Nearly-tight sample complexity bounds for
learning mixtures of Gaussians
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Distribution Learning

&o0al: Given data from some distribution D, estimate D.
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(9.) The whole method may be illustrated by the following numerical example :—
Breadth of  Forehead” of Crabs.—Professor W. F. R. WeLDON has very kindly
given me the following statistics from among his measurements on crabs. They are
for 1000 individuals from Naples. The abscisse of the curve are the ratio of ¢ fore-



Distribution Learning

These two normal curves were now drawn by aid of the Table II., which was
calculated afresh for this purpose from the exponential.*  These curves are plotted out
in fig. 1, and their ordinates added together give the resultant curve. It will be seen that
this curve is in remarkably close agreement with the original asymmetrical frequency-
curve, an agreement quite as close as we could reasonably expect from the com-

parative smallness of the number of individuals dealt with, and the resulting fact

Plot *012 Data: Pearson's crabs Components: Normal

(Plot due to Peter Macdonald)



Gaussians and Mixtures of Gaussians

Single Gaussian in R? specified by:
e Mean i € R? and;
 Covariance matrix » € R4*4

_ 1 L i )
N (1, 2)(x) Jandet) eXp< 2(x W) I (x — )



Gaussians and Mixtures of Gaussians

Single Gaussian in R? specified by:
e Mean i € R? and;
« Covariance matrix * € R%*4

Mixtures of k Gaussians are distributions of the form
{'(=1WiN(ui;Zi) Wi = O;Z{';]_ W; = 1

¢ u; € RY, 3; € R
Mixing weights




Mixtures of Gaussians

* Very classical and a universal approximator.
* Algorithms widely implemented in many software packages.

° from sklearn import mixture

# fit a Gaussian Mixture Model with two components
clf = mixture.GaussianMixture(n components=2, covariance type='full')
clf.fit(X train) # X train is training data

. et vt
L R




What does 1t mean to learn?

Maximum likelihood Expectation-maximization * Lack of guarantees
(non-convex objective) [Dempster, Laird, Rubin “77]
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Parameter estimation

&oal: estimate mean, covariance matrices, and mixing weights.
X Requires structural assumptions.
* e.g. Two nearly overlapping Gaussians.
X Difficult to even differentiate between 1 or k Gaussians.
X Problem requires exp(Q(k)) samples. [Moitra, Valiant “10]




What does 1t mean to learn?

Maximum likelihood Expectation-maximization * Lack of guarantees
(non-convex objective) [Dempster, Laird, Rubin “77]
Parameter estimation Method of moments * Requires structural
[Dasgupta ’99; Moitra, Valiant assumptions
"10] « Requires exponential

number of samples

Our focus

*We will make no structural assumptions.



Density Estimation

Suppose | is an unknown mixture of k Gaussians in R,

How many i.i.d. samples are sufficient to return f s.t. dy (f, f) < €?
Call this the sample complexity.

A 1 A
dry(f.£) = sup (PrlE] = PriE]) = 5 | [F) - F )] d
E S f 2
Previous results.
e k = 1: 0(d?/€e?) [Folklore]
e d = 1: 0(k/€?) [Chan, Diakonikolas, Servedio, Sun “14]

* Q: Number of samples for general d, k?
e 0(kd?/e*) [Ashtiani, Ben-David, Mehrabian “17]
* QO(kd/€e?) [Suresh, Orlitsky, Acharya, Jafarpour “14]



Why Total Variation?

What 1f we wanted to focus on KL divergence instead?

Lemma. For mixtures of two Gaussians, it is impossible to
have an algorithm that draws at most M < oo samples from

f € F and returns f such that KL(f, f) < 10%°.

KL(F,f) = [ () log B2 dx



Why Total Variation?

f(x)

— d
o

KL(F.f) = | FGo)log

Small mixing weight. \

O it

e If green component is too light then no algorithm will sample it.

* Any “reasonable” algorithm returns blue component.
TV distance is close to 0.
* KL divergence is = oo!



Why Total Variation?

What if we wanted to focus on KL divergence instead?

Lemma. For mixtures of two Gaussians, it is impossible to
have an algorithm that draws at most M < oo samples from

f € F and returns f such that KL(f, f) < 10%°.

Fine.. what about other L,-norms (p > 1)?

Lemma. For mixtures of two Gaussians, it is impossible to
have an algorithm that draws at most M < co samples from

f € F and returns f such that ||f —f”p < 1019,



Main Result

Theorem [ABHLMP ‘18] Sample complexity for learning mixtures of
k Gaussians in R? (up to dry-error €) is

_ (kd?\
0 <z O(+) hides polylog factors

* No structural assumptions.
* Upper bound proof is via a compression argument.
* Lower bound proof 1s information theoretic.



Covering Arguments

Lemma [vatracos '85] Suppose F is a class of densities and there exists
densities f;, ..., fi; such that min d (f;, f) < eforall f € F. Then
l

sample complexity to learn F is O (log M /€?).



Covering Arguments

Lemma [vatracos ‘85] Suppose F is a class of densities and there exists
densities f, ..., fy; such that min d;, (f;, f) < e forall f € F. Then
l

sample complexity to learn F is O(log M /€?).

Sketch. Let f be the unknown density.
e Let El] be SllCh that I]):F[EU] — I;I'[EU] = dTV(fl!f:])
i J

» Consider a “tournament” where f; beats f; if
lj’{[Eij] - I}I‘[Eij] 1;]1,‘[51'1] - I}I‘[Eij]
o If dry(fj, f) < € then f; is never beaten.

o If dry(fi,f) > 10€ then f; beats f;.
 Any f; that is never beaten satisfies dy (f;, f) < 10e.

+ e <




Covering Arguments

Lemma [vatracos ‘85] Suppose F is a class of densities and there exists
densities f, ..., fy; such that min d;, (f;, f) < e forall f € F. Then
l

sample complexity to learn F is O(log M /€?).

Problem: This does not work for Gaussians.
 Even 1D Gaussians do not have a finite cover.

Solution: First, look at the data and then construct a small cover.



Compressing Gaussians in R

N(u,0%)




Compressing Gaussians in R

N(u,0%)




Compressing Gaussians in R

* Two samples are sufficient to encode N (i, o).



Compression Framework

F: a class of densities (e.g. Gaussians)

.. ° :
m i.i.d. samples | * a t points
oo ¢

from f € F

reconstruct
i.i.d. samples
from D € F

If Alice draws m(e) samples, sends t(e) points & bits, and
drv ( i ) < € then we say F admits (m(e), t(¢))-compression.



Compression Framework

F: a class of densities (e.g. Gaussians)

o © t points
> & — 5
oo °®

m i.i.d. samples
from f € F

reconstruct

PY i.i.d. samples
» fromDEF

If Alice draws m(e) samples, sends t(e) points & bits, and
drv ( i ) < € then we say F admits (m(e), t(¢))-compression.



Compressing Gaussians in R

N(u,0%)
X4 X7
® S —o—eo— o—o o
u—o U HU+o
X, + X1 X, — Xy
2 K 2

?D Gaussians admit (0(1/€), 2)-compression.




Compression Theorem

Theorem [ABHLMP ‘18] Suppose F admits (m(e), t(€))-compression.
Then sample complexity to learn F (up to dry-error €) is

= ( t(€)

0 m(e) e ?) . 0(") hides polylog factors

Small compression schemes imply
sample-efficient algorithms.



Proof of Compression Theorem

* We cannot implement Alice, but we can implement Bob!
« We draw m(¢) i.i.d. samples from f and try all M < (2m(e))"©
possible inputs to Bob to get a data-dependent cover of F of size M.

m(e) i.i.d. samples
from f € F
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Proof of Compression Theorem

* We cannot implement Alice, but we can implement Bob!
« We draw m(e) i.i.d. samples from f and try all M < (2m(e))"©
possible inputs to Bob to get a data-dependent cover of F of size M.
* Existence of cover follows from (m(€), t(e))-compression.

Lemma [Yatracos ‘85] Suppose f is an unknown density and we have
densities f3, ..., fiy such that min d;,(f;, f) < €. Then, O(log M /e?)
l

samples suffice to output f; with dry (f, f) < 0(e).




Proof of Compression Theorem

* We cannot implement Alice, but we can implement Bob!
« We draw m(e) i.i.d. samples from f and try all M < (2m(e))"©

possible inputs to Bob to get a data-dependent cover of F of size M.
* Existence of cover follows from (m(€), t(e))-compression.

* Run Yatracos’” “tournament” algorithm to find “best” distribution
with 0(log M /€?) samples.
* Hence, sample complexity is
m(e) + 0(logM /e?) = m(e) + 0(t(e)logm(e) /€?).

AN |

Initial samples Samples for Yatracos algorithm



Where are we now?

Compression Theorem. If F admits (m(¢), t(€))-compression
then sample complexity to learn F (up to dry-error €) is

t(e))

] (m(e) +e_2 .

* Reminder: Our end goal is to prove a sample complexity bound of

_ 2
0 (keiz) for learning mixtures of k Gaussians.

e Suffices to find compression scheme with parameters
m(e) = 0 (ﬁ) and t(e) = 0(kd?)

€2

 Next, reduce to k = 1 case by giving a general compression scheme
for mixtures.



Compression Of Mixtures

. . 2
Cheat: assume a uniform mixture. N (u3, 0 3 )




Compression Of Mixtures

. . 2
Cheat: assume a uniform mixture. N (.us» 03




Compression Of Mixtures

Cheat: assume a uniform mixture.

X, X, X, X,

X1 = U — 0y X3 = Uy — 02
Xz = Uy + 0y X4 = Up + 07

X5 = [z — 03
Xe = Uz + 03



Compression Of Mixtures

Cheat: assume a uniform mixture.

o%)

X1 XZ X3 X4- X5X6

If F has (m(e), t(€))-compression then
k mixtures of F have ~ (km(e/k), kt(e/k))—compression.

* To deal with weights, just use bits to encode them!
e If component has small mixing weight, give up on it.



Compression Theorem for Mixtures

Theorem [ABHLMP ‘18] Suppose F admits (m(e), t(e))-compression.
Then sample complexity to learn k-mix(F) (up to dyy-error €) is

_ (km(e/k) | kt(e/k))

0
€ €2

Small compression schemes 1mply
sample-efficient algorithms for mixtures.

Q: Does an analogous statement hold for other notions of complexity
(e.g. VC-dimension)?



Compression Theorem for Mixtures

Theorem [ABHLMP ‘18] Suppose F admits (m(e), t(e))-compression.
Then sample complexity to learn k-mix(F) (up to dyy-error €) is

_ (km(e/k) | kt(e/k))

0
€ €2

&oal: Find a compression scheme for a single Gaussian with parameters

m(e) = 0(d?) and t(e) = 0(d?)



Application: Learning Mixtures of Gaussians

To recover N (1, %), suffices to encode u
and eigenvectors/eigenvalues of 2.




Application: Learning Mixtures of Gaussians

To recover NV (0, %), suffices to encode e _ - _
. . - e ‘ %
eigenvectors/eigenvalues of . - Y e
7
z /< 2 I
Idea: Encode axes of ellipsoid using 2N LT e
. . o /7 \
linear combination of samples. Vet 4
@/ //0
/
/7
/ e
7
| _7
\@ -
e __--~
‘ o - f
Ellipsoid defined by .

Points drawn from NV (0, ).



Application: Learning Mixtures of Gaussians

e Let X4, ..., X5 ~N(0,%); set g; = 2~ /?X; ~ N(0,1)
* Recall that Alice knows X
* g1, -, 9q are linearly independent so can write

€k = Z Aki9i
i
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Application: Learning Mixtures of Gaussians

e Let X4, ..., X5 ~N(0,%); set g; = 2~ /?X; ~ N(0,1)
* Recall that Alice knows X
* g1, -, 9q are linearly independent so can write

Zl/zek — z/lk,;Xi
i
e Alice sends Xy, ..., Xz and {A;;}.
e Bob finds any matrix A satisfying Ae, = Y; 1;;X; = 2% ¢y

* Observation:
Aepel AT =31/ 2¢ el n1/?
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Application: Learning Mixtures of Gaussians

e Let X4, ..., X5 ~N(0,%); set g; = 2~ /?X; ~ N(0,1)
* Recall that Alice knows X
* g1, -, 9q are linearly independent so can write

Zl/zek — z/lk,;Xi
i
e Alice sends Xy, ..., Xz and {A;;}.
e Bob finds any matrix A satisfying Ae, = Y; 1;;X; = 2% ¢y

e Observation:
AILAT = 31/2] 212



Application: Learning Mixtures of Gaussians

e Let X4, ..., X5 ~N(0,%); set g; = 2~ /?X; ~ N(0,1)
* Recall that Alice knows X
* g1, -, 9q are linearly independent so can write

Zl/zek — Z/lk,;Xi
i
e Alice sends Xy, ..., Xz and {A;;}.
e Bob finds any matrix A satisfying Ae, = Y; 1;;X; = 2% ¢y

e Observation:
AAT =3



Application: Learning Mixtures of Gaussians

e Let X4, ..., X5 ~N(0,%); set g; = 2~ /?X; ~ N(0,1)
* Recall that Alice knows X
* g1, -, 9q are linearly independent so can write

Zl/zek = z/lk,;Xi
l

e Alice sends Xy, ..., X4 and {A;;}.

\ These are real!

Samples are fine. (Need some care 1n discretizing.)

e So m(e) =d and t(e) = 0(d?)



Application: Learning Mixtures of Gaussians

Theorem [ABHLMP ‘18] Sample complexity for learning mixtures of
k Gaussians in R? (up to dry-error €) is

_ (kd?\
0 <z O(+) hides polylog factors

» For the axis-aligned case, we show 0 (kd/e?) samples suffice.
* This is nearly-tight; matching lower bound from [Suresh et al. 14].




LLower Bound

Theorem [Fano’s Inequality]l. Suppose fi, ..., f,- satisfy

dry(fi, fi) >€  and  KL(f;,f;) < €>

g8 ]
Then sample complexity is ( Oegzr). AN
“Hard to distinguish”

fi (x)
fi(x)

KL(f, fi) = ffi(x) log dx

Goal: Find 2%(%¢°) mixtures of Gaussians that satisfy above hypothesis.

How? Just pick the Gaussians at random!
[Devroye, Mehrabian, Reddad ‘18] give a deterministic construction.



Construction of hard instance (k = 1)

----

» Start with identity covariance matrix I,
* Choose random subspace, S, of dimension d/10

» Increase eigenvalues by €/vd along S,
» Repeat 2%(%°) times



Construction of hard instance (k = 1)

----

« Start with identity covariance matrix I
 Choose random subspace, S,, of dimension d/10

» Increase eigenvalues by €/vd along S,
» Repeat 2%(4°) times

» Hard distribution setis {f;, = N(0,Z,)}

* Easy to show KL(f, ) < 0(e?).
» Can also show dy (f,, /) > Q(e) w.p. 1 — exp(—Q(d?)).



Summary

* We introduced a compression framework for density estimation.
* Application: improved upper bounds for learning mixtures of
Gaussians.
* Q: Other applications of compression?
* Q: Can we get a more computationally-efficient algorithm?

* Q: What if we do not know k?

» We also showed a nearly-matching lower bound for learning



Thank you!
Questions?



