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Abstract

One approach to limiting disclosure risk in public-use microdata is to release multiply-imputed,

partially synthetic data sets. These are data on actual respondents, but with con�dential data

replaced by multiply-imputed synthetic values. A mis-speci�ed imputation model can invalidate

inferences based on the partially synthetic data, because the imputation model determines the dis-

tribution of synthetic values. We present a practical method to generate synthetic values when the

imputer has only limited information about the true data generating process. We combine a simple

imputation model (such as regression) with density-based transformations that preserve the distri-

bution of the con�dential data, up to sampling error, on speci�ed subdomains. We demonstrate

through simulations and a large scale application that our approach preserves important statistical

properties of the con�dential data, including higher moments, with low disclosure risk.

Keywords: statistical disclosure limitation, con�dentiality, privacy, multiple imputation,

partially synthetic data



1 Introduction

Statistical agencies face two competing objectives when preparing data for public release.

On the one hand, they endeavor to provide their users with high quality data. On the other

hand, they must maintain the privacy of respondents. There is a trade-o¤ between these

objectives because protecting privacy usually entails information loss (Duncan et al., 2001).

Unless care is taken, measures to protect privacy can invalidate statistical inferences.

One way to protect privacy in public-use microdata is to release multiply-imputed, par-

tially synthetic data sets. These are data on actual respondents, but with con�dential data

replaced by multiply-imputed synthetic values. When the imputation model is correctly

speci�ed, the multiply-imputed partially synthetic data permit valid inferences about the

population of interest. However, a mis-speci�ed imputation model can invalidate inferences,

because the distribution of synthetic data is determined by the model that generates them.

We present a practical method to generate synthetic values when the imputer has only

limited information about the true data generating process. We combine a simple imputation

model (such as regression) with density-based transformations that preserve the distribution

of the con�dential data, up to sampling error, on speci�ed subdomains. This allows users to

obtain valid inferences about a variety of quantities, with low disclosure risk. We demonstrate

this via simulations and an application to the US Census Bureau�s Longitudinal Employer-

Household Dynamics (LEHD) database.

Traditional approaches to limit disclosure risk include suppressing con�dential data, ag-

gregation, topcoding, adding noise, and swapping values between records (see e.g., Willen-

borg and de Waal (1996) or the appendix to Abowd and Woodcock (2001) for surveys). All

of these have the potential to distort the joint distribution of the data, and may therefore

invalidate inference. In many cases, valid inferences can only be obtained using specialized

software and methods, and/or when users are provided with detailed information about the

methods used to limit disclosure risk. In practice, however, such detailed information cannot

be released without compromising privacy.
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An alternative that permits valid statistical inferences using standard software and meth-

ods is to release data sets comprised entirely of synthetic values sampled from an estimate

of the joint distribution of the con�dential database. Rubin (1993) proposes multiple im-

putation to generate the synthetic values;1 Fienberg (1994) suggests bootstrap methods.2

Under either approach, the released data pose little or no disclosure risk because they are

completely synthetic, i.e., contain no actual data on actual respondents. However, this ap-

proach requires knowledge, or a good estimate, of the joint distribution of the data. This is

impractical in many instances. A tractable alternative is to release data on actual respon-

dents, but replace con�dential data with synthetic values sampled from an estimate of the

joint distribution of the con�dential data conditional on disclosable data. Such data, which

have become known as partially synthetic data, are the focus of this paper.

Kennickell (1997) pioneered the use of multiply-imputed, partially synthetic data in the

Survey of Consumer Finances. Subsequent authors have suggested several approaches to

generate the synthetic values. Abowd and Woodcock (2001) propose a computationally

tractable approximation to the joint distribution of the con�dential data given disclosable

data based on a sequence of regression models. They use this approximation to multiply-

impute con�dential values in linked employer-employee data. Little and Liu (2003) develop

a parametric method, called SMIKe, to selectively multiply-impute discrete �key�variables

that pose high disclosure risk. Reiter (2005d) proposes a nonparametric method to multiply-

impute synthetic values using classi�cation and regression trees (CART).

Each of these approaches makes an important contribution, but all have limitations.

SMIKe is only applicable to categorical key variables. CART, though data-driven and re-

quiring little modeling input from the imputer, may be more di¢ cult to describe to the public

than a parametric model. Simple descriptions of the imputation model are useful meta-data

for public-use releases, since they help users determine which analyses can be reasonably

1This proposal is developed more fully in Raghunathan et al. (2003). Reiter (2002) provides a simulation
study, Reiter (2005c) discusses inference, and Reiter (2005b) provides an application.

2Fienberg et al. (1998) apply this method to categorical data; Fienberg and Makov (1998) use related
concepts to develop a measure of disclosure risk.
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supported by the synthetic data. And though Abowd and Woodcock (2001) demonstrate

that regression-based methods perform well in practice, the regression models are subject to

mis-speci�cation when the true data generating process is unknown.

Our approach is predicated on the assumption that data collectors prefer to use simple

(or convenient) imputation models to generate synthetic values, such as regression models.

We believe this assumption re�ects reality at many statistical agencies. Data collectors may

prefer simple imputation models for various reasons: to reduce modeling or computational

burden, because they are easy to diagnose and interpret, or because the correct imputation

model is unknown. However, synthetic data generated using a simple imputation model may

fail to reproduce complex features of the con�dential data, such as nonlinear relationships

between variables, skewness, tail thickness, and the number and location of modes. All of

these may be important for obtaining valid inferences about some quantities.

Our proposed approach is similar in spirit to the nonlinear data-�tting methods of Lin and

Vonesh (1989) and Nusser et al. (1996), and the copula-based additive noise perturbation of

Sarathy et al. (2002). It proceeds as follows. First, we divide the data into subdomains of

primary interest. Second, in each subdomain, we transform the variable under imputation

to have a standard distribution that is compatible with a simple imputation model. Then

we generate synthetic values using a simple model on the transformed data. The role of the

simple imputation model is to preserve relationships of secondary interest within subdomains.

Finally, we apply an inverse transformation that returns the synthetic values to the native

scale and distribution of the underlying con�dential variable. This preserves the distribution

of the con�dential variable on the subdomains of primary interest.

Our approach is less subject to mis-speci�cation than a simple imputation model alone,

because we only rely on the simple model to capture relationships of secondary interest. In

fact, our simulations and application demonstrate that our approach preserves important

statistical properties of the con�dential data, including higher moments, with low disclosure

risk. Furthermore, it is easily applied in practical situations involving many variables and
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observations.

The remainder of the paper is organized as follows. We begin, in Section 2, by reviewing

some relevant background information. We develop our synthesis method in Section 3.

Section 4 presents the simulations, Section 5 presents the application to linked employer-

employee data, and Section 6 concludes.

2 Background and Concepts

Consider a database that consists of con�dential microdata Y and disclosable microdata X.

Both X and Y may contain discrete and continuous elements. Let D = (X;Y) represent

the database in question, and F (D) its probability distribution.

The data collector wishes to release public microdata ~D. Her competing objectives are to

maximize data utility and minimize disclosure risk. Muralidhar and Sarathy (2003) suggest

a very stringent criterion for data utility: that the observed and released data are identically

distributed, F (~D) = F (D). In practice, this cannot be achieved because F is usually

unknown and because disclosure limitation entails information loss. Instead, usual practice

is to require that the released data yield valid inferences about quantities of substantive

interest, e.g., means, variances, regression coe¢ cients, and the like. Disclosure risk is usually

assessed via simulations that attempt to replicate behavior of a malicious data user (i.e., an

intruder or snooper) who seeks to infer the value of a con�dential datum.3

2.1 Multiply-Imputed, Partially Synthetic Data

Partially synthetic data replace con�dential values Y with synthetic values ~Y. A partially

synthetic data release is ~D = (X; ~Y). Multiply-imputed, partially synthetic (MIPS) data

rely on an imputation model to generate the synthetic values. In the parametric case, this

3Duncan and Lambert (1986) and Lambert (1993) propose a general framework to assess the risk of
identity disclosure. They model the behavior of an intruder to obtain disclosure probabilities and Bayesian
measures of uncertainty about those probabilities. Reiter (2005a) demonstrates their approach for several
traditional disclosure limitation methods.
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is de�ned by a likelihood p (YjX;�) and prior p (�), where � are unknown parameters.

Synthetic values are sampled from the posterior predictive distribution:

p
�
~YjX;Y

�
=

Z
p
�
~YjX;Y;�

�
p (�jX;Y) d�: (1)

The likelihood in (1) conditions on Y to re�ect the possibility that we selectively impute

values (e.g., when they exceed a threshold), or use di¤erent imputation models on subdo-

mains of Y. To simplify notation in what follows, we usually omit Y from the conditioning

statement in the likelihood.

Specifying the joint likelihood can be challenging in practice. This is particularly true

when there are many con�dential variables, when some are continuous and others are dis-

crete, and when relationships among variables are complex. This is often the case in gen-

uine applications. Specifying the joint likelihood as a sequence of univariate conditional

likelihoods reduces modeling burden somewhat. If we write Y = [y1 y2 � � � yK ] and

� = [�1 �2 � � � �K ], we can use the factorization

p (YjX;�) = p1 (y1jX;�1) p2 (y2jX;y1;�2) � � � pK (yK jX;y1;y2; :::;yK�1;�K) (2)

based on a univariate likelihood for each yk.4 This factorization accommodates continuous

and discrete variables by choice of likelihood for each yk; and admits complex relationships

between variables via conditional dependence. Factorization also lets us generate synthetic

values ~Y = [~y1 ~y2 � � � ~yK ] sequentially, e.g., by sampling ~y1 from the posterior predictive

distribution of y1 given X; then sampling ~y2 from the posterior predictive distribution of y2

given X and ~y1; and so on.

It is well known that multiple imputation yields valid inferences when the imputation

4An alternative, proposed by Abowd and Woodcock (2001) and based on the Sequential Regression Multi-
variate Imputation (SRMI) algorithm of Raghunathan et al. (2001), is to approximate the joint likelihood by
a sequence of regression models. This is an iterative procedure, consisting of L rounds of synthesis. In each
round, synthetic values are drawn sequentially for each yk; conditional on X and the most recently-drawn
synthetic values for all other con�dential variables.
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model is correctly speci�ed. We call one draw from the posterior predictive distribution a

partially synthetic data implicate, ~Ym. The data collector must release multiple implicates,

~Dm =
�
X; ~Ym

�
for m = 1; 2; :::;M , to allow valid inferences from the MIPS data. Reiter

(2003) develops the necessary distribution theory.5 Suppose that with access to the con�-

dential data D; users would base inference about a scalar population quantity Q on a sample

statistic q with asymptotic distribution (Q� q) a� N (0; V ). The user computes the sample

statistic qm on each partially synthetic data implicate. Let vm denote the sampling variance

of qm. Estimates from the M implicates are combined using:

�qM =
1

M

MX
m=1

qm; bM =
1

M � 1

MX
m=1

(qm � �qM)2 ; �vM =
1

M

MX
m=1

vm: (3)

An unbiased estimator of the variance of �qM is T =M�1bM+�vM : In large samples, inferences

about Q can be based on a t distribution with � = (M � 1)
�
1 + r�1M

�2
degrees of freedom,

where rM = (M�1bM=�vM) : These combining rules di¤er slightly from those for multiply-

imputed missing data (e.g., Rubin, 1987). To understand this, note that in the absence of

missing data, �vM estimates the variance ofQjD. In contrast, in standard multiple imputation

for missing data, �vM + bM estimates the variance of QjD: For an extended discussion of this

point, see Reiter and Raghunathan (2007).

3 Imputation Using Simple Models and Transforma-

tions

A mis-speci�ed imputation model can invalidate inference based on MIPS data.6 This is

signi�cant in genuine applications, because data collectors are unlikely to know F (D) : The

synthesis procedure we develop here is designed to mitigate mis-speci�cation that arises when

5Reiter (2004) considers the case where multiple imputation is used both for missing data imputation
and disclosure limitation.

6A mis-speci�ed imputation model could also a¤ect disclosure risk, but there is no particular reason to
expect it will increase.
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the correct imputation model is unknown.

Suppose the data collector wishes to generate synthetic values of a continuous variable

yk conditional on a subset of information in the database, W � D. De�ne a partition of

the conditioning information W = [W1 W2] such that relationships between yk and W1

are of primary interest, and relationships between yk and W2 are of secondary interest.

The objective is to replicate the distribution of yk on subdomains ofW1, and preserve key

relationships between yk andW2 on those subdomains. We have in mind thatW1 describes

a collection of discrete variables, or a meaningful discretization of continuous variables (e.g.,

categories based on quantiles). For example, suppose that yk is employment income and

W1 is a collection of discrete characteristics such as sex, race, geography, and educational

attainment. The objective is to preserve the distribution of income in sex� race� geography

� education cells, and to preserve key relationships between income and W2 (e.g., age,

employer size, etc.) within those cells.

We assume the data collector does not know the correct model for ykjW2 on subdomains

ofW1: She therefore favors a simple (or convenient) imputation model to generate synthetic

values, such as regression, that is easy to diagnose and interpret, and that captures important

relationships between yk and W2. This poses two problems. First, the distribution of

synthetic values sampled from the posterior predictive distribution of a simple imputation

model for ykjW2 may not coincide with the observed distribution of yk on the subdomain,

FyjW1=w1 : This distorts the distribution of ykjW1 in the synthetic data and may invalidate

inference. Second, incompatibility between the distribution of yk and the simple imputation

model may exacerbate mis-speci�cation. For example, a linear regression of yk onW2 may

�t poorly and yield implausible synthetic values if FyjW1=w1 is highly skewed or multi-modal,

distorting relationships between yk andW2. Our solution is to transform yk in a way that

improves the �t of the simple imputation model, and apply an inverse transformation to the

synthetic values that replicates the distribution of yk on the subdomain.

Let p (zkjW2;W1 = w1;�k) denote the likelihood of a simple imputation model for
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zkjW2 on a subdomain ofW1, where zk is a monotone transformation of yk that improves the

model�s �t. The transformation could be deterministic (such as a logarithm) or stochastic.

We focus on a general-purpose density-based transformation.

Let FzjW1=w1 denote a distribution function compatible with the simple imputation model,

e.g., the distribution function implied by the likelihood averaged over W2 and �k. De�ne

the transformation

zk � F�1zjW1=w1

�
F̂yjW1=w1 (ykjW1 = w1)

�
(4)

where F̂yjW1=w1 is an estimate of FyjW1=w1 : Now zk � FzjW1=w1 by construction. Because zk

is a monotone transformation of yk; this transformation preserves monotone and rank-order

relationships between yk andW2:

Let ~zk denote synthetic values sampled from the posterior predictive distribution:

p (~zkjW2;W1 = w1; zk) =

Z
p (~zkjW2;W1 = w1;�k) p (�kjW2;W1 = w1; zk) d�k: (5)

The synthetic values are distributed ~zk � F~zjW1=w1 on the subdomain, where F~zjW1=w1 is

de�ned by the predictive distribution. In some cases F~zjW1=w1 will be known. More generally,

we will need to estimate it. Let F̂~zjW1=w1 denote an estimate. De�ne synthetic values ~yk by

the inverse transformation:

~yk = F̂
�1
yjW1=w1

�
F̂~zjW1=w1 (~zk)

�
: (6)

Because ~yk is a monotone transformation of ~zk; this transformation preserves monotone and

rank-order relationships between synthetic values and W2: Moreover, the synthetic values

are distributed according to ~yk � F̂yjW1=w1 by construction. Repeating this procedure on

each subdomain ofW1 yields synthetic data that replicate the distribution of ykjW1, up to

sampling error in F̂yjW1=w1 :

To obtain valid inferences from the synthetic data, the imputations must be proper in the
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sense of Rubin (1987), i.e., propagate model uncertainty across the implicates. Our trans-

formations (4) and (6) contain sampling error because they are based on sample estimates.

It is important to introduce between-implicate variation in the estimated transformations to

re�ect this uncertainty. One solution is to estimate F̂yjW1=w1 and F̂~zjW1=w1 on an approximate

Bayesian bootstrap sample of observations in each implicate. The estimates could be based

on the empirical distribution function or a smoothed estimate. The latter will provide better

protection against attribute disclosure, because observed values are not replicated exactly in

the synthetic data.

The partition of W into W1 and W2 is arbitrary, but there is a trade-o¤. Including

more elements in W1 preserves more dimensions of the distribution of yjW. However, it

also reduces the number of observations in each subdomain, thereby reducing the precision

of the estimated transformations and of the simple imputation model. It also increases

computational burden, since the density and simple imputation model are estimated on each

subdomain.7

Preserving relationships of secondary interest between yk andW2 requires a well-speci�ed

imputation model for zkjW2 in each subdomain. Our procedure does not alleviate the

modeling burden for zkjW2: We have in mind simple but �exible imputation models, e.g.,

linear regression on polynomials of predictors in W2 and interactions between them, that

capture relationships of interest between yk and W2. As demonstrated in the simulations

and empirical application below, this is su¢ cient to obtain valid inferences about a variety

of quantities, including means, variances, correlations, and regression coe¢ cients.

Our approach has some advantages over semiparametric and nonparametric alternatives

for generating synthetic values on each subdomain. Sampling synthetic values from a non-

parametric estimate of the conditional distribution of ykjW2; or from the predictive distrib-

ution of a nonparametric regression, su¤ers the usual problems of nonparametric estimation:

7EitherW1 orW2 could be empty. WhenW2 is empty, synthetic values ~yk can be resampled from the
observed data on each subdomain ofW1. If this does not provide su¢ cient disclosure protection, synthetic
values can be sampled from a smoothed estimate of FyjW1=w1 :
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they su¤er the curse of dimensionality and are computationally costly. Alternatives with

more modest computational requirements, such as spline regression, impose restrictions on

modeled relationships (such as additive separability) that may distort relationships between

yk and W2: Relaxing these restrictions, e.g., including interaction terms between predic-

tors, may rapidly increase computational burden. Furthermore, there is no guarantee that

the distribution of synthetic values will replicate FyjW1=w1, invalidating some inferences. In

contrast, our approach preserves distributional features of primary interest, is easy to im-

plement in standard software, computationally cheap, and numerically stable. Furthermore,

a simple parametric imputation model for zkjW2 will be su¢ cient when the data collector

knows which relationships she wants to preserve in the synthetic data, and when these are

well described by a parametric model.

Example 1 The data collector would like to use a linear regression model to generate syn-

thetic values of yk conditional onW; but the distribution of ykjW is not normal. LetW1 be

a collection of categorical variables inW; andW2 the remaining elements ofW: De�ne the

subdomains w1 according to the cells of the cross-classi�cation of variables inW1. On each

subdomain, estimate F̂yjW1=w1 on an approximate Bayesian bootstrap sample of observations.

De�ne the transformed values zk = ��1
�
F̂yjW1=w1 (ykjW1 = w1)

�
, where � denotes the stan-

dard normal CDF, so that zk � N (0; 1) on each subdomain. Up to location and scale, this

is the marginal distribution implied by the likelihood of the imputation model when W2 are

multivariate normal. More generally, the transformation to zk improves �t of the regression

model by rendering the distribution symmetric and unimodal. Next, sample synthetic values

~zk from the posterior predictive distribution de�ned by the normal linear regression of zk on

W2 and an uninformative prior. The synthetic values ~zk are distributed t with centerW2�̂

and n�k degrees of freedom. Averaged overW2 and parameters, their distribution is approx-

imately standard normal; so de�ne the inverse transformation ~yk = F̂�1yjW1=w1
(� (~zk)). If the

standard normal approximation is poor, construct a sample estimate of F~zjW1=w1 from the ~zk:

Denote the estimate F̂~zjW1=w1 and de�ne the synthetic values ~yk = F̂
�1
yjW1=w1

�
F̂~zjW1=w1 (~zk)

�
:
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In either case, the synthetic and con�dential values are identically distributed (up to sampling

error) on the subdomain W1 = w1 i.e., ~yk � F̂yjW1=w1. Repeating this procedure M times

on each subdomain yields M synthetic imputations that replicate the distribution of ykjW1:

4 Simulation

We illustrate and evaluate our synthesis method with a brief simulation. The objectives

of the simulation are threefold. First, to assess performance of our method relative to the

case where the exact imputation model is known. Second, to compare its performance to

a nonparametric alternative: additive spline regression on each subdomain. And third, to

assess identity disclosure risk in the partially synthetic data, since we are unable to do so in

our empirical application (Section 5).

We simulate 5,000 databases, each comprising 10,000 observations on six variables. Of

the six variables, we treat three as disclosable and three as con�dential. We generate three

partially synthetic implicates of each simulated database.

The disclosable variables are de�ned as follows. The �rst, denoted g; takes value one or

two with equal probability. We refer to g as an observation�s group. The other disclosable

variables are x1 and x2; independently distributedN (0; 1) and rounded to the nearest integer

on [�2; 2] : The con�dential variables are de�ned as follows:

y1 = exp
�
3g +

�
g1=2=3

�
x1 +

�
g1=2=3

�
x2 + "1

	
(7)

y2 = exp
�
3g +

�
g1=2=4

�
x1 +

�
g1=2=4

�
x2 +

�
g1=2=4

�
ln (y1) + "2

	
(8)

y3 = F�1y3jg
�
Fz3jg (z3)

�
(9)

where z3 = x1�(g=2)1=2 x2+"3; the errors are independently distributed "1 � N (0; g=9) ; "2 �

N (0; g=16), and "3 � N (0; g=2) ; and where Fy3jg is the cdf of a 70 : 30 mixture of a N (g; g2)

and a N (3g; g2=4) ; and Fz3jg is the cdf of z3jg.8 Conditional on g; the distributions of y1 and
8Note z3jg � N (0; 1 + g) ; z1jg � N (3g; g=3) ; and z2jg � N

�
3g
�
1 + g1=2=4

�
; g
�
3 + g=3 + 4g1=2=3

�
=16
�
:
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y2 are highly skewed and that of y3 is bimodal. Subject to the monotone transformations

z1 = ln (y1) ; z2 = ln (y2) ; and z3 = F�1z3jg

�
Fy3jg (y3)

�
, however, they are conditionally and

marginally normal in each group.

Conditional on disclosable variables, y3 is independent of y1 and y2: Hence we synthesize

y3 independently of the other con�dential variables, withW1 = g andW2 = fx1; x2g. We

synthesize y1 and y2 sequentially: y1 �rst, withW1 = g andW2 = fx1; x2g, and y2 second

with W1 = g and W2 = fx1; x2; y1g : We generate synthetic data for all three con�dential

variables following Example 1, using integrated kernel densities to de�ne the transformations.

We also apply the density-based transformation to the predictor y1 in the model for y2.

To assess the information loss due to ignorance of the exact transformation between the

con�dential variables and the correct imputation model, we also synthesize y1 and y2 using

the exact (correct) imputation model: linear regression in logarithms on each subdomain.

We also generate synthetic data for all three variables using additive spline regressions. On

each subdomain of W1, we specify an imputation model with additively-separable cubic

smoothing splines for each variable in W2: More general spline regression speci�cations

(e.g., with interactions) encountered computational di¢ culties.9 To ensure the synthetic

data re�ect model uncertainty, we �t the spline regressions to an approximate Bayesian

bootstrap sample in each implicate. We then calculate a predicted value and residual for

each record and generate synthetic values by adding a bootstrapped residual, resampled from

a donor observation in the same decile, to the predicted value.10

Figure 1 summarizes bias in the �rst four moments and selected quantiles of the dis-

tribution of synthetic data. For each of the three synthetic variables, we calculate relative

bias in each moment and quantile by group, and plot the average bias in 5000 replications.

9Not reported, but available on request, are simulation results for synthesis based on local regression,
also known as scatter-plot smoothing or LOESS. Local regression proved computationally more robust than
additive splines in speci�cations with interactions, but increased computational time twenty-�ve fold with
no appreciable improvement in synthetic data quality versus reported results for spline regression.
10Reported results for spline regression exclude a small number of replications that encountered computa-

tional di¢ culties. The spline estimator apparently failed to converge in these replications. We believe this
problem is speci�c to the SAS GAM procedure, which is deemed experimental in SAS version 9.

12



For moments, relative bias is (�q3 �Q) =Q where �q3 is the synthetic data sample moment

averaged over three implicates, and Q is the population moment. For quantiles, relative bias

is (�q3 �Q) =� where � is the population mean. There is no detectable bias in any of these

quantities for synthetic data imputed using the correct (exact) model. Our density-based

transformation also performs well: on average, there is slight reduction in skewness and

kurtosis of y1 and y2; but no consistent bias in other quantities. In contrast, synthetic data

based on additive spline regression exhibit signi�cant bias in all quantities except the mean

and median.

To investigate the repeated sampling properties of the synthetic data, we calculate 95

percent con�dence interval coverage for a large number of estimands in the observed and

synthetic data. Estimands include the means of all three con�dential variables by group;

all bivariate product-moment and rank-order correlations by group; and coe¢ cients in the

linear regression of ln y2 on an intercept, x1; x2; and ln y1 by group. All inferences are based

on the methods of Section 2.1; con�dence intervals for correlations are based on Fisher�s

z transformation. Figure 2 plots con�dence interval coverage in the observed data versus

coverage in the synthetic data. In all but a few cases, synthetic data generated using the exact

model and our density-based transformation yield inferences very similar to the observed

data. Synthetic data based on spline regression exhibit large distortions for some estimands.

We investigate both attribute and identity disclosure risk in the synthetic data. Our

assessment of attribute disclosure risk follows Reiter (2005d). We assume an intruder esti-

mates unit i�s value of the kth con�dential variable, yk;i; by averaging the unit�s synthetic

values across all three implicates: ~yk;i =
P3

m=1 ~y
m
k;i for k = 1; 2; 3: This is conservative, in the

sense that it assumes that the intruder can identify which record in each synthetic implicate

corresponds to the same source record in the con�dential data. Intruders are unlikely to have

this information in practice. We calculate the relative root mean squared error (RRMSE)
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Table 1: Attribute disclosure risk (RRMSE) in Simulated Data
Method Variable Min 1st Percentile 1st Quartile Median
Exact y1 .01 .07 .25 .38

y2 .01 .06 .21 .31
Density Transform y1 .01 .07 .26 .39

y2 .01 .06 .21 .32
y3 .01 .05 .25 .49

Spline Regression y1 .01 .05 .26 .43
y2 .01 .06 .24 .49
y3 .01 .04 .20 .39

of this estimator for each unit:

RRMSEk;i =

0@
vuut�yk;i � ~yk;i�2 +M�1 (M � 1)�1

MX
m=1

�
~ymk;i � ~yk;i

�21A =yk;i:
The distribution of RRMSE in the synthetic data provides a measure of variability in the

imputations. Table 1 presents averages over 5000 simulations of quantiles of the distribution

of RRMSE. All three synthesis methods perform similarly. On average, the minimum

relative root mean squared error of prediction is about 1% for all three con�dential variables

under all three methods. Median RRMSE varies between 31% and 49%, which suggests

there is a wide range of uncertainty in the imputations for most units.

We assess the risk of identity disclosure via re-identi�cation, as suggested by Elliot (2001),

Domingo-Ferrer and Torra (2003), Winkler (2004) and others. Re-identi�cation simulates

the behavior of an intruder who attempts to determine respondent identity by matching

released data to a secondary data source on the basis of common variables. A re-identi�cation

simulation uses record-linkage techniques to match records in the partially synthetic data

to the underlying con�dential data. A partially synthetic record is deemed at high risk of

identity disclosure if it is matched to its con�dential source record. Re-identi�cation provides

a conservative assessment of identity disclosure risk, because it assumes that the intruder

has the maximum possible information available to identify records in the synthetic data:

the con�dential data themselves.
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Our re-identi�cation experiment takes the arguably conservative approach of averaging

synthetic values of each con�dential variable across the three implicates in each replica-

tion.11 Then, in each of the 50 cells of the cross-classi�cation of the disclosable variables

(g � x1 � x2), we calculate the Mahalanobis distance between each averaged synthetic record

and each observed data record. The closest observed data record to a synthetic record con-

stitutes a match.12 If a synthetic record is matched to its source record, the record is deemed

re-identi�ed.

The overall re-identi�cation rate is very low. Averaged over 5000 simulations, the overall

re-identi�cation rate is 0.5 percent when using the exact synthesis model or our density-

based method, and 0.8 percent in synthetic data based on spline regression. Across cells,

the re-identi�cation rate corresponds closely to the inverse of cell size (see Figure 3). The

inverse of cell size is a natural lower bound on the re-identi�cation rate, since the expected

number of re-identi�cations per cell is one if synthetic records are matched to con�dential

records at random.13 Figure 3 shows that re-identi�cation rates in synthetic data based

on the exact model and our density-based method are very close to this lower bound, and

somewhat larger in synthetic data based on splines.

Our density-based synthesis method and synthesis based on additive splines had similar

computational demands in the reported simulations: both averaged about 23 seconds to

synthesize all three variables in each replication, versus 6.5 seconds for synthesis using the

exact model. Additional simulations indicate that execution time scales linearly with the

number of observations for all three methods. However, synthesis based on splines is much

11As noted previously, averaging across implicates assumes that the intruder can identify which records
in the MIPS data correspond to the same source record in the con�dential data. This is a conservative
assumption, because intruders are unlikely to have this information in practice. Conditional on being able to
combine record-level information across implicates, however, we note that simple averaging is not necessarily
optimal behavior on the intruder�s part.
12We are implicitly assuming that the intruder knows the disclosable variables are not synthetic and

therefore requires exact agreement on the disclosable variables.
13Domingo-Ferrer and Torra (2003) show that if two �les contain n records on the same set of n respondents,

the probability of correctly re-identifying exactly r respondents using a random matching strategy is p (r) =
1
r!

Pn�r
v=0 (�1)

v
=v!: It follows that the expected value of r is 1 for any n; or equivalently, the probability that

a randomly selected record is re-identi�ed is 1=n:
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less e¢ cient than the other methods as the number of covariates increases. In further sim-

ulations, introducing three additional covariates in the synthesis models had no noticeable

e¤ect on execution time for synthesis via the exact method or our density-based method,

but increased execution time by a factor of ten for synthesis based on splines.

5 Application

We apply our density-based transformation, coupled with linear regression, to synthesize

earnings and date of birth in the Longitudinal Employer-Household Dynamics (LEHD) Pro-

gram database. These are con�dential administrative data based on the universe of quarterly

employment records collected by state agencies to administer the Unemployment Insurance

(UI) system. The LEHD database integrates the UI employment reports with a variety of

internal Census Bureau data sources to attach individual and employer characteristics to

the administrative records. See Abowd et al. (2004) for a detailed description of the LEHD

data. We select a simple random sample of individuals employed in one state (whose identity

is con�dential) between 1990 and 1998.14 The sample contains about 30 million quarterly

employment records on about 1.25 million individuals.

5.1 Synthesis Details

We produce three synthetic implicates of reported earnings and date of birth. We synthesize

these variables sequentially, with earnings following date of birth. For each variable, the

synthesis procedure follows Example 1.

Date of birth is integer-valued and reported with daily detail. Earnings are reported

quarterly in dollars. We treat both distributions as continuous. To synthesize date of birth,

W1 includes sex, race, county of residence, and several indicators for missing data. To

synthesize earnings, W1 includes sex, race, industry of employment (SIC Major Division),

14We cannot disclose the sampling rate for con�dentiality reasons.
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an indicator for quarterly earnings over $100,000, indicators for full-time employment and

foreign birth, and several indicators for missing data.15

We apply our density-based transformation in each cell of the cross-classi�cation of vari-

ables in W1 that contains su¢ cient data (at least ten times as many observations as pre-

dictors in the regression model). We collapse small cells, in which case we add main e¤ects

for the collapsed cells to W2.16 Transformations are based on integrated kernel densities,

estimated on an approximate Bayesian bootstrap sample of observations in each cell. In our

imputation model for earnings, we apply a similar transformation to up to two leads and

lags of earnings at the same employer (where these exist).

To synthesize date of birth,W2 includes a quartic in years of education, an indicator for

foreign birth, the number of quarters worked in each year, the proportion of employment

spells that were full-time, the proportion of employment spells in each SIC Major Division

and county, and the mean and variance of (log) �rm size and payroll in the individual�s

employment history. To synthesize earnings, W2 includes a quartic in age (based on re-

ported/synthetic date of birth), up to two transformed leads and lags of earnings at the

same employer (where these exist), a quartic in years of education, main e¤ects for county

of residence and county of employment, main e¤ects for non-employment in each year of the

sample, the employer�s (log) employment and payroll, and main e¤ects for year and quarter.

Many predictors inW2 are highly correlated, so we apply a simple model selection rule to

increase precision in the posterior distribution of regression coe¢ cients. On each subdomain,

we estimate a candidate regression on all elements of W2. Only those variables that meet

the Schwarz (1978) criterion are retained. We then estimate the �nal imputation model on

the reduced set of predictors.

15Date of birth and earnings imputations condition on di¤erent variables because earnings varies over time,
but date of birth does not. Using di¤erent predictors to generate the synthetic values implies conditional
independencies in the synthetic data that depend on imputation order.
16The cross-classi�cation of variables in W1 de�nes over 100,000 cells for each variable. Most of these

are sparsely populated, which necessitates collapsing many small cells. Although only about ten percent of
observations are in collapsed cells, cell collapse reduces the number of cells below 1,000 for date of birth,
and below 3,000 for earnings. Cell sizes vary between approximately 1,500 and 1.4 million observations. The
median cell size is approximately 3,150 observations.
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Table 2: Moments and Quantiles of Marginal Distributions
Age on Jan 1, 1990 Quarterly Earnings

Observed Synthetic Observed Synthetic
Mean 29:7 29:7 6; 779 6; 685
Standard Deviation 16:3 16:4 22; 930 26; 223
Skewness :53 :49 433 490
Kurtosis �:10 �:11 632; 771 640; 980
1st Percentile 4:0 3:4 43 42
5th Percentile 7:4 7:2 229 242
Median 28:2 28:4 4; 653 4; 593
95th Percentile 59:9 59:8 18; 341 18; 781
99th Percentile 72:3 72:2 38; 481 41; 941
N 1; 288; 324 29; 991; 540

5.2 Results

Table 2 reports moments and quantiles of the marginal distributions of age and earnings in

the observed and synthetic data. The synthetic data replicate all of these quantities closely.

The synthetic data are slightly more dispersed than the observed data. The distribution of

synthetic age is slightly more symmetric and has slightly thinner tails than observed age,

and the reverse is true for employment earnings.

The distributions of age and earnings are also well replicated on subdomains of W1:

Figure 4 plots the estimated densities of observed and synthetic age by race, and Figure 5

does the same for earnings in the range $1 to $40,000 (which exceeds the 99th percentile of

the distribution of observed data).17 In each case, the synthetic data accurately reproduce

the shape of the distribution of observed data, including the number and location of modes,

tail thickness, etc., although the synthetic densities are somewhat smoother. Smoothing

arises because the synthetic densities are averaged over three implicates in the plots, because

we collapse some small cells, and because our transformations are based on kernel density

estimates. If desired, this could be mitigated by choosing a smaller bandwidth for kernel

density estimates.18

17Plots by sex and race are appendicized. Plots on other subdomains are available on request.
18Throughout, bandwidth selection is based on Silverman�s (1986) rule of thumb.

18



Table 3: Moments of Observed and Synthetic Quarterly Earnings
Below $100,000 Above $100,000

Observed Synthetic Observed Synthetic
Mean 6; 343 6; 420 245; 934 251; 665
Standard Deviation 7; 414 7; 851 448; 977 533; 795
Skewness 3:9 4:1 30:0 29:6
Kurtosis 27:3 29:3 2; 298 1; 849
N 29; 936; 981 29; 937; 054 54; 559 54; 486

The observed distribution of earnings is very right-skewed. This feature of the distribution

is replicated in the synthetic data �in part because we included an indicator for quarterly

earnings above $100,000 inW1: Table 3 reports moments of observed and synthetic earnings

above and below this value. There is some small upward bias in the mean and variance on

both subdomains. The synthetic distribution is slightly more skewed and has thicker tails

below $100,000; the reverse is true above $100,000. Overall, however, synthetic and observed

data moments are very similar.

To assess whether the synthetic data yield valid inferences about quantities of interest, we

investigate their repeated sampling properties. Treating the LEHD data as a population, we

take 1,500 simple random samples of 50,000 observations and calculate a variety of estimands

on the observed and synthetic data. Inferences are based on the methods of Section 2.1. We

use the �nite population correction factor in determining the variance of all estimands.

Table 4 summarizes the repeated sampling properties of various sample means, propor-

tions, and correlations. For most estimands, the average of synthetic data point estimates

in repeated samples is close to the corresponding population value. The median ratio of the

mean squared error of the synthetic data point estimate over the mean squared error of the

observed data estimate is 1.05, which indicates that most synthetic and observed data point

estimates are similar. Observed and synthetic con�dence interval coverage are also close

for most estimands, indicating that the synthetic and observed data yield similar inferences

about population quantities. The only notable discrepancy is that some correlations are

slightly attenuated in the synthetic data.
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Table 4: Repeated Sampling Properties of Simple Estimands
Population Avg. Synthetic 95% CI Coverage

Estimand Value Estimate Observed Synthetic
Mean age on Jan 1, 1990 31:5 31:8 95:2 93:7
Proportion age > 60 on Jan 1, 1990 :049 :044 94:0 92:5
Proportion age < 25 on Jan 1, 1990 :355 :360 95:1 98:2
Mean quarterly earnings (QE) 6; 779 6; 865 91:0 97:2
Proportion QE > $50,000 :006 :007 91:5 98:3
Proportion QE < $3,000 :381 :387 94:6 95:8
Mean annual earnings, all jobs (AE) 29; 374 29; 991 92:6 94:6
Proportion AE > $100,000 :026 :027 94:0 96:4
Correlation between age and:
Quarterly earnings :117 :110 95:0 83:6
Years of education :154 :142 93:9 74:8
Indicator for foreign birth :039 :044 96:3 93:0
ln(employer size) :059 :059 95:1 99:6
ln(employer payroll) :095 :091 95:3 95:3

Correlation between QE and:
Years of education :117 :112 95:3 86:1
Indicator for foreign birth �:003 �:002 94:3 98:9
ln(employer size) :053 :051 95:4 94:6
ln(employer payroll) :117 :112 95:3 85:3
One quarter lagged QE :410 :403 94:8 81:2
Two quarters lagged QE :387 :390 94:8 81:4

Note: Population m ean age d i¤ers from Table 2 b ecause we sample employm ent records (not ind iv iduals) w ith equal probability.
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We calculate the sample means and proportions reported in Table 4 on subdomains of

sex, race, and sex � race; and, only for estimands based on earnings, on subdomains of SIC

Major Division (we do not do likewise for age because industry is a characteristic of a job, not

an individual). Point estimates based on the synthetic and observed data are similar on these

subdomains. Over estimands and subdomains, the median ratio of the MSE of the synthetic

data point estimate over MSE of the observed data estimate is 1.16. Figure 6 plots 95 percent

con�dence interval coverage in synthetic data versus observed data for these estimands.

Coverage is similar in most cases, though somewhat greater in the synthetic data: median

coverage is 94.0 in the observed data and 96.2 in the partially synthetic data. Observed data

intervals frequently under-cover population quantities, particularly for earnings estimands,

and this is not always reproduced in the synthetic data. Likewise, some synthetic data

intervals (particularly the proportion over age 60) under-cover their population counterpart

on subdomains, despite good coverage in the observed data. These discrepancies likely

re�ect the relatively small number of synthetic implicates. Overall, however, the observed

and synthetic data yield very similar inferences about most quantities on these subdomains.

Table 5 presents estimates of a regression model of substantive interest. The model

predicts the natural logarithm of quarterly earnings based on individual and employer char-

acteristics for a sample of men employed full time.19 This is a very well-studied speci�cation.

On the whole, the observed and synthetic data yield very similar inferences. The estimated

experience pro�le, which is of interest to labor economists, is virtually identical in the two

databases.20 The only notable discrepancies are in several of the industry main e¤ects. Con-

�dence intervals in the observed data signi�cantly undercover the population coe¢ cients on

19The estimated speci�cation di¤ers from our synthesis model for earnings. It is based on log earnings,
instead of the density-based transformation. It includes a quartic in labor force experience (which is a
function of age), rather than age. Furthermore, the estimated speci�cation includes main e¤ects for foreign
birth and the employer�s industry, whereas these variables were inW1 for synthesis; and excludes leads and
lags of earnings, main e¤ects for county of residence and employment, and main e¤ects for non-employment
in each year.
20Labor force experience is a function of age. In the �rst period that an individual appears in the LEHD

data, experience equals age minus years of education minus six. Experience increments by .25 in each
subsequent quarter of employment.
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employer size and payroll, and this is accurately re�ected in the synthetic data. Indeed,

con�dence interval coverage is very similar in the observed and synthetic data for most

coe¢ cients.

We do not attempt to assess identity disclosure risk in the partially synthetic data,

because synthesizing only these two variables is almost certainly insu¢ cient to prevent re-

identi�cation.21 We therefore focus on attribute disclosure risk. As in Section 4, we assume

an intruder attempts to predict the value of a con�dential variable by averaging synthetic

values across implicates. Table 6 summarizes the distribution of the RRMSE of this esti-

mator in the synthetic data. For con�dentiality reasons, we can not report minimum values.

Instead, we report the proportion of cases with RRMSE � 0:02; and selected quantiles

of the distribution of RRMSE. Overall, there is considerable uncertainty about observed

values of age and earnings. The greatest risk of attribute disclosure arises from aggregating

individual earnings across all jobs in a calendar year (AE). Even here, less than 0.5 percent

of cases have RRMSE below 2 percent, and RRMSE exceeds 17 percent for the median ob-

servation, so there is signi�cant uncertainty about true earnings. Median values of RRMSE

are more than twice this large for age and quarterly earnings.

Data collectors are likely to be particularly concerned about attribute disclosure risk when

individuals have extreme values of age or earnings. The lower panel of Table 6 summarizes

the distribution of RRMSE in these potentially sensitive cases. Uncertainty is even greater

for those with extreme values of earnings than in the population as a whole, and remains

large for extremes of age. This suggests the partially synthetic data provide strong protection

against attribute disclosure, even for extreme cases.

6 Conclusion

Statistical disclosure limitation methods promise high quality microdata with low disclosure

risk. Among existing disclosure limitation methods, multiply-imputed partially synthetic
21The large number of unsynthesized variables on the �le will be su¢ cient to re-identify many records.
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Table 5: Estimated Coe¢ cients in Log Earnings Regression
Population Avg. Synthetic 95% CI Coverage
Value Estimate Observed Synthetic

Years of experience :086 :086 91:7 95:1
Experience2=100 �:321 �:327 89:2 94:4
Experience3=1000 :055 :057 86:9 94:9
Experience4=10000 �:004 �:004 84:8 95:2
Initial Experience < 0 �:176 �:167 94:6 94:1
Years of Education :012 �:002 94:1 97:8
Education2=100 �:541 �:461 93:9 98:3
Education3=1000 :733 :783 94:3 98:2
Education4=10000 �:196 �:226 94:7 97:7
Race = Black �:271 �:264 96:5 98:7
Race = Hispanic �:205 �:186 97:3 92:3
Foreign born = 1 �:078 �:054 95:1 91:1
ln(Employer size) �:372 �:414 48:4 47:3
ln(Employer payroll) :397 :440 43:7 42:8
SIC Division = A �:136 �:164 92:3 97:1
SIC Division = B �:059 �:058 97:6 99:6
SIC Division = C :031 :008 95:5 97:1
SIC Division = E �:005 �:010 98:2 99:7
SIC Division = F :041 :020 98:3 97:4
SIC Division = G �:208 �:192 88:3 91:5
SIC Division = H :089 :061 95:7 88:3
SIC Division = I �:211 �:244 92:7 75:1
SIC Division = J �:218 �:237 94:3 95:3
Year = 1991 �:003 :000 95:7 97:8
Year = 1992 :025 :023 97:3 99:3
Year = 1993 :040 :044 96:4 98:5
Year = 1994 :068 :069 95:2 98:3
Year = 1995 :081 :080 96:7 98:8
Year = 1996 :104 :102 95:9 98:8
Year = 1997 :126 :124 95:5 98:5
Year = 1998 :152 :148 95:1 98:4
Quarter = 2 :053 :051 93:9 97:1
Quarter = 3 :047 :048 93:5 97:9
Quarter = 4 :079 :089 94:3 96:4
Intercept 4:20 4:00 71:7 74:6

RMSE :762 :864
Number of Observations 7; 145; 344 11; 910
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Table 6: Attribute Disclosure Risk (RRMSE) in Partially Synthetic Data
Variable Proportion � 0:02 1st Percentile 1st Quartile Median
Age on Jan 1, 1990 :002 :079 :286 :441
Quarterly earnings (QE) :001 :049 :198 :361
Annual earnings, all jobs (AE) :005 :026 :101 :174

Potentially Sensitive Cases:
Age on Jan 1, 1990 � 60 :002 :031 :227 :385
QE � $1000 :001 :192 :714 1:89
QE � $100; 000 :001 :058 :252 :423
AE � $500; 000 :001 :065 :292 :501

data strike a compelling balance between these competing objectives. Indeed, the main

virtue of this approach is that it preserves the ability of users to obtain valid statistical

inferences about a population of interest. Our simulation and application to LEHD data

demonstrate the high utility and low disclosure risk of MIPS data. In simulations, our

method of generating synthetic values delivered better data utility and lower disclosure risk

than a nonparametric alternative, at lower computational cost. Our application to LEHD

data demonstrates that our approach is feasible in large scale applications and performs well

in genuine data.

Like all model-based disclosure limitation methods, the quality of MIPS data depends on

correctly specifying the imputation model. Our transformation-based methods mitigate mis-

speci�cation that can arise when the correct imputation model is unknown. Mis-speci�cation

is still possible, because MIPS data will only preserve multivariate relationships re�ected in

the imputation model. To preserve all multivariate relationships in the partially synthetic

data requires, in principle, that the imputation model conditions on �everything.� This

is not possible in practice. We saw evidence of this in our application to LEHD data,

where it was necessary to collapse some subdomains on which we sought to preserve the

conditional distribution of age and earnings, and to reduce the number of predictors in

imputation regressions though model selection. Further research is required to determine

optimal methods for reducing the dimensionality of the synthesis problem.
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By de�nition, all model-based imputation methods impose some degree of modeling bur-

den. Our method partly alleviates this burden, because data collectors need only de�ne

subdomains of primary and secondary interest and specify a simple imputation model that

captures relationships of secondary interest within subdomains. This is less onerous than

completely specifying a parametric imputation model for ykjW: In cases where data collec-

tors are unable to specify a credible parametric model for zkjW2, our density-based trans-

formations could be combined with nonparametric regressions on subdomains of primary

interest. We leave this for future research.

It is important that data collectors recognize and advertise the limitations of partially

synthetic data they release. In particular, the model used to generate the MIPS data will

make them well suited to some analyses and poorly suited to others. Data collectors must

therefore accompany any release of MIPS data with su¢ cient information for users to deter-

mine whether the released data are appropriate for their analysis.
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Figure 1: Simulated Bias in Moments and Quantiles
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Figure 2: Simulated 95% Confidence Interval Coverage

0

20

40

60

80

100

65 70 75 80 85 90 95 100

Coverage in Observed Data

C
ov

er
ag

e 
in

 S
yn

th
et

ic
 D

at
a

Density Transform Exact Spline Regression 45 Degree Line

Note: Estimands include means of y1, y2, y3 by g; product–moment and rank–order correlations between (y1,y2,y3,x1,x2) by g; and coefficients in the
linear regression of lny2 on an intercept, x1, x2, and lny1 by g.



Figure 3: Simulated Re-identification Rates by Cell
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Figure 6: 95% Confidence Interval Coverage of Sample Means and 
Proportions on Sex, Race, and Industry Subdomains 
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