 
then provides a list, in its own window, of hits in 
descending order of interest, with the original protein 
sequence on top. When the user passes the cursor over the 
hits, names and other information pop up (Figure 10 (left)). 
The curves on top of each sequence in the hit list show the 
local similarity to the original sequence. Thus peaks and 
especially plateaus are of interest and can quickly be found. 
Since hits from different places on the list may be of 
interest, the user can select from this list and an analysis 
window pops up that contains the user’s selections in the 
order selected. Detailed comparisons will be made from the 
working (analysis) window (Figure 10 (right)), so any 
annotations should be displayed there. For example, when 
BLAST is run to find related nucleotide sequences, the 
analysis window contains gene, CDS, and other annotations 
as shown in Figure 6. Multiple BLAST windows can be set 
up and selections made into one or more working windows. 
Furthermore, BLAST can be run again from selections 
within the working window. This is the iterative process, 
indicated in Figure 1, supporting deeper analysis and 

Figure 8. Selection from genome and resulting BLAST output
window. 

Figure 9. Selection interface. The black barbell at the bottom 
is the selection and the colored barbells indicate ORFs. 
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understanding. 
This collection of fast, intuitive, and interconnected 

analysis tools greatly increase the capabilities of 
bioinformatics investigators. We have put these tools into 
the hands of these investigators both at Georgia Tech and 
UNC Charlotte. Their feedback has already led to a round 
of additions and refinement. 
 
8 Conclusions and Future Work 

The goals of this work have been to support the new gene 
finding and analysis process illustrated in Figure 1. The 
current GVis framework supports the viewing and analysis 
of genomic data by allowing the user to investigate, and 
launch analyses on, any of the genomes in the database at 
any level of detail. These levels of detail range from 
taxonomy or phylogeny to the individual nucleotides.  

The GVis framework improves significantly on the tools 
currently available to many biologists in the international 
public databases such as Ensembl and GeneDB. These web 
interfaces provide only a fragmented view of a single piece 
of data at a time, and offer interaction times ranging from 
seconds to minutes when accessing data. By contrast, the 
GVis framework provides a comprehensive taxonomical 
view of the genetic database that the user may have, and 
can view that data at any level of desired detail. Moreover, 
the GVis framework provides very fast access to these data 
at any level of detail. Rapid access is provided by 
hierarchical structures that speed up both the graphical 
display of data and the incremental retrieval of data from 
disk. 

Our future work is to extend the GVis framework to 
support more analysis tools, and to display correlative 
analyses of genomic data in a more comprehensive and 
effective way. We also plan to add a system for users to 
enter their own annotations to the database. Finally, we are 
planning thorough evaluations and comparative testing. 
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Figure 10. Close-up of BLAST output window (left) and working (analysis) window 
(right). 
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Figure 4. Upper Left: Node link tree of our genome database 
containing 500Mbytes of data and 1500 genomes. Lower Left: 
Corresponding and overview image of zoomable phylogeny 
tree. Upper Right: Node link tree with a virus highlighted in 
green Lower Right: Corresponding zoomed-in view of 
unclassified bacteriophages. 

 
Figure 8. Selection from genome and  resulting BLAST output window. 

Figure 2. Zoom in operation from root (all genomes) to a
specific genome (Human herpesvirus 7). 


