
Nearly-tight sample complexity bounds for 
learning mixtures of Gaussians

Chris Liaw (UBC)
SFU Theory Seminar, May 2019

Hassan Ashtiani
McMaster

Shai Ben-David
Waterloo

Nick Harvey
UBC

Abbas Mehrabian
McGill

Yaniv Plan
UBC



Distribution Learning
•  



(Plot due to Peter Macdonald)

Distribution Learning



Gaussians and Mixtures of Gaussians
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Mixing weights



Mixtures of Gaussians
•Very classical and a universal approximator. 
•Algorithms widely implemented in many software packages.



What does it mean to learn?

Objective Approach Downsides
Maximum likelihood 
(non-convex objective)

Expectation-maximization
[Dempster, Laird, Rubin ‘77]

• Lack of guarantees
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Our focus

*We will make no structural assumptions.



Density Estimation
 

 

 



Why Total Variation?
What if we wanted to focus on KL divergence instead?
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Main Result

•No structural assumptions.
•Upper bound proof is via a compression argument.
•Lower bound proof is information theoretic.

 

 



Covering Arguments
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Covering Arguments
 

Problem: This does not work for Gaussians.
• Even 1D Gaussians do not have a finite cover.

Solution: First, look at the data and then construct a small cover.
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Compression Framework
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Compression Theorem

 

Small compression schemes imply
sample-efficient algorithms.
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Proof of Compression Theorem
 

■

Initial samples Samples for Yatracos algorithm



Where are we now?
 

 



Compression Of Mixtures

Cheat: assume a uniform mixture.
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Compression Of Mixtures
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 Cheat: assume a uniform mixture.

• To deal with weights, just use bits to encode them!
• If component has small mixing weight, give up on it. 



Compression Theorem for Mixtures
 

Small compression schemes imply
sample-efficient algorithms for mixtures.

Q: Does an analogous statement hold for other notions of complexity
     (e.g. VC-dimension)?



Compression Theorem for Mixtures
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Application: Learning Mixtures of Gaussians
 

Samples are fine.
These are real!

(Need some care in discretizing.)

 



Application: Learning Mixtures of Gaussians

 

 

 



Lower Bound
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“Hard to distinguish”



 
•  



 
•  



Summary
 



Thank you!
Questions?


