
Norman Swartz, Copyright  1988

[A slightly shortened version of this article
was published as “Made to Order Sorts” in
PC Resource (January 1988), pp. 87-90, 92, 94.]

ALPHABETIZING DA AT

 As children in elementary school we were taught to recite the alphabet in order: “Aay, Bee, See,
Dee, Eii, Eff, Ghee, Aaych, …, Why and Zee”. There is nothing natural about this particular
ordering: it is strictly a matter of convention. (When and where it was settled upon I haven’t the
remotest notion.) Then, having mastered the ordering, we were taught to apply that knowledge
to alphabetize lists of words. The procedure is surprisingly complex, and its mastery by mere
eight-year olds attests to the elevated intellectual capacities of human beings. One merely has to
try to write down the procedure in a flow chart to see how complex it truly is. In any event, most
of us probably emerged from the exercise of learning to use a dictionary believing that we knew
all there is to know about alphabetizing. If only that were all there is to it. The trouble is that
our third-grade teachers had not reckoned on our having to program computers to alphabetize

 data. Nowadays we have to make our rules very much more explicit, and when we do, we begin
to discover all sorts, er, kinds, of problems.

Mapping strings onto numbers

E v e r y s o r t i n g a l g o r i t h m , f r o m t h e s i m p l e s t (t h e b u b b l e s o r t) t o t h e m o s t s o p h i s t i c a t e d (f o r
e x a m p l e , t h e f a s t s o r t) a t s o m e p o i n t u s e s a c o m p a r i s o n t e s t . T w o i t e m s a r e s e l e c t e d f o r
comparison; if the first is greater than the second, then an exchange or swap is effected: either the
items themselves or pointers in a separate list are interchanged. But what exactly does it mean to
say that “the first is greater than the second” when one is talking about alphabetic data rather
than numerical data?

Alphabetic strings may be reckoned as “less than”, “equal to” or “greater than” by coding
each of the symbols in the strings onto the whole numbers. F r example, if we let “a” = “001”,o
“b” = “002”, …, and “z” = “026”, then the two words “apple” and “after” may be represented
by the numerical sequences “001 016 016 012 005” and “001 006 020 005 018” respectively.
S t a r t i n g a t t h e l e f t , e a c h t e r m o f t h e s e n u m e r i c a l s e q u e n c e s c a n b e c o m p a r e d w i t h t h e
corresponding term in the other sequence. In our example, the first positions (the “001”s) are the
same, and thus we move on to the second. Here the two values (“016” and “006”) are unequal.
Sin c e 0 1 6 i s g r e a t e r t h a n 0 0 6 , t h e t w o items (“apple” and “after”) are exchanged and this

 comparison is complete; the sorting routine proceeds then to compare another pair of items.

A n i n d e fi n i t e n u m b e r o f d i f f e r e n t n u m e r i c a l v a l u e s c a n b e u s e d f o r c o d i n g a l p h a b e t i c
strings. One of these, ASCII (American Standard Code for Information Interchange) coding, is

1,2built into the hardware of every micro computer. In ASCII coding (see T ble 1), the uppercasea
l e t t e r s “ A ” t h r o u g h “ Z ” a r e r e p r e s e n t e d b y t h e n u m b e r s 0 6 5 t h r o u g h 0 9 0 ; a n d t h e l o w e r c a s e
letters “a” through “z” by the numbers 097 through 122.

————————————————-

ASCII V luesa

000-031 and 127 are non-printing, control characters.

032 [blank] 051 3 070 F 089 Y 108 l
 033 ! 052 4 071 G 090 Z 109 m
 034 " 053 5 072 H 091 [110 n
 035 # 054 6 073 I 092 \ 111 o
 036 $ 055 7 074 J 093] 112 p
 037 % 056 8 075 K 094 ^ 113 q
 038 & 057 9 076 L 095 _ 114 r
 039 ’ 058 : 077 M 096 ‘ 115 s
 040 (059 ; 078 N 097 a 116 t
 041) 060 < 079 O 098 b 117 u
 042 * 061 = 080 P 099 c 118 v
 043 + 062 > 081 Q 100 d 119 w
 044 , 063 ? 082 R 101 e 120 x
 045 – 064 @ 083 S 102 f 121 y
 046 . 065 A 084 T 103 g 122 z
 047 / 066 B 085 U 104 h 123 {
 048 0 067 C 086 V 105 i 124 |
 049 1 068 D 087 W 106 j 125 }
 050 2 069 E 088 X 107 k 126 ~

T ble 1a
————————————————-

3Thus, in BASIC , for example, two alphabetic items may be compared and ordered by the
simple statement:

IF first.item$ > second.item$ THEN
SW P first.item$, second.item$A

END IF

T h e A S C I I e q u i v a l e n t s o f e a c h i t e m a r e u s e d f o r t h e c o m p a r i s o n , a n d t h e t w o i t e m s a r e
interchanged if the first is greater, in the sense just explained, than the second.

The problem with ASCII coding

Suppose you need to write a computer sorting routine to alphabetize a list of items including the
following: “make”, “make work” and “makeshift”. Depending on how many items (records)
there are to be sorted in all, and depending on how much time you want to spend writing the
code, and depending on whether you need a fast sort or can settle for a slower one, you choose
f r o m a m o n g a l i s t o f r e a d i l y a v a i l a b l e , f a m i l i a r , a l g o r i t h m s , f o r e x a m p l e , a b u b b l e s o r t , a

4selection sort, a quick sort, a Shell sort or a fastsort. If you are using IBM/MS DOS on your
computer, you might choose the utility program SORT.EXE. The results of any of these sorts
should be the same. The data will be alphabetized this way:

make
make work
makeshift

– 2 –

However, if you compare this latter list with the Oxford English Dictionary, for example, you
will discover that these same items would be alphabetized differently:

make
makeshift
make work

 The results will be even worse if any of your data is within quotation marks. Any of the
aforementioned sorts would yield:

“ideas”
absolutism
idealism

 If you are sorting proper names, any ordinary sort would produce:

D & J’s Bakery
D J Allen Wholesale Groceries
Dinesen, Isak
Mabbett, Alice
MacGregor, F.
McCarthy, Richard

 B u t t e l e p h o n e d i r e c t o r i e s n o w a d a y s a d o p t a t o t a l l y d i f f e r e n t c o n v e n t i o n a n d w o u l d l i s t t h e s e
same items in this fashion:

D J Allen Wholesale Groceries
D & J’s Bakery
Dinesen, Isak
McCarthy, Richard
MacGregor, F.
Mabbett, Alice

 In the latter case, among other peculiarities, “&” and the possessive ending “’s” are ignored in
the alphabetizing, and “Mac” and “Mc” are treated as equivalent to “Maa”.

The results will be more peculiar still if your data includes some records which begin in
lowercase and others which are capitalized, for example,

acoustics
Abba
Zamfir, G.
zither

 will be alphabetized this way:

Abba
Zamfir, G.
acoustics
zither

 All capitalized words will be placed before any lowercase words. That is, ordinary computer
5sorting routines yield a so-called “Names” list, followed by a so-called “Subject” list.

A n d fi n a l l y , A S C I I c o d i n g y i e l d s u n a c c e p t a b l e r e s u l t s w h e n i t i s u s e d t o a l p h a b e t i z e
lengthy expressions, for example, the first lines of poems. Anyone who used IBM/MS DOS’s

– 3 –

SORT.EXE program, even specifying ascending order, to alphabetize first lines of poems would
be dismayed to get

“I’ve seen the Thousand Islands”
“Is there no secret place on the face of the Earth”
“Isn’t it strange”

 which is exactly the reverse order to the one desired.

C l e a r l y , t h e r e i s m o r e t o a l p h a b e t i z i n g d a t a t h a n s i m p l y c h o o s i n g t h e p r o p e r s o r t i n g
algorithm.

Application-specific, non-ASCII coding

If ASCII coding is not suitable for your purposes, you will have to choose some other manner of
m a p p i n g y o u r d a t a s t r i n g s o n t o t h e w h o l e n u m b e r s b e f o r e t h e y a r e c o m p a r e d i n t h e s o r t i n g
routine. Several questions must be attended to in choosing this mapping.

1. Ignore chara c t e r s – A r e a n y s y m bols to be totally ignored? Y u may, for example,o
want to disregard quotation marks when alphabetizing your data. Are blankspaces to be
ignored (as they are in most modern dictionaries)? Are commas to be ignored? How,
for example, do you want the following items alphabetized?

Harvard College
Harvard, John

If commas (and blanks) are ignored, you will get the above ordering (since the code for
“C” is “067” and for “J”, “074”). If, on the other hand, blanks are omitted but commas
are retained and treated as they are in ASCII (that is, represented by “044”), then you
will get the reverse ordering.

2. Character equivalence – Are any single-symbols to be regarded as equivalent to other
single-symbols? Does your data, for example, include foreign characters, e-grave [no.
138 in IBM PC; 143 in Mac], or u-umlaut [no. 129 in IBM PC; 159 in Mac]? If so,
what English letters are to be regarded as their equivalents?

3. Phrase equivalence – Are any sequences of symbols to be regarde d a s e q u i v a l e n t to
other sequences of symbols? Again, to use the example of phone directories, numerical
s t r e e t n a m e s (“ 2 8 t h A e . ”) a r e a l p h a b e t i z e d a c c o r d i n g t o t h e i r E n g l i s h (“ T w e n t y -v
eighth A enue”) equivalents, thus:v

Rosewood Circle
28th A e.v
W llington St.e

The diphthongs “æ” and “Æ” are represented by single characters in micro computers
(nos. 145 and 146 in IBM; 190 and 174 in Mac). Y u may want, instead, that these beo
treated not as single letters which occur later than “z” (122), but as sequences of two
letters, “ae” (097 101) and “Ae” (065 101).

4. Upper and lower case – Data may be capitalized, e.g. “Cuba”; or may be in lowercase,
“ c i g a r s ” ; o r m a y be in up p e r c a s e , “ C I A ” . D o y o u w a n t t o p r e s e r v e t h e d i s t i n c t i o n
b e t w e e n c a p i t a l i z e d a n d l o w e r c a s e i t e m s ? T h a t i s , d o y o u w a n t a “ N a m e s ” l i s t i n g

– 4 –

followed by a “Subject” listing? Do you want to treat uppercase as merely capitalized,
so that, for example, “CIA” occurs between “California” and “Cuba”? If not, ASCII
coding will place “CIA” before “California”.

Space constraints vs. time constraints

If your data requires that you use a non-ASCII mapping, you will have to restore your data to
ASCII format after the records have been converted and sorted. W rd processors, spreadsheets,o
databases and printers all assume standard ASCII coding for alphabetic data. Since any mapping
you choose will almost certainly not be one-one, it will be impossible to undo the conversion by
a reverse mapping. This means that the original data cannot simply be discarded after they are
c o n v e r t e d ; q u i t e t h e c o n t r a r y : i t w i l l b e e s s e n t i a l t h a t t h e o r i g i n a l d a t a b e r e t a i n e d w h i l e t h e
converted records are being sorted.

Since the original ASCII records must be retained, if you were to convert all of the data to
a non-ASCII code before sorting, this would require a free working space in computer memory
roughly equal to the amount of space your to-be-sorted data currently occupies. There is, thus, a
substantial space overhead in converting all of the data wholesale.

If, on the other hand, you were to convert the data as items are being compared (and then
d i s c a r d t h e c o n v e r s i o n s a f t e r t h e c o m p a r i s o n) , t h e r e w o u l d b e e f f e c t i v e l y l i t t l e o r n o s p a c e
overhead. However, every known sorting algorithm (indeed every theoretically possible sorting
algorithm) requires that some at least of the data be used in a comparison test more than once.
This means that individual items would have to be converted from ASCII more than once, some
perhaps even a great number of times. Thus converting each record just prior to its being used in
a comparison test, exacts a substantial time overhead.

Compromise method

There is, however, a compromise method you can use when space is tight and you do not want to
pay the price of a high time overhead. In this compromise method, the converting of data occurs
only once per record and the computer memory never has to hold both the original data and the
converted data together. Briefly: the original data are saved to disk; the original data are then
converted in place (that is, the converted records overwrite the original ones); the converted data
are sorted, and a Re-allocation T ble is constructed showing where each record has ended up; thea
s o r t e d r e c o r d s a r e t h e n d i s c a r d e d (e r a s e d) ; a n d , fi n a l l y , t h e o r i g i n a l d a t a a r e r e a d b a c k i n t o
memory and are assigned new positions in accord with the pointers in the Re-allocation T ble.a
T h i s m e t h o d o p t i m i z e s t h e u s e o f d a t a s p a c e b e c a u s e t h e s p a c e n e e d e d t o s t o r e t h e v a r i o u s
pointers is usually far, far less (a few bytes per record) than the original data itself (alphabetic
strings can be hundreds of bytes in length).

Step by step solution

In greater detail, the strategy for sorting alphabetic data using non-ASCII equivalents for the data
items and using the compromise technique just described is this:

• Save the original data array to disk.

• Convert each item in computer memory using whatever non-ASCII mapping you need.
T h e s e n e w , c o n v e r t e d , r e c o r d s m i g h t b e c a l l e d “ p s e u d o r e c o r d s ” , “ p r o x y r e c o r d s ” ,

– 5 –

“ d u m m y r e c o r d s ” , “ s t a n d - i n r e c o r d s ” , o r s o m e s u c h t h i n g . I w i l l c a l l t h e m “ p s e u d o
records”.

• Sort the pseudo records using a suitable algorithm, keeping track in a T g T ble wherea a
 each pseudo record ends up. I.e. as records are swapped, swap their tags as well:

IF condition THEN
SW P ARRA $(m), ARRA $(n)A Y Y

 SW P T G(m), T G(n)A A A
 END IF

The effect would be, for example:

Before sorting After sorting
Record T g Record T ga a

mango 1 apple 2
apple 2 grape 4
orange 3 mango 1
grape 4 orange 3

In this example, the T g T ble tells us that item #1 (“mango”) has ended up in slot #3;a a
 item #2 (“apple”) has ended up in slot #1; and so on.

• Create a Re-allocation T ble, from the T g T ble, showing where each original item is toa a a
 be placed:

T g T ble (from above) Re-allocation T blea a a

 2 3
4 1
1 4
3 2

Since the T g T ble tells us that the original item #1 is to end up in the third position, wea a
 put a “3” in position #1 in the Re-allocation table. Since the original item #2 is to end

up in the first position, we put a “1” in position #2 in the Re-allocation T ble. Etc.a

 • E r a s e t h e p s e u d o r e c o r d s w h i c h h a v e n o w s e r v e d t h e i r p u r p o s e a n d a r e n o l o n g e r
needed. Then read back in the original array, item by item, and place each item into its
new position in the array according to the pointers in the Re-allocation T ble.a

 Implementation in BASIC

With the strategy mapped out, we can turn to implementing it in a program. The items to be
alphabetized are to be stored in an array called, simply, “ARRA $()”. It, the T G table and theY A
REALLOCA E table must bear the same dimensions, let’s say 1000. The MAIN program stepsT
t h r o u g h t h e p r o c e d u r e j u s t d e s c r i b e d , b y c a l l i n g s u b r o u t i n e s t o p e r f o r m e a c h o f t h e r e q u i r e d
operations. These subroutines are listed at the end of this article.

– 6 –

DEFINT A-Z
OPTION BASE 0
DIM ARRA $(1000), T G(1000), REALLOCA E(1000)Y A T

 DIM TRANSLA ION.T BLE(255)T A
 DIM OLD.PHRASE$(250), NEW.PHRASE$(250)

NULL$ = CHR$(0)

MAIN :
GOSUB READ.INPUT.DA AT
GOSUB CONSTRUCT.T G.T BLEA A

 GOSUB SA E.ORIGINAL.DA AV T
 GOSUB CREA E.PHRASE.LEXICONT

GOSUB CREA E.TRANSLA ION.T BLET T A
 GOSUB CREA E.PSEUDO.RECORDST

GOSUB SORT.PSEUDO.RECORDS
GOSUB CREA E.REALLOCA ION.T BLET T A

 GOSUB READ.AND.SORT.SA ED.DA AV T
 GOSUB SA E.SORTED.DA AV T
 END

 Certain steps in this procedure merit special comment.

Case insensitivity

Let’s begin with a relatively easy requirement. Suppose you want the final ordering to be case
i n s e n s i t i v e , t h a t i s , y o u w a n t c a p i t a l i z e d , l o w e r c a s e a n d u p p e r c a s e w o r d s t o b e i n t e r l e a v e d
i r r e s p e c t i v e o f c a s e . O n e w a y t o d o t h i s i s t o c r e a t e p s e u d o r e c o r d s e n t i r e l y i n u p p e r c a s e .
BASIC provides a function [UCASE$] to effect the conversion:

ARRA $(n) = UCASE$(ARRA $(n))Y Y

6T h e f u n c t i o n U C A S E $ p r o v i d e s a h i g h l y s p e c i fi c t r a n s l a t i o n o f e a c h o f t h e l e t t e r s i n a
string: it converts lowercase letters to uppercase. But often we want other kinds of character-
by-character translations and require a more general conversion routine.

Translation tables

There is a considerably more powerful method for effecting character-by-character translations,
one which allows you to handle not just lowercase letters, but all 256 characters of the ASCII set.
With a Translation T ble (sometimes called a “lookup table”), the conversion routine matchesa

 each item in the data string against its corresponding entry in the table and converts it according
to the assigned value of that entry. F r example, we have seen that the ASCII value of “a” iso
097. If we want to convert “a” to “A”, we would place the value for “A” (viz. 065) in the 97th

7position of the Translation T ble.a

A Translation T ble can handle not just the converting of lowercase letters to uppercase; ita
can as well eliminate unwanted symbols, for example quotation marks; it can translate symbols,
for example, it can replace the foreign lowercase u-umlaut with an uppercase English “U”; it
can eliminate blankspaces; it can preserve commas; and so on.

T create a Translation T ble, you will need to read a series of DA A statements.o a T

– 7 –

CREA E.TRANSLA ION.T BLE :T T A
 RESTORE NON.ASCII.CODES

FOR N = 0 TO 255 ’ note: Option Base 0 required
READ TRANSLA ION.T BLE(N)T A

 NEXT N
RETURN

The DA A statements for the Translation T ble consist of the new values to be assigned to eachT a
o f t h e A S C I I c o d e s 0 0 0 t h r o u g h 2 5 5 . F r e x a m p l e , s u p p o s e y o u w a n t e d t o s t r i p a l l c o n t r o lo
characters (001-031 → 000), wanted to convert all lowercase letters to uppercase (097-122 →
065-090), wanted to ignore blankspaces (032 → 000), wanted to preserve commas (044 → 044),
and wanted to leave all numerals as they are (048-057 → 048-057), etc. Y u would write:o

NON.ASCII.CODES :
REM – ASCII codes 000-009 become:
DA A 0, 0, 0, 0, 0, 0, 0, 0, 0, 0T

REM – ASCII codes 010-019 become:
DA A 0, 0, 0, 0, 0, 0, 0, 0, 0, 0T

REM – ASCII codes 020-029 become:
DA A 0, 0, 0, 0, 0, 0, 0, 0, 0, 0T

REM – ASCII codes 030-039 become:
DA A 0, 0, 0, 0, 0, 0, 0, 0, 0, 0T

REM – ASCII codes 040-049 become:
DA A 0, 0, 0, 0, 44, 0, 0, 0, 48, 49T

REM – ASCII codes 050-059 become:
DA A 50, 51, 52, 53, 54, 55, 56, 57, 0, 0T

REM – ASCII codes 060-069 become:
DA A 0, 0, 0, 0, 0, 65, 66, 67, 68, 69T

REM – ASCII codes 070-079 become:
DA A 70, 71, 72, 73, 74, 75, 76, 77, 78, 79T

REM – ASCII codes 080-089 become:
DA A 80, 81, 82, 83, 84, 85, 86, 87, 88, 89T

REM – ASCII codes 090-099 become:
DA A 90, 0, 0, 0, 0, 0, 0, 65, 66, 67T

REM – ASCII codes 100-109 become:
DA A 68, 69, 70, 71, 72, 73, 74, 75, 76, 77T

REM – ASCII codes 110-119 become:
DA A 78, 79, 80, 81, 82, 83, 84, 85, 86, 87T

REM – ASCII codes 120-127 become:
DA A 88, 89, 90, 0, 0, 0, 0, 0T

REM – etc. … …

(ASCII codes greater than 127 differ for different micro computers. Y u will have to consulto
your computer Manual to complete this DA A list.)T

– 8 –

T translate a record, ARRA $(I), using the data in this Translation T ble, we would issue ao Y a
CALL to the CHARACTER.SUBSTITUTION subprogram, e.g.

CALL CHARACTER.SUBSTITUTION(ARRA $(I))Y

8The CHARACTER.SUBSTITUTION subprogram, in turn, looks like this :

SUB CHARACTER.SUBSTITUTION(Q$) ST TICA
SHARED TRANSLA ION.T BLE()T A

 FOR J = 1 TO LEN(Q$)
ASCII = ASC(MID$(Q$, J, 1))
MID$(Q$,J,1)=CHR$(TRANSLA ION.T BLE(ASCII))T A

 NEXT J
END SUB

T h e r e s u l t o f t h i s c h a r a c t e r - b y - c h a r a c t e r t r a n s l a t i o n i s a s e t o f p s e u d o r e c o r d s e a c h o f
which may contain one or more ASCII nulls (character 000). F r example, any blankspaces ino
the original record would have been converted to nulls (i.e. 032 → 000). It is necessary now to
remove the nulls, since the sorting algorithm would otherwise treat them as letters ‘earlier than’
“A”. T remove the nulls, we must do a snip and splice operation, where we save what is to theo

9left of the null and to the right of the null, but discard the null itself. W pass the string to thee
ELIMINA E.NULLS subprogram via a CALL statement:T

CALL ELIMINA E.NULLS(ARRA $(I))T Y

T h e E L I M I N A E . N U L L S s u b p r o g r a m l o o k s l i k e t h i s (n o t e : “ N U L L $ ” w a s d e fi n e d p r i o r t oT
“MAIN:”):

SUB ELIMINA E.NULLS(Q$) ST TICT A
 SHARED NULL$

SPOT = INSTR(Q$, NULL$)
DO WHILE SPOT <> 0

Q$ = LEFT$(Q$, SPOT-1) + MID$(Q$, SPOT+1)
SPOT = INSTR(SPOT, Q$, NULL$)

LOOP
END SUB

If we perform a character-by-character translation, followed by a ‘snip nulls’ to the three records,

make
make work
makeshift

 these subprograms would yield these pseudo records,

MAKE
MAKEW RKO
MAKESHIFT

 T h e s e r e c o r d s , i n t u r n , w o u l d b e a l p h a b e t i z e d c o r r e c t l y (f o r e x a m p l e , i n t h e m a n n e r o f t h e
Oxford English Dictionary) by any standard sorting algorithm. The original items (in lowercase
and including blankspaces) could, then, at the final stage, be arranged in the same order as these
stand-in pseudo records.

– 9 –

Phrase lexicons

T h e T r a n s l a t i o n T b l e m i g h t n o t , h o w e v e r , f u r n i s h a l l t h e c o n v e r s i o n s n e e d e d . I n s o f a r a s i ta
p r o v i d e s a c h a r a c t e r - b y - c h a r a c t e r t r a n s l a t i o n , i t i s n o t s e n s i t i v e t o t h e c o n t e x t i n w h i c h t h o s e
c h a r a c t e r s o c c u r . B u t s o m e t i m e s t h e s u r r o u n d i n g c o n t e x t m a k e s a c r u c i a l d i f f e r e n c e . F ro
example, for the purposes of alphabetizing, one may want to convert the letter “c” to “AA”, if, for
instance, the “c” occurs immediately after “M”. That is, we want to convert “McCarthy” not to
“MCCARTHY”, as the Translation T ble would do, but to “MAACARTHY”. F r these latter kinds ofa o
conversions, we will have to take recourse to what we might (for lack of a better name) call a
“Phrase Lexicon”. There are many such cases where a Phrase Lexicon is essential. F r example,o
t h e T r a n s l a t i o n T b l e m a y h a v e c o n v e r t e d y o u r o r i g i n a l r e c o r d w h i c h c o n t a i n e d “ 2 8 t h ” t oa
“28TH”, but what you really want for purposes of alphabetizing is “TWENTYEIGHTH”. Similarly

10your data may contain “St.”, and you may want this to be treated as “SAINT”.

O n e m i g h t t h i n k t h a t a l l o n e h a s t o d o i s t o s e a r c h t h e r e f o r m e d r e c o r d s , i n w h i c h , f o r
e x a m p l e , “ S t . ” h a s b e e n t r a n s l a t e d c h a r a c t e r - b y - c h a r a c t e r t o “ S T ” , l o o k i n g f o r “ S T ” a n d
substituting “SAINT” wherever “ST” is found. This will not do. If you tried it this way, your
original “style” would be converted to the unacceptable “SAINTYLE”, and “mass transit”
would be converted to “MASSAINTRANSIT”. Similarly, if you thought it safe to substitute “MAA”
f o r “ M C ” a f t e r a r e c o r d h a d b e e n r e f o r m e d b y t h e T r a n s l a t i o n T b l e , y o u w o u l d c o n v e r ta
“ c a m c o r d e r ” t o “ C A M A A ORDER” . O b v i o u s l y , s i n c e i m p o r t a n t i n f o r m a t i o n a b o u t s u r r o u n d i n g
c o n t e x t i s b e i n g d i s c a r d e d b y t h e T r a n s l a t i o n T b l e , y o u w a n t t o h a v e t h e s u b s t i t u t i n g o fa
‘phrases’ occur before you call CHARACTER.SUBSTITUTION (see subroutine CREA E.PSEUDO.T

 RECORDS).

Y u can set up a Phrase Lexicon as follows:o

CREA E.PHRASE.LEXICON :T
RESTORE LEXICON
N = 0
A$ = “”
DO WHILE A$ <> “END.PHRASES”

READ A$, B$
IF A$ <> “END.PHRASES” THEN

N = N + 1
OLD.PHRASE$(N) = A$
NEW.PHRASE$(N) = B$

END IF
LOOP
NUMBER.OF.PHRASES = N

RETURN

LEXICON :
DA A “ 28th”, “TWENTYEIGHTH”T
DA A “2nd W W”, “SECONDW RLDW R”T O A

 DA A “St.”, “SAINT”T
DA A “æ”, “ae”T
DA A “’s”, “”T
DA A “Mc”, “MAA”T
DA A “MacG”, “MAAG”T

|
etc.

|
DA A “END.PHRASES”, “END.PHRASES”T

Note the blankspace in the first DA A statement (between the left quotation mark and theT
“2”). If you were to omit that blankspace, the string “28th” would be found and replaced in the

– 10 –

string “128th”, and you may not want it to be. And note that there is no blank between the
 second pair of quotation marks on the data entry for “ ’s”, that is, “ ’s” is to be snipped out of

any string in which it occurs.

T use the Phrase Lexicon, you proceed this way: search the string for each occurrence ofo
t h e o l d p h r a s e ; a s e a c h i s f o u n d , s n i p i t f r o m t h e s t r i n g a n d r e p l a c e i t w i t h t h e n e w p h r a s e ;

1 1c o n t i n u e s e a r c h i n g a n d r e p l a c i n g t o t h e r i g h t o f e a c h s p l i c e ; t h e n r e p e a t w i t h t h e n e x t o l d
_phrase, etc. (“ ” signifies the continuation of the line.)

SUB PHRASE.SUBSTITUTION(Q$) ST TICA
SHARED NUMBER.OF.PHRASES
SHARED OLD.PHRASE$(), NEW.PHRASE$()
FOR N = 1 TO NUMBER.OF.PHRASES

A$ = OLD.PHRASE$(N)
SPOT = INSTR(Q$, A$)
DO WHILE SPOT <> 0

_Q$ = LEFT$(Q$, SPOT-1) +
NEW.PHRASE$(N) + MID$(Q$, SPOT + LEN(A$))

SPOT = INSTR(SPOT + LEN(NEW.PHRASE$(N)),Q$,A$)
LOOP

NEXT N
END SUB

If you will be alphabetizing many sets of data, needing a variety of Translation T bles anda
of Phrase Lexicons, you will want to write your program so that these tables can be constructed
w i t h a w o r d p r o c e s s o r a n d c a n b e r e a d i n t o t h e p r o g r a m a s c o m p a n i o n fi l e s t o t h e d a t a fi l e s ,
rather than having the tables as permanent fixtures coded in DA A statements.T

Results

What have we achieved to this point? T ble 2 shows incisively how different the results will be,a
applying, in the first instance, any standard sorting algorithm to a set of data, and applying, in the
second, the program developed here.

– 11 –

————————————————-

The results of any The results of the
standard sorting above sorting
algorithm program

“I’ve seen … æsthetics
“Is there … algorithm
“Isn’t it … “Isn’t it …
“Shell” sort “Is there …
2nd W W “I’ve seen …
Mabbett, Alice McCarthy, Richard
MacGregor, F. MacGregor, F.
McCarthy, Richard Mabbett, Alice
Mengleberg, H. machine
Mæstro Mæstro
algorithm Mengleberg, H.
machine mess hall
mess hall 2nd W W
zoology “Shell” sort
æsthetics zoology

T ble 2a
————————————————-

Case sensitivity

Suppose, finally, that you want to preserve the distinction between capitalized data and data in
l o w e r c a s e , t h a t i s , s u p p o s e y o u w a n t t o g e n e r a t e a “ N a m e s ” l i s t i n g f o l l o w e d b y a “ S u b j e c t ”
listing. The Translation T ble, as discussed earlier, ignores positions of individual letters in thea
string: it translates all letters, including those in the first position, indiscriminately into capitals.
T c r e a t e a “ N a m e s ” l i s t i n g followed by a “Subject” listing, we will h a v e t o c h a n g e b o t h t h eo
Translation T ble and the CHARACTER.SUBSTITUTION subprogram. First of all we will wanta
the Translation T ble not to convert case, e.g. lowercase “u” is to remain lowercase. Lowercasea

 u - u m l a u t i s t o b e t r a n s l a t e d a s a l o w e r c a s e “ u ” , w h i l e a n u p p e r c a s e U - u m l a u t i s t o b e
t r a n s l a t e d a s a n u p p e r c a s e “ U ” . O n c e a l l t h e c h a r a c t e r s h a v e b e e n t r a n s l a t e d , w e c a n t h e n
e x a m i n e t h e fi r s t c h a r a c t e r o f t h e s t r i n g : i f i t i s u p p e r c a s e , w e c o n v e r t t h e e n t i r e s t r i n g t o
uppercase, if it is lowercase, we convert the entire string to lowercase.

SUB CHARACTER.SUBSTITUTION(Q$) ST TICA
’ note: version #2 – modified to create
’ a Names/Subject listing
SHARED TRANSLA ION.T BLE()T A

 FOR J = 1 TO LEN(Q$)
ASCII = ASC(MID$(Q$, J, 1))
MID$(Q$,J,1)=CHR$(TRANSLA ION.T BLE(ASCII))T A

 NEXT J
IF LEFT$(Q$, 1) => “a” THEN

Q$ = LCASE$(Q$)
ELSE Q$ = UCASE$(Q$)

END IF
END SUB

– 12 –

Letter-by-letter and W rd-by-word sortingo

A m o n g p r o f e s s i o n a l i n d e x e r s t h e r e h a s b e e n a l o n g - s t a n d i n g (a n d s o m e t i m e s h e a t e d) d e b a t e
12about the relative merits of letter-by-letter and word-by-word sorting of data. The difference

may be readily illustrated:

Letter-by-letter: W rd-by-word:o
game game
gamekeeper game plan
game plan game theory
gamete gamekeeper
game theory gamete

 T create letter-by-letter sorting, snip out blankspaces prior to sorting. That is, in the Translationo
T ble, map the blankspace onto the null (i.e. 032 → 000). T create word-by-word sorting, mapa o
the blankspace onto a value greater than 000 but less than “A”, e.g. map it onto itself (032 →
032).

Other kinds of data

F r data which departs from the most commonplace, which, for example, contains both capitalso
a n d l o w e r c a s e , o r c o n t a i n s b l a n k s p a c e s , o r c o n t a i n s f o r e i g n c h a r a c t e r s , o r c o n t a i n s q u o t a t i o n
marks, you cannot take a standard sorting routine off the shelf and expect to get results which
m i r r o r t h e c o n v e n t i o n s o f o r d i n a r y d i c t i o n a r i e s a n d t h e l i k e . A S C I I c o d i n g h a s s e v e r e
limitations. F r much ordinary data you will have to bully your data into a form suitable foro

 sorting. A few techniques have been discussed here for some frequently occurring problems, but
you will have to exercise some creative imagination for many other kinds of cases.

— Norman Swartz
Department of Philosophy
Simon Fraser University
Burnaby, B.C.
Canada V5A 1S6

––

Subroutines

READ.INPUT.DA A :T
OPEN “userfile.ext ” FOR INPUT AS #1
COUNT = 0
DO WHILE EOF(1) = 0

COUNT = COUNT + 1
LINE INPUT #1, ARRA $(COUNT)Y

LOOP
CLOSE #1

RETURN

– 13 –

CONSTRUCT.T G.T BLE :A A
 FOR N = 1 TO COUNT

T G(N) = NA
NEXT N

RETURN

SA E.ORIGINAL.DA A :V T
OPEN “savefile.$$$ ” FOR OUTPUT AS #1
FOR N = 1 TO COUNT

PRINT #1, ARRA $(N)Y
NEXT N
CLOSE #1

RETURN

CREA E.PHRASE.LEXICON :T
’ see text above for details

RETURN

CREA E.TRANSLA ION.T BLE :T T A
 ’ see text above for details

RETURN

CREA E.PSEUDO.RECORDS :T
FOR I = 1 TO COUNT

’ note: do not reverse the order of the following
’ two lines. See discussion in text.
CALL PHRASE.SUBSTITUTION(ARRA $(I))Y
CALL CHARACTER.SUBSTITUTION(ARRA $(I))Y
CALL ELIMINA E.NULLS(ARRA $(I))T Y

NEXT I
RETURN

SORT.PSEUDO.RECORDS : ’ Shell sort used
GUIDE = 1
DO WHILE GUIDE < COUNT

GUIDE = GUIDE * 2
LOOP
GUIDE = INT((GUIDE – 1) / 2)
IF GUIDE = 0 THEN GUIDE = 1
DO WHILE GUIDE > 0

FOR I = 1 TO COUNT – GUIDE
J = I
DO WHILE J > 0

K = J + GUIDE
IF ARRA $(J) > ARRA $(K) THENY Y

SW P ARRA $(J), ARRA $(K)A Y Y
 SW P T G(J), T G(K) ’ see textA A A
 J = J – GUIDE

ELSE J = –1
END IF

LOOP
NEXT I
GUIDE = INT((GUIDE – 1) / 2)

LOOP
RETURN

– 14 –

CREA E.REALLOCA ION.T BLE :T T A
 FOR N = 1 TO COUNT

REALLOCA E(T G(N)) = NT A
 NEXT N

ERASE T G ’ discard the T g T bleA a a
 RETURN

 READ.AND.SORT.SA ED.DA A :V T
 ERASE ARRA $ ’ erase the pseudo recordsY

OPEN “savefile.$$$ ” FOR INPUT AS #2
FOR N = 1 TO COUNT

LINE INPUT #2, ARRA $(REALLOCA E(N))Y T
NEXT N
CLOSE #2

RETURN

SA E.SORTED.DA A :V T
OPEN “sortdata.ext ” FOR OUTPUT AS #1
FOR N = 1 TO COUNT

PRINT #1, ARRA $(N)Y
NEXT N
CLOSE #1

RETURN

––

Notes

1. A S C I I c o d e i s s t a n d a r d i z e d o n l y f o r c h a r a c t e r s 0 0 0 t h r o u g h 1 2 7 . I n e i g h t - b i t b y t e s ,
a n o t h e r 1 2 8 c h a r a c t e r s m a y b e d e fi n e d , n a m e l y c h a r a c t e r s 1 2 8 t h r o u g h 2 5 5 . D i f f e r e n t
m a n u f a c t u r e r s o f m i c r o c o m p u t e r s h a v e a s s i g n e d d i f f e r e n t s y m b o l s t o t h e s e s o - c a l l e d
‘high-order’ characters. Thus although characters 000-127 are identical on both the IBM
PC and the Macintosh, the sets are remarkably different for the values 128 through 255.

2. Mainframe computers often use a different code , t h e E B C D I C (E x t ended Binary Coded
Decimal Interchange Code). All our examples here, however, will assume ASCII coding.

3. The programming language used here for illustrative purposes is Microsoft’s QuickBasic
dialect of Basic. QuickBasic is used because it has superior string handling abilities, it is a
structured language, it can handle strings up to 32K in length, and it is available for both
IBM and Macintosh computers. The coding below, however, is so straightforward that it
is easily convertible to P scal, C, or any other programming language of choice.a

4. There are dozens of books widely available illustrating many different sorting algorithms
i m p l e m e n t e d i n B A S I C , P S C A L , C , e t c . O n e s u c h i s G a b r i e l C u e l l a r ’ s F a n c yA
P r o g r a m m i n g i n I M B P C B a s i c , R e s t o n C o m p u t e r G r o u p , R e s t o n , V i r g i n i a , 1 9 8 4 . I n
C h a p t e r 3 , C u e l l a r i l l u s t r a t e s t h e b u b b l e s o r t , t h e S h e l l s o r t , i n s e r t i o n s o r t , a n d t h e
Quicksort, and provides comparative timing figures.

5. T h e S O R T . E X E u t i l i t y s u p p l i e d w i t h I B M / P C D O S 3 . 0 0 a n d l a t e r v e r s i o n s i s c a s e
i n s e n s i t i v e , f o r e x a m p l e , i t w i l l a l p h a b e t i z e “ A b b a ” b e f o r e “ a c o u s t i c s ” , a n d
“acoustics” before “Zamfir”.

– 15 –

6. The function UCASE$ was not available in IBM QuickBasic prior to version 4.0.

7. T h e i n i t i a l p o s i t i o n o f t h e T r a n s l a t i o n T b l e i s z e r o , n o t o n e , s i n c e t h e i n i t i a l A S C I Ia
character is itself 000, not 001.

8. P r s o n s p r o g r a m m i n g i n I B M Q u i c k B a s i c c a n u t i l i z e a C A L L t o a n a s s e m b l y l a n g u a g ee
tmsubroutine XLA E in a library of programs, ProBas , available from Hammerly ComputerT

Services, 9309 Jasmine Court, Maryland 20707. The routine XLA E is at least three timesT
faster than the BASIC coding in CHARACTER.SUBSTITUTION.

9. W rning: do not confuse the null character [CHR$(0)] with a string of null length. The twoa
statements ‘NULL$ = CHR$(0)’ and ‘ NULL$ = “” ’ are not equivalent.

10. Y u would have to write a pretty fancy subroutine if your data contains “St.” both as ano
abbreviation for “Saint” and for “Street”, e.g. “St. George St.” (in T ronto). Wo e

 will not attempt it here.

11. I t i s e s s e n t i a l t o s a f e g u a r d a g a i n s t r e c u r s i o n a t t h i s p o i n t . N o t e i n t h e c o d i n g f o r t h e
subprogram PHRASE.SUBSTITUTION, the search – in the line immediately before LOOP –
begins to the right of the inserted phrase.

12. See e.g. “On Sorting, Continued …”, by Ruthanne Lowe, in American Society of Indexers
Newsletter, no. 88 (Sept./Oct. 88), pp. 18-20.

– 16 –

