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Abstract 
This paper develops an approach for the splat-based visualization of large scale, non-uniform data. A 
hierarchical structure is generated that permits detailed treatment at the leaf nodes of the non-uniform 
distribution. A set of levels of detail (LODs) are generated based on the levels of the hierarchy. These yield 
two metrics, one in terms of the spatial extent of the bounding box containing the splat and one in terms of 
the variation of the scalar field over this box. The former yields a view-dependent choice of LODs while 
the latter yields a view-independent LOD based on the field variation. To show the utility of this general 
approach it is applied to a set of application data for a whole earth environment and some test data. 
Performance results are given. 
 
Introduction 
 
This paper presents the following results. It develops an approach for organizing multiresolution splats of 
3D data into a hierarchical structure. The hierarchical structure and the multiresolution splats are generated 
automatically for a given dataset. For concreteness the structure is detailed in terms of a global, earth-based 
hierarchy. However, the methods are general and applicable to other types of data distribution. A view-
dependent procedure permits on-the-fly selection of levels of detail (LODs) based on the user viewpoint, 
using an adjustable screen space error metric. This results in efficient display with emphasis given to 
important or visually prominent details. The method is extended to non-uniform data distributions, 
including those containing incommensurate parts and distinctly different topologies. Lastly, the approach is 
applied to non-uniform 3D weather patterns with holes and to various test datasets. 
 
We use splatting because it is efficient and lends itself to a multiresolution framework. Splats can be treated 
independently and, if desired, without reference to the underlying data topology. Thus splats can be applied 
to irregular volume data sets [Zwi01, Mao96] and even to unstructured points with no explicit topology. 
(However, as discussed below, optimal splatting would take into account the local distribution of data 
points around the splat.) 
 
Non-uniform data.  Increasingly there are sources that produce non-uniform 3D data. This is especially 
true for digital data acquired from measuring devices or sensors. But it is also true for computer simulations 
such as finite element calculations (e.g., for a helicopter) that employ multiple, interlocking curivlinear 
meshes. The goal is ultimately to view relevant data simulaneously, such as real acquired data and virtual 
simulation results that may have completely unrelated data distributions. 
 
To visualize non-uniform data in the form of unstructured grids, the approach is usually to resample on a 
regular grid [Wei01, Wil93.]. However, there are data for which the details of the original distribution are 
important. For the Doppler radar data discussed below, the signature of a severe storm cell or even a 
tornado may be contained in a few sample points. The same is true for a computational fluid dynamics 
simulation of combustion in an engine, where the flame front may be only a few sample points wide and 
quite non-flat. A regular sampling that would capture these features will typically produce lots of extra 
points, even in adaptive, hierarchical approaches where higher resolution samples are displayed only where 
needed. A more efficient alternative is to use a sampling that depends on the local distribution of the 
original data. The trade-offs here are similar to those in using regular triangulations [Lin96] versus 
triangular irregular networks [Hop98] to represent complex surface geometry. 
 
Ideally, one would like an approach that automatically decides when to perform a regular resampling of the 
grid at lower resolutions and when to reveal the details of the non-uniform structure at high resolution. To 
do this, we have chosen a view-dependent hierarchical structure that is regular in its upper part but reveals 
the non-uniform distribution of the original data in its lower part. A multiresolution splatting structure fits 
naturally into this hierarchical scheme. In addition the scheme can be extended to the fusion of different 
types of data structures for simultaneous visualization. 
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Fig. 1 Embedded, adaptive volume tree in 
global earth environment. 

 
Background and Related Work 
 
Splatting [Wes90] is a technique where a continuous volume is represented for the purpose of rendering by 
the compositing of independent footprint functions. The footprints are projections onto screen space of 3D 
kernels centered on the sample points in the volume dataset. This method can provide high quality images 
and is efficient with respect to other direct rendering algorithms (e.g., ray-casting) since it uses 2D 
convolution of samples along the viewing ray instead of 3D convolution, such as in ray-casting. Since they 
are precomputed, the splat kernels can also be of higher quality than are typically used in ray-casting 
methods. Recently Zwicker et. al. [Zwi01] have developed a general framework for splatting that removes 
aliasing artifacts without excessive blurring and is suitable for regular or irregular volume datasets. This 
work is based on a similar but less general approach developed by Swan et. al. [Swa97]. The method of 
Zwicker et. al. derives a significant part of its efficiency from the use of elliptical Gaussian kernels for 
which one can derive an analytic expression of the footprint in screen space. 
 
There has been relatively little work applying splatting to non-uniform data. Ma et.al. apply spherical splats 
to the visualization of 3D shock waves on unstructured grids [Ma96]. They center the spherical splat on 
each grid point and use a radius that is the average distance to the nearest neighbors. This can be a gross 
approximation for highly non-uniform data. An accurate splat would reflect the shape of the corresponding 
local region around a data point (or, generally, the enclosing Voronoi cell). Since this shape is not elliptical 
in general, it cannot be treated with existing compositing algorithms [Zwi01]. An alternative is to place 
additional points in the neighborhood of the existing data point, taking into account the local data 
distribution, and place elliptical Gaussians at these points. The criterion is to provide uniform coverage 
over the space of the volume. Mao [Mao96] has done this using a 3D generalization of a stochastic Poisson 
disk algorithm. This approach gives good results when applied to multigridded hexahedral or tetrahedral 
datasets. However, the stochastic resampling step is quite time-consuming. Also, the resulting resampled 
dataset can be a factor of 20 or more larger than the original non-uniform dataset. Instead of a stochastic 
method, we use a much faster procedural method for placing additional splats in the neighborhood of each 
non-uniform data point. Added points can also be aggregated for multiresolution rendering. 
 
Axis-aligned sheet buffers [Wes90] are often used in splatting to improve efficiency and remove artifacts 
such as color bleeding. The latter is due to the independent splat approximation in areas where splats 
overlap. However, sheet buffers introduce popping artifacts, especially noticeable during interactive 
rotation from one set of sheet buffers to another. Recent work removes the popping artifacts by using sheet 
buffers parallel to the image plane instead of parallel to the data axes [Mue99]. This approach. However, 
sheet buffers are less appropriate for non-uniform data, since they amount to a regular resampling where 
high resolution details may be lost, as discussed above. An alternative is to slice the splats along the 
direction perpendicular to the image and interleave the 
slices. 
 
Hierarchical techniques can improve volume rendering 
interactivity through progressive refinement using 
estimated errors stored at each level of the hierarchy 
[Lau91, Wil94]. Ma et al [Ma98] reported experimental 
results in which they examined the performance 
benefits of various types of quantization in a system 
that stored time-varying volume data in a sequence of 
octrees. Sutton and Hansen [Sut99] have shown that a 
flexible branch-on-need tree (TBON) can efficiently 
accommodate temporal changes in the data. These 
approaches and most others consider uniform data. Our 
hierarchical approach applies to non-uniform data and 
is extended to incorporate view-dependence, permitting 
the system to efficiently and continuously present the 
best view as the user viewpoint changes. In addition the 
approach provides a general, adaptive tree structure that 
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is generated automatically and is appropriate for fusing incommensurate datasets. Although we do not 
consider time-dependent data in this paper, our tree structure can be extended to the TBON [Sut99] or other 
time-dependent structures. 
 
Embedded, Adaptive Volume Tree Structure 
 
We present a method for automatically generating a volume tree structure in an environment where there 
may be different types of data with different organizations and several orders of spatial magnitude 
difference between overviews and close-ups of important details. We particularize to earth-based data in 
this paper, but the method is general. At the top level, the structure has an overall hierarchy that is effective 
in supporting all the different types of data. At mid level are volume trees that align with top-level nodes 
and may differ in different regions depending on the data organization in the regions. At the bottom the 
structure depends on the details of the non-uniform data distribution. This structure is shown for earth-
based data in Fig. 1. Here the top-level structure is a forest of quadtrees that covers the entire earth [Fau00]. 
The mid-level is a volume tree aligned with a quadtree node. At the bottom level the leaf nodes contain 
zero, one or two non-uniform data points. 
 
The structure in Fig. 1 turns out to work well for atmospheric data. The atmosphere is a thin layer with 
respect to the earth’s ellipsoid, so it is appropriate to use a lat/lon quadtree until the lat/lon dimensions are 
of the same order of magnitude as the altitude dimension. After that we switch to a volume tree. The 
quadnode is divided into Nx x Ny x Nz bins where x,y,z are the longitude, latitude, and altitude directions, 
respectively. The bin sort of non-uniform data points is fast (O(n) where n is the number of points). This is 
a key step because the bins provide a structure that is quickly aggregated into a hierarchy for detail 
management and for view frustum culling. However, the data element positions are retained in the bins for 
full resolution rendering, if needed. The hierarchy provides significant savings in memory space and 
retrieval cost since only data element coordinates for viewable bins at the appropriate LOD are retrieved. 
Note that the bins are not rectilinear in Cartesian space. At present we ignore this effect in performing the 
volume rendering because the earth’s curvature is small for the bins rendered and lat/lon quadcells are 
nearly rectilinear except at high latitudes. In general, the bin widths in each direction are non-uniform (e.g., 
each of the bins in the, say, Nz direction may have a different width). This gives useful flexibility in 
distributing bins such as, for example, when atmospheric measurements are concentrated near the ground 
with a fall-off in number at higher altitudes.  
 
Each of the dimensions N in the x,y,z directions is a power of 2. This permits straightforward construction 
of a volume hierarchy that is binary in each direction. Our tests show that this restriction does not impose 
an undue hardship, at least for the types of atmospheric data we are likely to encounter. The number of 
children at a given node will be 2, 4, or 8. If all dimensions are equal, the hierarchy is an octree. Typically 
the average number of children is between 4 and 8. We restrict the hierarchy to the following construction. 
(Others are possible.) Suppose that Nx = 2m, Ny = 2n, Nz = 2p where m > n > p. Then there will be p 8-fold 
levels (i.e., each parent at that level has 8 children), n-p 4-fold levels, and m-n 2-fold levels. If two out of 
three exponents are equal, there will be only 8-fold and 4-fold levels. The placement of 2, 4, and 8-fold 
levels within the hierarchy will depend on the distribution for the specific type of volumetric data.  
 
The above bin size is determined by the minimum spacing of the underlying data points. As stated above, 
there are no more than two points per bin. The reason for this choice is that we want a smooth transition 
between rendering of bin-based levels of detail and rendering of the raw data. If the data are distributed in 
well-separated clumps, an immense number of regularly spaced bins is required. However, in our procedure 
only filled bins are stored and accumulated into the tree. Where there are no filled bins, there are no tree 
branches. As the bins are accumulated, the properties at parent nodes are derived from weighted averages 
of child properties. The parent also carries the following factors: (1) the total raw volumetric data elements 
contained in the children; (2) the total filled bins contained in the children; (3) the average scalar field value 
and its variance. The dimensions of each node in the tree can easily be calculated on-the-fly and are not 
stored. Note that the bin structure and volume hierarchy are static in space. However, we can efficiently 
apply this structure even to distributions of volumetric elements that move in space as long as the range of 
local spatial densities (and the volume of the data) does not change much over time. 
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Fig. 2 Screen projection of a hierarchy cell at 
different orientations. 

View-Dependence 
 
The above hierarchical structure provides efficiencies in rendering the volumetric data. Adjusting an error 
metric derived from the hierarchy (e.g., in terms of the RMS deviation of scalar values contained in a node 
from their average value) permits one to select from the multiple resolutions contained in the hierarchy. 
One could use a larger error for initial interactive visualization of the volume and then, when pausing for 
more detailed inspection, smaller errors for progressive refinement of the volumetric rendering. Such a 
procedure could also be employed for compression and then progressive transmission of the volumetric 
data. Similar approaches have been developed by others [Lau91, Wil94]. The hierarchy also permits quick 
culling, as the viewpoint changes, of volume elements that are not in the view frustum. 
 
Interactive navigation of large scale data requires additional efficiencies. Here some data elements may be 
close to the viewpoint, some at midview, and others far away from the viewpoint. The rendering system 
should take into account the projection of these elements onto the screen and thus their perceivability to the 
user. Several neighboring elements that are small or far away may fall within a single pixel. Such elements 
should be rendered at lower resolution, resulting in an image that displays several LODs at once. To be 
effective such a set of LODs should be updated every time the viewpoint changes, which can be every 
frame for continuous navigation. To achieve these goals, we will extend hierarchical splatting by using a 
variation of the view-dependent approach that has been applied by us [Lin96] and others [Lue97, Hop98] to 
surface polygonal data. 
 
The view-dependent approach needs a measure of 
spatial extent, which is provided in the volumetric 
case by the cell size of the nodes in the hierarchy. The 
non-uniform data points in the leaf nodes are handled 
separately. (See below.) Using the notation of the last 
section, the cells are rectilinear with sides Lx, Ly, Lz. 
Suppose Lz is the largest dimension. Then, depending 
on orientation, the screen projected linear footprint of 
the cell can have a value ranging from (Lx

2 + Ly
2)1/2 to 

(Lx
2 + Ly

2+ Lz
2)1/2. (See Fig. 2.) One could store the 

orientations of the axes for each of these sides and, 
using the current viewpoint location, compute the 
precise footprint for each cell. For the earth-based 
case, not much information need be stored (at the 
expense of some computation to find the current cell orientation) since the cells are regular and everywhere 
along a radial from the earth’s center. Currently we have chosen to forego extra computation and use a 
fixed linear footprint for all orientations, conservatively set at (Lx

2 + Ly
2+ Lz

2)1/2. A simple analysis of 
edges visible in various orientations shows that footprints near this size are more likely than those near, say, 
(Lx

2 + Ly
2)1/2 in size. This choice also generalizes to other hierarchical structures that may not be so uniform 

in orientation. The footprint is then perspective projected onto the screen (see Fig. 2), converted to pixels, 
and compared to a screen space error metric. Testing is done from parent to child in the hierarchy until the 
footprint falls below the error metric. Performance results in the Application section below show that the 
fixed linear footprint is not overly expensive in terms of extra splats rendered. An error metric of 1 pixel 
should result in an image that is barely distinguishable from one rendered with high resolution splats, 
depending on how close using an averaged splat is to compositing. 
 
We now have two error metrics controlling the rendering speed and quality, a screen space metric and a 
scalar value error metric. The screen space metric addresses pixel-based visual quality. The scalar value 
metric determines the resolution of detail in the scalar field. As discussed above, the latter could be 
dynamically adjusted when one pauses at a certain view. It could also be keyed to ranges in the scalar field, 
being made smaller for those ranges deemed more important. Finally it could be coupled to a viewing 
device such as an interactive magic lens [Sto94], bringing out greater detail in the lens subview.  
 
It is important to note that a choice of view-dependent metric greater than or equal to one pixel will have 
the effect of removing aliasing in the sense of Swan et. al. [Swa97], but with fewer splats. There will be in 
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Fig. 3 Splatting in a 2D cell formed 
by nearest neighbors of central point. 

general an error associated with compositing an averaged splat, but this will be confined to a space of 1 
pixel or less for a metrics less than or equal to 1 pixel. The nature of this approximation and how to adjust 
the averaged splat to minimize it will be the subject of a future paper. However, for our application below a 
screen space error of 1 pixel causes minimal differences from full detail rendering. Also, the error can be 
adjusted on-the-fly. As part of future work we will also look at mechanisms for combining the two metrics 
into one. 
 
Splat Structure 
 
Several approaches have been applied to splat footprint construction and compositing. Polygon and texture-
based methods [Mer01, Lau91, Rot00] using 2D or 3D textures can take advantage of graphics hardware to 
composite and render overlapping polygons. These approaches work well for regular data. However, for 
non-uniformly distributed data, one must either constrain to uniform bounding boxes for the splats 
(Meredith et. al. use cubic boxes [Mer01]) or face significant complications in correctly projecting, 
sampling, and rendering non-uniform splats. Using regular bounding boxes amounts to an approximation 
that smooths out non-uniformities. As stated at the beginning of the paper, we would like an approach that 
permits retention of these details, although uniform splats may also be used. 
 
We have chosen to construct splats that are not necessarily uniform in their orientation or aspect ratios. 
However they all fit into rectilinear bounding boxes. The approach of Zwicker et. al. [Zwi01] permitting 
efficient perspective projection and correct anti-aliasing for arbitrary elliptical kernels can thus be applied. 
Other approaches, including texture-based methods, can be applied as well. Using splats of non-uniform 
orientation and aspect ratio requires more computation than uniform splats. However, the view-dependent 
hierarchical approach helps keep the splat construction and rendering efficient. Interactive techniques, such 
as magic lenses, can also be applied; the hierarchy helps with quick retrieval of data in this case. 
 
The issue for a non-uniform distribution is illustrated in Fig. 3. 
(This would describe the non-uniform regions at the leaf nodes 
of the above hierarchical structure.) A single elliptical splat, 
even if optimally oriented, cannot provide uniform coverage 
for all the neighbors of the central data point. For example in 
Fig. 3a if it provides correct coverage for the top neighbors, it 
overlaps the bottom neighbors too much. On the other hand, 
multiple elliptical splats (Fig. 3b) can be oriented and sized to 
provide better coverage over the cell. We have developed and 
are implementing a procedure, based on the Voronoi cell 
describing the region around a point, to place and orient splats to give more uniform coverage in non-

uniform cells. Closest splats are combined to give LODs. At the moment we use elliptical, textured splats 
centered at the sample points with appropriate scale and orientation. The splat construction and 
compositing could be replaced with that of Zwicker et. al. [Zwi01] which provides and accurate, analytic 
expression of the integration of the footprint in screen space. 
 
Application Results 
 
In order to evaluate our approach, we have organized and rendered a variety of test and application data. 
The main application data are from Nexrad 3D Doppler radars. The volume is collected as a series of 
conical scans at increasing angle (Fig. 4). To our knowledge, the only work that explicitly acknowledges 
the 3D structure of Nexrad and grapples with its anisotropy is by Djurcilov and Pang [Dju99]. They 

Fig. 4 Side cut-away view of a single Nexrad radar. The 9 gray sweep lines are surrounded by regions of 
higher confidence in the accuracy of the readings. At lower elevations, spacing between the sweeps is 
close enough to assume readings from a continuous medium. 
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Fig 5. Cut-away side view of 2 NEXRAD Doppler 
weather stations. Vertical scale is 4 times horizontal. Each 
radar station collects data at 9 sweeps (represented by grey 
lines) at increasing angles to the horizontal. The entire 
extent of radar sweeps from station A is shown from the 
left to right. Station B is approximately 170km to the right 
of station A, and the region between them has overlapping 
scans. 

B Overlap 
Region A 

explored the creation of smooth isosurfaces in the context of missing data and irregular grids. The focus of 
their work is on the rendering of a collection of cones from a single Nexrad station, accurately reflecting 
the absence of measurement data, with the additional display of uncertainty information. Because of the 
curvilinear nature of the radar scan (Fig. 4), the data can be both sparse and blurred when usual 
visualization techniques (i.e., isosurfaces and volumetric rendering) employing regular grids are applied. 
Further there can be holes in the data produced by regions of null readings. Finally there can be multiple 
overlapping radars. (For example, there are 3 overlapping radars covering North Georgia, and 9 covering 
central Oklahoma.) The overlapping areas can provide regions of increased spatial complexity and non-
uniformity, as illustrated in Fig. 5. 
 
Among the products collected by the 
Nexrad radars are reflectivities and wind 
velocities. The reflectivities determine 
the amount of precipitation in a sampled 
region and even the type of precipitation. 
The wind velocity is a line-of-sight 
reading; high positive/negative values for 
adjacent points indicate the presence of 
high shear and can be part of the 
signature of a tornado. The tornadic 
signature can be corroborated by the 3D 
structure of the reflectivity and velocity data in the region. 

 
Fig. 6 (left) shows a volume rendering of the reflectivity readings from a NEXRAD Doppler Radar 
covering North Georgia from a severe storm that passed over the Atlanta area in late March 1996. The red 
and yellow band running North-South through the central region is an area of very heavy rainfall. The color 
bars to the bottom left show the transfer function from reflectivity to RGBA values. The left bar is RGB 
and the right two bars show RGBA blended with black and white. Fig 6 (right) shows the velocity readings 
of the same storm at the same time. The major feature running from Northwest to Southeast is the line 
perpendicular to the wind direction for the entire storm. Because Doppler radar gives velocity only along 

 
Fig. 6 (left) Image of Doppler radar reflectivities over North Georgia. Heavy rainfall is evident along a front 
from the southwest towards the center (yellow and red splats).  Doppler velocities are shown in the right image 
for the same time step. We have drawn a more limited radius of radar. Because the winds are heading northeast, 
the northeast half show positive velocities (away from the radar) and the southwest half show negative velocities 
(toward the radar). 
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each radial line, there will be a sign change in velocity values where the radar is perpendicular to the wind 
direction. In Fig. 6 right, the storm is heading Northeast. We have set up the color ramp to change abruptly 
from cyan (positive) to blue (negative). 
 
Figure 7 shows a close-up of the velocity dataset with small orange and yellow circles drawn to indicate 
mesocyclones that were detected by WDSS, which is Doppler radar weather analysis software.  

 
 
Performance Results 

Table 1 shows the performance of our screen-space 
metric being used to select the level of detail to 
render. The screen-space error metric in this case is 2 
pixels. As we move from an altitude of 2667 km 
down to an altitude of 4km, greater and greater levels 
of detail are selected using the algorithm presented 
above. The image size being rendered is 800 x 600 
pixels, and the computer user to render these images 
was an SGI 195MHz R1000 with Infinite Reality 2 
graphics. Rendering times reach a maximum of 1.7 
seconds before view frustum culling starts to 
eliminate a significant amount of the radar from the 
view. 
 

Image Maximim Octree  
Level Rendered 

Splats  
Rendered 

Time (S) 

1 11 9,681 0.072 
2 12 12,414 0.117 
3 12 44,488 0.346 
4 13 121,393 1.080 
5 14 152,331 1.681 
6 15 151,898 1.705 
7 16 112,697 1.307 
8 17 65,885 0.854 
9 18 28,965 0.423 

10 20 10,129 0.174 

 
Fig. 7 Close-up view of velocity of Doppler radar. Mesocyclones (red and orange circles) have been 
detected in the velocity profile. This view of the velocity volume shows how they are distributed near 
an outcrop of negative velocities (dark blue top center) in among the positive velocity zone 
(green/cyan). The empty area to the right has been made transparent to expose the mesocyclone 
glyphs. Mesocyclones to the left arise from velocity shears (blue-purple) that are at low-elevation 
scans and hard to see from this view. 
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Fig. 7 shows the first 5 corresponding images. We have cropped out the non-weather imagery to save 
space.   

 
Fig. 8 shows two radars volume rendered together by our system. The data is in fact another volume scan 
timestep from the same series of radar volumes from March 1996. In overlap areas, overlapping reflectivity 

readings are treated as 
adjacent reflectivities from 
the same radar, and are 
therefore rendered using the 
same algorithm. Our intent 
is to be able to support any 
number of radars 
overlapping, and to be able 
to draw them in a seamless 
manner. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig  7. Screen-space selected Level-of-Detail renderings of Doppler reflectivity as the viewpoint moves from 
2667 km to an altitude of 229km above North Georgia. These images correspond to lines 1-5 in table 1. 

Fig 8. Two overlapping radar volumes. The new radar has been added  
150 miles southeast of the original radar.  
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Conclusions and Future Work 
We have demonstrated an interactive view-dependent multiresolution volume rendering system for non-
uniform data. The octree structure we have built allows the user to select the appropriate level of detail that 
they want to see, and the system automatically renders to the required resolution. Fig. 9 shows the screen-
space rendering system at work with the metrics of 4, 8, 16, and 32 pixels. Rendering times in this case 
were 1.26sec, 0.328sec, 0.063sec and 0.014sec respectively, indicating that we are well within the range of 
real-time for viewing volume rendered approximations of the data.  In situations where the user will 
navigate quickly around the scene, we will set the screen-space size to be quite large as that few splats are 
drawn quickly. Note that the volume-rendered image maintains is overall character, even at the 32-pixel 
metric. 
Our next step with this work is to build the volume rendering system into our multi-threaded terrain 
rendering system VGIS [Fau00]. The octree system was designed to correspond to VGIS’s quadtrees, so we 
anticipate that combining volume-rendered radar weather and out-of-core LOD terrain rendering will 
proceed with only modest effort. 
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Fig 9. Levels of detail. The four images from left to right are images drawn with 4, 8, 16 and 32 -pixel 
screen-space error metrics. The images are from the same dataset as Fig. 8, but cropped. 

 


