Another problem with variants on either side of \mathbf{P} vs. NP divide

Leonid Chindelevitch

28 March 2019

Theory Seminar, Spring 2019, Simon Fraser University

Background

From mice to men through genome rearrangements

Mouse X-Chromosome

Human X-Chromosome

Ancestral Reconstruction

Input: Tree and genomes A, B, C, D
Output: Ancestral genomes M_{1}, M_{2}, M_{3}

The Median of Three

Input: Genomes A, B, C
Output: Genome M (the median, AKA the lowest common ancestor) which minimizes

$$
d(A, M)+d(B, M)+d(C, M)
$$

Genome Elements

linear chromosome

Adjacencies: $\left\{a_{h}, b_{h}\right\},\left\{b_{t}, c_{t}\right\}$; telomeres: a_{t}, c_{h}

Genome Representations

Genome Representations

This is a genome matrix.

Genome Representations

$$
\begin{gathered}
\\
a_{t} \\
a_{h} \\
b_{t} \\
b_{h} \\
c_{t} \\
c_{h}
\end{gathered}\left(\begin{array}{cccccc}
a_{t} & a_{h} & b_{t} & b_{h} & c_{t} & c_{h} \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

This is a genome matrix.
Genome matrices can be represented by involutions: $\left(a_{h} b_{h}\right)\left(b_{t} c_{t}\right)$.

Properties of Genome Matrices

- binary matrices that satisfy $A=A^{T}=A^{-1}$
- even dimension n (but we can relax this assumption)

Rank Distance

The rank distance between two genome matrices is the rank of their difference

$$
d(A, B)=r(A-B)
$$

Properties

- $d(A, B) \geq 0 ; d(A, B)=0$ if and only if $A=B$
- $d(A, B)=d(B, A)$
- $d(A, C) \leq d(A, B)+d(B, C)$

Rank Distance

The rank distance between two genome matrices is the rank of their difference

$$
d(A, B)=r(A-B)
$$

Properties

- $d(A, B) \geq 0 ; d(A, B)=0$ if and only if $A=B$
- $d(A, B)=d(B, A)$
- $d(A, C) \leq d(A, B)+d(B, C)$

This is a metric on the space of genome matrices (and matrices in general).

Equivalence of Rank Distance and the Cayley Distance

Lemma

Consider permutations matrices P, Q, with permutation representations $\pi, \tau \in S_{n}$, respectively. Then

$$
d(P, Q)=\left\|\tau \pi^{-1}\right\|
$$

where $\|\cdot\|$ is the minimum number of cycles in a 2-cycle decomposition.

Equivalence of Rank Distance and the Cayley Distance

Lemma

Consider permutations matrices P, Q, with permutation representations $\pi, \tau \in S_{n}$, respectively. Then

$$
d(P, Q)=\left\|\tau \pi^{-1}\right\|
$$

where $\|\cdot\|$ is the minimum number of cycles in a 2-cycle decomposition.

Remark

$\|\cdot\|$ is a metric on permutations, also referred to as the Cayley distance.

Equivalence of Rank Distance and the Cayley Distance

Lemma

Consider permutations matrices P, Q, with permutation representations $\pi, \tau \in S_{n}$, respectively. Then

$$
d(P, Q)=\left\|\tau \pi^{-1}\right\|
$$

where $\|\cdot\|$ is the minimum number of cycles in a 2-cycle decomposition.

Remark

$\|\cdot\|$ is a metric on permutations, also referred to as the Cayley distance.

Remark

We may as well work with involutions in S_{n} instead of genome matrices.

The Rank Median Problem

Input: Genome Matrices A, B, C
Output: Matrix M (the median) which minimizes

$$
s(M ; A, B, C)=d(A, M)+d(B, M)+d(C, M)
$$

The Rank Median Problem

Input: Genome Matrices A, B, C
Output: Matrix M (the median) which minimizes

$$
s(M ; A, B, C)=d(A, M)+d(B, M)+d(C, M)
$$

What kind of matrix should M be?
$\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right]$

Types of medians

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

Generalized median: minimizer of $d(A, M)+d(B, M)+d(C, M)$ over all real valued matrices

Types of medians

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

Generalized median: minimizer of $d(A, M)+d(B, M)+d(C, M)$ over all real valued matrices

$$
\left[\begin{array}{cccc}
-\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2}
\end{array}\right]
$$

Genome median: minimizer of $d(A, M)+d(B, M)+d(C, M)$ over all genome matrices

$$
\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

P, NP, and NP-hard

Problems with variants on both sides of the P vs. NP divide

Problem type	P variant	NP-hard variant
Cover	Edge cover	Vertex cover
Satisfiability	2-CNF-SAT	3-CNF-SAT
Graph mapping	Graph isomorphism	Subgraph isomorphism
Optimization	Linear programming	Integer programming
Median-of-three	Generalized median	Genome median

NP-hard

NP-hard is the set of problems which are "at least as hard as hardest problems in NP".
i.e. there is a polynomial time reduction from any problem $L \in N P$ to $H \in$ NP-hard.

APX-hard

APX is the set of problems which have polynomial time constant-factor approximation algorithms.

APX-hard is the set of problems where there exists a polynomial time approximation scheme reduction from any problem $L \in A P X$ to any problem $H \in$ APX-hard.

Computational Complexity

"I can't find an efficient algorithm, but neither can all these famous people."

The Generalized Median problem

Properties of the Median

- Lower Bound

$$
d(M, A)+d(M, B)+d(M, C) \geq \frac{d(A, B)+d(B, C)+d(C, A)}{2}:=\beta
$$

- At least one of the "corners" (input genomes) is a $\frac{4}{3}$ approximation of the median
- The lower bound is achieved if and only if

$$
d(M, A)=\frac{d(A, B)+d(C, A)-d(B, C)}{2}
$$

and likewise for $d(M, B)$ and $d(M, C)$.

- Not every A, B, C can achieve the lower bound β, e.g.:

$$
A=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right), B=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), C=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

Approximating Matrix Medians

- Interesting Property

Theorem

For any three $n \times n$ matrices A, B, and C there is a median M satisfying: for all vectors $v \in \mathbb{R}^{n}$ such that $A v=B v=C v$, we have $M v=A v$.

- We define the invariant $\alpha:=\operatorname{dim}(\{v \mid A v=B v=C v\})$.
- For permutations, this can be computed in $O(n)$ time via graph union.
- Can we say the same if we have $A v=B v$? We don't know [yes for orthogonal $A, B, C]$.
- However, we can act on this idea.

Subspace decomposition

Approximation Algorithm

Subspaces

Orthonormal Bases

Projection Matrices

Median Candidates

$$
M_{A}=A P_{1}+A P_{2}+B P_{3}+A P_{4}+A P_{5}
$$

$$
M_{B}=B P_{1}+B P_{2}+B P_{3}+A P_{4}+B P_{5}
$$

$$
M_{C}=C P_{1}+B P_{2}+C P_{3}+C P_{4}+C P_{5}
$$

- $\frac{4}{3}$ approximation factor for genome matrices
- if $V_{5}=\{0\}$ then each candidate is a median (its score is β)
- In general, $\operatorname{dim}\left(V_{5}\right):=2 \delta$, where $\delta:=\alpha+\beta-n$ is called the "deficiency" of the triplet A, B, C.

Some recently proven theorems

$$
M_{l}:=A P_{1}+A P_{2}+B P_{3}+A P_{4}+P_{5}
$$

Theorem: M_{l} is a median for any genomic inputs A, B, C.
Theorem: $M_{I}=I+\left(\left[A V_{1}, A V_{2}, B V_{3}, A V_{4}\right]-V_{14}\right)\left(V_{14}^{\top} V_{14}\right)^{-1} V_{14}^{T}$.
Corollary: It is possible to compute M_{I} in $O\left(n^{\omega}\right)$ time, where ω is Strassen's exponent, in exact or floating-point arithmetic.

Theorem: The matrix M_{l} is always symmetric and orthogonal for genomic inputs A, B, C.

Special case: If $A=I$, then $\delta=0$, so $M_{A}=M_{B}=M_{C}=M_{I}$ and each one has a score of β.

An even faster, $O\left(n^{2}\right)$, algorithm when $\delta=0$

Theorem: If a matrix M satisfies

$$
d(A, M)+d(M, B)=d(A, B)
$$

then there exists a projection matrix P such that

$$
M=A+P(B-A) .
$$

- We can ignore the condition that P is a projection matrix.
- This yields the system

$$
M=A+P(B-A)=B+Q(C-B)=C+R(A-C),
$$

from which we eliminate M and any redundancies.

- It splits into n linear systems with the same left-hand side.
- If A, B, C are permutations, $\delta=0$, each equation has 2 variables; the Aspvall-Shiloach algorithm solves such systems in $O(n)$ time.

Rarity of the special case $\delta=0$

Theorem: The fraction of triples with $\delta=0$ goes to 0 as $n \rightarrow \infty$.
Proof: This follows directly from a result in analytic combinatorics.

Challenges with computing V_{5}

Observation: A basis for the space $\operatorname{im}(A-B) \cap \operatorname{im}(B-C)$ can be computed in $O(n \log n)$.

Proof sketch: Let P, Q be the cycle partitions of $A^{-1} B, C^{-1} B$.
Create a multigraph G with vertices $P \cup Q$ and edges for all $i \in[n]$.
Each parallel edge i, j gives a vector $e_{i}-e_{j} \in \operatorname{im}(A-B) \cap \operatorname{im}(B-C)$.
Removing those to get a connected graph G^{\prime} whose cycle basis \mathcal{B} can be computed from a spanning tree.

Since G^{\prime} is bipartite, each cycle $C \in \mathcal{B}$ gives rise to the vector $\chi\left(C^{+}\right)-\chi\left(C^{-}\right) \in \operatorname{im}(A-B) \cap \operatorname{im}(B-C)$.

Difficulty: $V_{5}=\operatorname{im}(A-B) \cap \operatorname{im}(B-C) \cap \operatorname{im}(C-A)$ may have no nice basis; this construction fails when generalized to hypergraphs.

A quartic algorithm for orthogonal matrices

$$
\begin{aligned}
& \text { while } d(A, B)+d(B, C)>d(A, C) \\
& \text { find } u \in \operatorname{im}(A-B) \cap \operatorname{im}(B-C) \\
& B \leftarrow\left(1-2 \frac{u u^{T}}{u^{T} u}\right) B
\end{aligned}
$$

Remark

The transformation which multiplies a matrix on the left by $I-2 \frac{u u^{\top}}{u^{\top} u}$ is called a Householder reflection, and is frequently used in numerical analysis.

Complexity of Rank Median Problems

The Genome Median Problem

Genome Rank Median Problem is NP-hard and APX-hard

Theorem

The genome rank median problem of three genomes (GMP) is NP-hard and APX-hard.

Proof.
By reduction from the breakpoint graph decomposition problem (BGD).

Breakpoint Graph Decomposition Problem

Objective (NP-hard): find a maximum alternating cycle decomposition \mathcal{C} of a balanced bicolored graph G.

Objective (APX-hard): find an alternating cycle decomposition \mathcal{C} of a balanced bicolored graph G which minimizes $|\mathcal{B}|-|\mathcal{C}|$.

BGD Reduction Plan

Transforming BGD into GMP

$$
a^{a} a^{6} a^{-6}
$$

$$
\begin{aligned}
& a_{0}^{a} a a_{0}^{a-G} \\
& a_{0}^{a} 0 a_{0}^{a} 00_{0}^{a}
\end{aligned}
$$

Transforming BGD into GMP

$$
\begin{aligned}
& \pi_{1}=i d \\
& \pi_{2}=\left(v^{\prime} v^{\prime \prime}\right)\left(-v^{\prime}-v^{\prime \prime}\right) \\
& \pi_{3}=\left(v^{\prime} \times s w\right)\left(t y v^{\prime \prime} z\right)\left(-w-s-x-v^{\prime}\right)\left(-z-v^{\prime \prime}-y-t\right)
\end{aligned}
$$

Aside: Canonical medians

A canonical median m_{c} is a median of π_{1}, π_{2}, and π_{3} which contains cycles only from π_{2}.

$$
\begin{aligned}
& \pi_{1}=i d \\
& \pi_{2}=\left(v^{\prime} v^{\prime \prime}\right)\left(-v^{\prime}-v^{\prime \prime}\right) \\
& \pi_{3}=\left(v^{\prime} \times s w\right)\left(t y v^{\prime \prime} z\right)\left(-w-s-x-v^{\prime}\right)\left(-z-v^{\prime \prime}-y-t\right) \\
& m_{c}=\left(v^{\prime} v^{\prime \prime}\right)
\end{aligned}
$$

Lemma

Medians of $\pi_{1}, \pi_{2}, \pi_{3}$ can be transformed into canonical medians in polynomial time.

Lemma

Canonical medians are in bijection to maximum cycle decompositions of G.

Aside: Canonical medians

$$
m_{c}=m(-m)
$$

Transforming BGD into GMP

$$
\Gamma=\left(v^{\prime}-v^{\prime}\right)\left(v^{\prime \prime}-v^{\prime \prime}\right)(s-s)(t-t)(w-w)(x-x)(z-z)(y-y) .
$$

Transforming BGD into GMP

$$
\begin{aligned}
\Gamma & =\left(v^{\prime}-v^{\prime}\right)\left(v^{\prime \prime}-v^{\prime \prime}\right)(s-s)(t-t)(w-w)(x-x)(z-z)(y-y) \\
& \pi_{1}=i d \\
& \pi_{2}=\left(v^{\prime} v^{\prime \prime}\right)\left(-v^{\prime}-v^{\prime \prime}\right) \\
& \pi_{3}=\left(v^{\prime} x s w\right)\left(t y v^{\prime \prime} z\right)\left(-w-s-x-v^{\prime}\right)\left(-z-v^{\prime \prime}-y-t\right)
\end{aligned}
$$

Transforming BGD into GMP

$$
\begin{aligned}
& \Gamma=\left(v^{\prime}-v^{\prime}\right)\left(v^{\prime \prime}-v^{\prime \prime}\right)(s-s)(t-t)(w-w)(x-x)(z-z)(y-y) \\
& \pi_{1}=i d \\
& \pi_{2}=\left(v^{\prime} v^{\prime \prime}\right)\left(-v^{\prime}-v^{\prime \prime}\right) \\
& \pi_{3}=\left(v^{\prime} \times s w\right)\left(\begin{array}{l}
\left.t y v^{\prime \prime} z\right)\left(-w-s-x-v^{\prime}\right)\left(-z-v^{\prime \prime}-y-t\right)
\end{array}\right. \\
& \pi_{1} \Gamma=\Gamma \\
& \pi_{2} \Gamma=\left(v^{\prime}-v^{\prime \prime}\right)\left(-v^{\prime} v^{\prime \prime}\right)(s-s)(t-t)(w-w)(x-x)(z-z)(y-y) \\
& \pi_{3} \Gamma=\left(v^{\prime}-x\right)(x-s) \ldots
\end{aligned}
$$

Transforming BGD into GMP

$$
\begin{aligned}
\Gamma & =\left(v^{\prime}-v^{\prime}\right)\left(v^{\prime \prime}-v^{\prime \prime}\right)(s-s)(t-t)(w-w)(x-x)(z-z)(y-y) \\
\pi_{1} & =i d \\
\pi_{2} & =\left(v^{\prime} v^{\prime \prime}\right)\left(-v^{\prime}-v^{\prime \prime}\right) \\
\pi_{3} & =\left(v^{\prime} \times s w\right)\left(t y v^{\prime \prime} z\right)\left(-w-s-x-v^{\prime}\right)\left(-z-v^{\prime \prime}-y-t\right) \\
\pi_{1} \Gamma & =\Gamma \\
\pi_{2} \Gamma & =\left(v^{\prime}-v^{\prime \prime}\right)\left(-v^{\prime} v^{\prime \prime}\right)(s-s)(t-t)(w-w)(x-x)(z-z)(y-y) \\
\pi_{3} \Gamma & =\left(v^{\prime}-x\right)(x-s) \ldots
\end{aligned}
$$

$\pi_{1} \Gamma, \pi_{2} \Gamma, \pi_{3} \Gamma$ are involutions, i.e. they are an instance of GMP, with genome rank median $m^{\prime} \Gamma$.

Transforming BGD into GMP

Proposition

The rank distance is right-multiplication invariant; that is, for $\sigma, \pi, \tau \in S_{n}$,

$$
d(\sigma, \pi)=d(\sigma \tau, \pi \tau)
$$

Transforming BGD into GMP

Proposition

The rank distance is right-multiplication invariant; that is, for $\sigma, \pi, \tau \in S_{n}$,

$$
d(\sigma, \pi)=d(\sigma \tau, \pi \tau)
$$

Corollary

$$
s\left(m^{\prime} \Gamma ; \pi_{1}\left\ulcorner, \pi_{2} \Gamma, \pi_{3} \Gamma\right)=s\left(m^{\prime} ; \pi_{1}, \pi_{2}, \pi_{3}\right)\right.
$$

Transforming BGD into GMP

Proposition

The rank distance is right-multiplication invariant; that is, for $\sigma, \pi, \tau \in S_{n}$,

$$
d(\sigma, \pi)=d(\sigma \tau, \pi \tau)
$$

Corollary

$$
s\left(m^{\prime} \Gamma ; \pi_{1}\left\ulcorner, \pi_{2}\left\lceil, \pi_{3} \Gamma\right)=s\left(m^{\prime} ; \pi_{1}, \pi_{2}, \pi_{3}\right)\right.\right.
$$

Corollary
$m^{\prime} \Gamma$ is a genome median of $\pi_{1} \Gamma, \pi_{2} \Gamma, \pi_{3} \Gamma$ if and only if m^{\prime} is a permutation median of $\pi_{1}, \pi_{2}, \pi_{3}$.

NP-hardness proof sketch

Theorem

The genome rank median problem of three genomes is NP-hard.

NP-hardness proof sketch

Theorem

The genome rank median problem of three genomes is NP-hard.
Proof.

APX-hardness proof sketch

Theorem

The genome rank median problem of three genomes is APX-hard.

APX-hardness proof sketch

Theorem

The genome rank median problem of three genomes is APX-hard.
Proof.

Conclusion and open problems

- We have a general $O\left(n^{\omega+1}\right)$ algorithm for orthogonal matrices.
- We have a specialized $O\left(n^{\omega}\right)$ algorithm for symmetric orthogonal matrices.
- We have a $O\left(n^{2}\right)$ algorithm for permutations with $\delta=0$.
- What properties of input matrices are inherited by medians?
- Partial answer: we know that not all generalized medians are symmetric or orthogonal!
- Can we use convex optimization to find better approximations? What is the best possible ratio for approximating the genome median problem?
- Is there a fast exponential or sub-exponential algorithm for solving this problem?

Thank you for your attention!

Please contact me at leonid@sfu.ca.

Acknowledgments

João Meidanis

Cedric Chauve

Pedro Feijão

Sean La

Canadian Institutes Instituts de recherche of Health Research en santé du Canada

GenomeCanada

References

- J. P. Pereira Zanetti, P. Biller, J. Meidanis. Median Approximations for Genomes Modeled as Matrices. Bulletin of Math Biology, 78(4), 2016.
- L. Chindelevitch and J. Meidanis. On the Rank-Distance Median of 3 Permutations. Proc. 15th RECOMB Comparative Genomics Satellite Workshop. LNCS, vol. 10562, pp. 256-276. Springer, Heidelberg (2017). Journal version in BMC Bioinformatics.
- L. Chindelevitch, S. La and J. Meidanis. A cubic algorithm for the generalized rank median of three genomes. Proc. 16th RECOMB Comparative Genomics Satellite Workshop. LNCS, vol. 11183, pp. 3-27 (2018). Journal version in BMC Algorithms for Molecular Biology.
- R. Sarkis, S. La, P. Feijao, L. Chindelevitch, H. Hatami. Computing the Cayley median for permutations and the rank median for genomes is NP-hard. [Submitted to WABI 2019]

