
Econometric Analyses of Linked
Employer-Employee Data

John M. Abowd, Francis Kramarz, and Simon Woodcock�

May 2006

1 Introduction

There has been a recent explosion in the use of linked employer-employee data to
study the labor market. This was documented, in part, in our Handbook of Labor
Economics chapter (Abowd and Kramarz, 1999a).1 Various new econometric
methods have been developed to address the problems raised by integrating
longitudinal employer and employee data. We �rst described these methods in
Abowd and Kramarz (1999b). In this chapter, we present a survey of these new
econometric methods, with a particular emphasis on new developments since
our earlier articles.
Linked employer-employee data bring together information from both sides

of the labor market. They therefore permit, for the �rst time, equilibrium
analyses of labor market outcomes. They also allow researchers to investigate
the joint role of worker and �rm heterogeneity, both observed and unobserved,
on labor market outcomes. Labor economists have taken full advantage of these
data to revisit classic questions and to formulate new ones, and much has been
learned as a result. For example, Abowd, Kramarz, Lengermann, and Roux
(2005) have revisited the classic question of inter-industry wage di¤erentials to
determine whether they are attributable to workers or �rms. Abowd, Kramarz,
Lengermann, and Perez-Duarte (2003) use linked employer-employee data to
examine whether �good�workers are employed by �good��rms. Dostie (2005)
presents new evidence on the returns to seniority and its relation to turnover;
and Woodcock (2003) examines the role of heterogeneity and worker-�rm learn-
ing on employment and wage dynamics. These applied endeavors have demon-
strated the value of linked employer-employee data. They have also spurred
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of the Department of Research, Centre de Recherche en Economie et Statistique (CREST)
at INSEE, Professor at Ecole Polytechnique and is a fellow at CEPR and IZA. Woodcock is
Assistant Professor at Simon Fraser University. Abowd acknowledges �nancial support from
the NSF (SBER 96-18111).

1See also Lane, Burgess and Theeuwes (1997) for a review of uses of longitudinal linked
employer-employee data.
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the development of new econometric methods to analyze these data. These new
methods, rather than speci�c applications, are the primary focus of this chapter.
A distinguishing feature of longitudinal linked employer-employee data is

that individuals and their employers are identi�ed and followed over time. Fur-
thermore, the relation between employer and employee, called a job relation, is
continuously monitored. From a statistical perspective, there are three popula-
tions under simultaneous study. Individuals are sampled from the population
of households, workplaces are sampled from the population of businesses, and
jobs are sampled from the population of employment histories. Because of the
multiple sampling frames involved, it is necessary to be precise about the sta-
tistical structure of the variables under study, since they may come from the
individual, employer, or job frame. Measured characteristics of the individual,
employer, and job are collected at multiple points in time, which may or may
not be synchronous. To make clear the importance of careful elaboration of the
sample structure for the variables under study, we will consider a prototypi-
cal integrated employer-employee database before turning to speci�c statistical
models. The speci�c statistical models that we consider are generalizations of
the speci�cations we �rst used in Abowd, Kramarz and Margolis (1999, AKM
hereafter) as well as in more recent research.
We have noted a general misunderstanding of some recent, and some not-

so-recent, empirical methods used by statisticians. We therefore make an e¤ort
to relate these methods to those used by panel data econometricians. We show
the relation between various �xed-e¤ects estimators and estimators popular in
the variance components literature �in particular, mixed-e¤ects estimators (see
Searle, Casella and McCulloch, 1992). As we will see, statisticians and econo-
metricians have di¤erent parameters of interest, the former relying more on
the variance components and the design of the data, the latter being more
concerned with endogeneity in its various guises. These generate a variety of
distinct computational issues. Consequently econometricians and statisticians
have independently developed a variety of tools to estimate the e¤ects of inter-
est. However, the realized e¤ects have the same interpretation under all methods
that we consider.
We begin, in section 2, by describing a prototypical longitudinal linked data

set and discussing the related problems of missing data and sampling from in-
tegrated data. In section 3, we present two speci�cations for linear statistical
models that relate linked employer and employee data to outcomes measured at
the individual level. In the �rst and more general speci�cation, person e¤ects
and �rm e¤ects can re�ect interaction between observable person or �rm char-
acteristics and unobserved person and �rm e¤ects. For instance, match e¤ects
are potentially representable in this setting. In the second and simpler speci�-
cation, a typical individual has a zero mean for the measured outcomes. Person
e¤ects measure deviations over time from this zero mean that do not vary as the
employee moves from �rm to �rm. Firm e¤ects measure deviations from this
zero mean that do not vary as the �rm employs di¤erent individuals. We con-
tinue, in section 4, by de�ning a variety of e¤ects that are functions of the basic
person and �rm e¤ects. Section 5 considers the estimation of the person and
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�rm e¤ects by �xed-e¤ects methods. Section 6 discusses the use of mixed-e¤ects
estimators, the question of orthogonal design, and their relation with various
correlated random-e¤ects speci�cations. In section 7 we discuss the important
heterogeneity biases that arise when either the person or �rm e¤ects are missing
or incompletely speci�ed. We discuss the consequences of endogenous mobility
in section 8, and conclude in section 9.

2 A Prototypical Longitudinal Linked Data Set2

To summarize the complete likelihood function for linked longitudinal employer-
employee data, we adopt the formalization in Abowd and Woodcock (2001).
They considered statistical models for imputing missing data in linked data-
bases using the full-information techniques developed by Rubin (1987). Their
prototypical longitudinal linked data set contains observations about individuals
and their employers linked by means of a work history that contains information
about the jobs each individual held with each employer. The data are longi-
tudinal because complete work history records exist for each individual during
the sample period and because longitudinal data exist for the employer over the
same period.
Suppose we have linked data on N workers and J �rms with the following

�le structure. There are three data �les. The �rst �le contains data on workers,
U , with elements denoted ui; i = 1; :::; N: In the discussion below these data
are time-invariant but in other applications they need not be. Call U the in-
dividual characteristics �le. The second data �le contains longitudinal data on
�rms, Z, with elements zjt; j = 1; :::; J and t = 1; :::; Tj . Call Z the employer
characteristics �le. The third data �le contains work histories,W; with elements
wit; i = 1; :::; N and t = 1; :::; Ti: Call W the work history �le. It contains data
elements for each employer who employed individual i during period t. The data
U and W are linked by a person identi�er. The data Z and W are linked by
a �rm identi�er; we conceptualize this by the link function j = J(i; t) which
indicates the �rm j at which worker i was employed at date t: For clarity of
exposition, we assume throughout that all work histories inW can can be linked
to individuals in U and �rms in Z and that the employer link J(i; t) is unique
for each (i; t).3

2.1 Missing Data

Abowd and Woodcock consider the problem of imputing missing data in a lon-
gitudinal linked database. Their approach is based on the Sequential Regression
Multivariate Imputation (SRMI; see Ragunathan et al. 1998). When imputing
missing data in each of the three �les, they condition the imputation on as much

2This section is based on Abowd and Woodcock (2001).
3The notation to indicate a one-to-one relation between work histories and indviduals when

there are multiple employers is cumbersome. See Abowd and Stinson (2003) for a complete
development of the likelihood function allowing for multiple employers during the period.
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available information as possible. For example, when imputing missing data in
the individual characteristics �le U they condition not only on the non-missing
data in U (observed characteristics of the individual) but also on characteris-
tics of the jobs held by the individual (data in W ) and the �rms at which the
individual was employed (data in Z). Similarly, when conditioning the imputa-
tion of missing data in W and Z; they condition on non-missing data from all
three �les. In this manner, their imputation is based on the complete likelihood
function for the linked longitudinal data.
The Abowd and Woodcock technique necessitates some data reduction. To

understand the data reduction, consider imputing missing data in the individ-
ual characteristics �le U: Since individuals have work histories with di¤erent
dynamic con�gurations of employers, explicitly conditioning the missing data
imputation of individual characteristics on every variable corresponding to each
job held by each worker is impractical �there are a di¤erent number of such vari-
ables for each observation to be imputed. A sensible alternative is to condition
on some function of the available data that is well de�ned for each observa-
tion. For example, to impute missing data in U , one could condition on the
person-speci�c means of time-varying work history and �rm variables. Similar
data reductions are required to impute missing data in the other �les. In what
follows, we use the functions g; h;m and n to represent data reductions that
span sampling frames.
Abowd and Woodcock note the importance of conditioning the imputation of

time-varying variables on contemporaneous data and leads and lags of available
data. Because the dynamic con�guration of work histories varies from worker
to worker and the pattern of �rm �births� and �deaths� varies from �rm to
�rm, not every observation with missing data has the same number of leads and
lags available to condition the imputation. In some cases, there are no leads
and lags available at all. They suggest grouping observations by the availability
of dynamic conditioning data (i.e., the number of leads and lags available to
condition missing data imputations) and separately imputing missing data for
each group. This maximizes the set of conditioning variables used to impute
each missing value. Again, some data reduction is generally necessary to keep
the number of groups reasonable. For example, one might only condition on
a maximum of s leads and lags, with s = 1 or s = 2: They parameterize the
set of dynamic conditioning data available for a particular observation by �it in
the work history �le, and 
jt in the �rm �le. It may also be desirable to split
the observations into separate groups on the basis of observable characteristics,
for example sex, full-time/part-time employment status, or industry. They
parameterize these groups by �i in the individual �le, �it in the work history
�le, and �jt in the �rm �le.
The key aspects of the SRMI algorithm are as follows. One proceeds sequen-

tially and iteratively through variables with missing data from all three �les, at
each stage imputing missing data conditional on all non-missing data and the
most recently imputed values of missing data. The optimal imputation sequence
is in increasing degree of missingness. As each variable in the sequence comes
up for imputation, observations are split into groups based on the value of �it,
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jt, �i; �it; and/or �jt: The imputed values are sampled from the posterior pre-
dictive distribution of a parametric Bayesian imputation model that is speci�c
to each group. After the imputes are drawn, the source �le for the variable un-
der imputation is reassembled from each of the group �les. Before proceeding
to the next variable, all three �les must be updated with the most recent impu-
tations, since the next variable to be imputed may reside in another �le (U;W;
or Z). At the same time, the functions of conditioning data (including leads
and lags) described above generally need to be re-computed. The procedure
continues for a pre-speci�ed number of rounds or until the imputed values are
stable.
Explicitly specifying the posterior predictive densities from which the impu-

tations are drawn is notationally cumbersome. For completeness, we reproduce
these directly from Abowd and Woodcock in (1), (2), and (3). For a particu-
lar variable under imputation, subscripted by k, they denote by U<k the set of
variables in U with less missing data than variable k; W<k and Z<k are de�ned
analogously. They denote by U>k the set of variables in U with more missing
data than variable k; and de�neW>k and Z>k similarly. They use the subscript
obs to denote variables with no missing data. They also subscript conditioning
variables by i; j; and t as appropriate to make clear the relationships between
variables in the three data �les. The predictive densities from which the round
`+ 1 imputations are drawn are
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where f�k is the likelihood de�ned by an appropriate generalized linear model
for variable k; �k are unknown parameters, and the posterior densities pk (�kj:)
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are conditioned on the same information as f�k. Repeating the missing data im-
putation method M times yields M sets of completed data �les (Um;Wm; Zm)
which they call the completed data implicates m = 1; :::;M .
Equations (1-3) describe the complete set of conditional distributions of each

variable in the linked longitudinal employer-employee data, given all other vari-
ables. Hence, they form the basis for sampling from this complete distribution.
One can use these equations in a Gibbs sampler or other Monte Carlo Markov
Chain algorithm to draw a complete sample of linked longitudinal data that has
the same likelihood function as the original analysis sample. Abowd and Wood-
cock use this property to draw partially synthetic data from the joint posterior
predictive distribution.

2.2 Sampling from Linked Data

Many of the estimators discussed below are computationally intensive. Because
many longitudinal linked databases are constructed from administrative records
they are very large.4 Thus researchers are sometimes faced with the prospect
of sampling from the linked data to facilitate estimation. In principle, sam-
pling from any one of the frames (workers, �rms, or jobs) that comprise the
linked data is straightforward. However, the estimators discussed below rely on
links between sampling frames (i.e., observed worker mobility between �rms)
for identi�cation. Small simple random samples of individuals may not retain
su¢ cient �connectedness�between sampling frames for identi�cation.5

Woodcock (2003) considers the problem of sampling from linked data while
preserving a minimum degree of connectedness between sampling frames. He
presents a �dense�sampling algorithm that guarantees each sampled worker is
connected to at least n others by a common employer. The sample is otherwise
representative of the population of individuals employed in a reference period.
The dense sampling algorithm is straightforward. It operates on the population
of jobs at �rms with at least n employees in the reference period t: In the
�rst stage, sample �rms with probabilities proportional to their employment
in period t: In the second stage, sample a minimum of n employees from each
sampled �rm, with probabilities inversely proportional to the �rm�s employment
in period t. A simple application of Bayes�rule demonstrates that all jobs active
in period t have an equal probability of being sampled. The sample is thus
equivalent to a simple random sample of jobs active in period t; but guarantees
that each sampled worker is connected to at least n others.

4See Abowd and Kramarz (1999a) for a typology.
5See section 5.1.2 below for a discussion of connectedness and its role in identifying person

and �rm e¤ects.
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3 Linear Statistical Models with Person and Firm
E¤ects

3.1 A General Speci�cation

We consider general linear statistical model:

yit = xit� + qit;J(i;t)�i + rit;J(i;t) J(i;t) + "it (4)

where yit is an observation for individual i = 1; : : : ; N , t = ni1; :::; niTi , Ti is
the total number of periods of data available for individual i, and the indices
ni1; :::; niTi indicate the period corresponding to the �rst observation on individ-
ual i through the last observation on that individual, respectively. The vectors
xit contain P time-varying, exogenous characteristics of individual i; the vectors
qit;J(i;t); and rit;J(i;t) contain respectively Q and R exogenous characteristics of
individual i and (or) �rm J(i; t). Both vectors include indicators that associate
an observation and a person (for Q) or a �rm (for R). We denote the design
matrices of these indicators by D and F , respectively. The vector �i is a size Q
vector of person e¤ects;  J(i;t) is a size R vector of �rm e¤ects; and "it is the
statistical residual. The �rst period available for any individual is arbitrarily
dated 1 and the maximum number of periods of data available for any individual
is T . Assemble the data for each person i into conformable vectors and matrices

yi =

24 yi;ni1
� � �

yi;niTi

35 ;
Xi =

24 xi;ni1;1 � � � xi;ni1;P
� � �

xi;niTi ;1 � � � xi;niTi ;P

35 ;
"i =

24 "i;ni1
� � �

"i;niTi

35
where yi and "i are Ti � 1 and Xi is Ti � P with similar de�nitions for Qi;J(i;:)
and Ri;J(i;:).
We assume that a simple random sample of N individuals is observed for a

maximum of T periods. Assume further that "i has the following properties:

E
�
"ijXi; Qi;J(i;:); Ri;J(i;:)

�
= 0

and
Cov

�
"i; "mjXi; Qi;J(i;:); Ri;J(i;:); Xm; Qm;J(m;:); Rm;J(m;:)

�
=

�
f�Tigi , i = m
0, otherwise

where f�Tigi means the selection of rows and columns from a T � T positive
de�nite symmetric matrix � such that the resulting Ti � Ti positive de�nite
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symmetric matrix corresponds to the periods fni1; ni2; : : : ; niTig.6 In full matrix
notation we have

y = X� +
h
D; eQi � + hF; eRi + " (5)

where: X is the N� � P matrix of observable, time-varying characteristics (in
deviations from the grand means); D is the N� �N design matrix of indicator
variables for the individual; eQ is the N� � (Q � 1)N matrix of the observable
characteristics in q with person-speci�c e¤ects; F is the N� � J design matrix
of indicator variables for the �rm; eR is the N�� (R� 1)N matrix of observable
characteristics in r with �rm-speci�c e¤ects; y is the N��1 vector of dependent
data (also in deviations from the grand mean); " is the conformable vector of
residuals; and N� =

PN
i=1 Ti. The vector y is ordered according to individuals

as

y =

24 y1
� � �
yN

35 (6)

and X, Q, R and " are ordered conformably. A typical element of y is yit and
a typical element of X, or any similarly organized matrix, as x(i;t)p where the
pair (i; t) denotes the row index and p denotes the column index. The e¤ects in
equations (4) and (5) are: �, the P �1 vector of coe¢ cients on the time-varying
personal characteristics; �, the N � Q vector of individual e¤ects; and  , the
J�R vector of �rm e¤ects. When estimating the model by �xed e¤ects methods,
identi�cation of the e¤ects is accomplished by imposing a zero sample mean for
�i and  J(i;t) taken over all (i; t).

7 In the mixed e¤ects case, identi�cation is
achieved by assuming the random e¤ects have zero conditional mean and �nite
conditional variance.

3.2 The Pure Person and Firm E¤ects Speci�cation

A simpler linear statistical model is speci�ed as:

yit = xit� + �i +  J(i;t) + "it (7)

with variables de�ned as above except that �i is the pure person e¤ect and  J(i;t)
is the pure �rm e¤ect. We now assume that "i has the following properties:8

E ["ijDi; Fi; Xi] = 0 (8)

and

Cov ["i; "mjDi; Dm; Fi; Fm; Xi; Xm] =

�
f�Tigi , i = m
0, otherwise

6See section 6 for a speci�c example of
�
�Ti

	
i
.

7Further details of identi�cation requirements are discussed in section 5.1.
8The zero conditional mean assumption (8) has been interpreted as an assumption of

�exogenous mobility,� since it precludes any relationship between an individuals employment
location (measured by Fi) and the errors "i: See AKM for further discussion, and section 8
below for recent work that accomodates endogenous mobility.
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where Di and Fi are those elements of D and F , respectively, corresponding to
person i. In full matrix notation we have

y = X� +D� + F + " (9)

where: X is the N� � P matrix of observable, time-varying characteristics (in
deviations from the grand means); D is the N� �N design matrix of indicator
variables for the individual; F is the N��J design matrix of indicator variables
for the employer at which i works at date t (J �rms total); y is the N� � 1
vector of dependent data (also in deviations from the grand mean); " is the
conformable vector of residuals; and N� =

PN
i=1 Ti.

The e¤ects in equations (7) and (9) are: �, the P � 1 vector of coe¢ cients
on the time-varying personal characteristics; �, the N � 1 vector of individual
e¤ects; and  , the J � 1 vector of �rm e¤ects. As above, identi�cation of the
e¤ects is accomplished by imposing a zero sample mean for �i and  J(i;t) taken
over all (i; t) for �xed-e¤ects estimators, and by assuming of zero conditional
mean and �nite conditional variance for random-e¤ects estimators.

4 De�nition of E¤ects of Interest

Many familiar models are special cases of the linear model in equations (4) and
(5) or the simpler version in equations (7) and (9). In this section we de�ne
a variety of e¤ects of interest that are functions of the person and �rm e¤ects
speci�ed in the preceding section. These de�nitions allow us to consider these
familiar models using common notation and internally coherent de�nitions. We
use the example of estimating inter-industry wage di¤erentials, frequently called
industry e¤ects, to illustrate some important issues.

4.1 Person E¤ects and Unobservable Personal Heterogene-
ity

The person e¤ect in equation (7) combines the e¤ects of observable time-invariant
personal characteristics and unobserved personal heterogeneity. We decompose
these two parts of the pure person e¤ect as

�i = �i + ui� (10)

where �i is the unobservable personal heterogeneity, ui is a vector of time-
invariant personal characteristics, and � is a vector of e¤ects associated with
the time-invariant personal characteristics. An important feature of the de-
composition in equation (10) is that estimation can proceed for the person ef-
fects, �i, whether random or �xed, without direct estimation of �. Since many
linked employer-employee data sets contain limited, or missing, information on
the time-invariant characteristics ui, we describe the estimation algorithms in
terms of �i; however, when data on ui are available, equivalent techniques can
be used for estimation in the presence of �i (see AKM for the �xed e¤ects case,
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Woodcock (2003) for the mixed e¤ects case). The design matrix D in equation
(9) can be augmented by columns associated with the observables ui so that
the statistical methods discussed below are applicable to the estimation of the
e¤ect speci�ed in equation (10).
This speci�cation can be further generalized by incorporating time-varying

observable characteristics of the worker, qit, or of the �rm, qjt, that may well
be interacted as in (4) and (5) to give:

�jit = �i + ui� + qit�i + qjt�i (11)

where �i and �i are vectors of e¤ects associated with the time-varying person
and �rm observable characteristics. Statistical analysis of the e¤ects de�ned by
equation (11) is accomplished by augmenting the columns of D to re�ect the
data in qjt and qit. The formulae shown in the estimation sections below can
then be applied to the augmented design matrix.

4.2 Firm E¤ects and Unobservable Firm Heterogeneity

The �rm e¤ect in equation (7) combines the e¤ects of observable and unob-
served time-invariant characteristics of the �rm. It can also be generalized to
contain the e¤ects of time-varying characteristics of the �rm and time-varying
characteristics of the employee-employer match as in equations (4) and (5). We
illustrate each of these possibilities in this subsection.
We can decompose the pure �rm e¤ect of equation (7) into observable and

unobservable components as

 j = �j + vj� (12)

where �j is unobservable �rm heterogeneity, vj is a vector of time-invariant �rm
characteristics, and � is a vector of associated e¤ects.
Time-varying �rm and employer-employee match characteristics require a re-

de�nition of the simple �rm e¤ect as  jit. The addition of the i and t subscripts
allows the �rm e¤ect to vary over time and across employer-employee matches.
Now let the �rm observable characteristics be time-varying, vjt, and denote the
observable match characteristics by rjit. Then we can write the �rm e¤ect as

 jit = �j + vjt�+ rjit
j (13)

where 
j is a vector of e¤ects associated with the match characteristics. Statisti-
cal analysis of the e¤ects de�ned by equation (13) is accomplished by augmenting
the columns of F to re�ect the data in vjt and rjit. The formulas shown in the
estimation sections below can then be applied to the augmented design matrix.

4.3 Firm-Average Person E¤ect

For each �rm j we de�ne a �rm-average person e¤ect

��j � ��j + �uj� =

P
f(i;t)j J(i;t)=jg �i

Nj
(14)
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where
Nj �

X
8(i;t)

1(J(i; t) = j)

and the function 1(A) takes the value 1 if A is true and 0 otherwise. The impor-
tance of the e¤ect de�ned in equation (14) may not be apparent at �rst glance.
Consider, the di¤erence between  j and ��j . The former e¤ect measures the
extent to which �rm j deviates from the average �rm (averaged over individuals
and weighted by employment duration) whereas the latter e¤ect measures the
extent to which the average employee of �rm j deviates from the population of
potential employees. In their analysis of wage rate determination, AKM refer
to the �rm-average person e¤ect, ��j , as capturing the idea of high (or low) wage
workers while the pure �rm e¤ect,  j , captures the idea of a high (or low) wage
�rm. Both e¤ects must be speci�ed and estimable for the distinction to carry
empirical import.

4.4 Person-Average Firm E¤ect

For each individual i consider the person-average �rm e¤ect de�ned as

� i � ��i + �vi� =
P
t  J(i;t)it

Ti
: (15)

This e¤ect is the individual counterpart to the �rm-average person e¤ect. Lim-
ited sample sizes for individuals make estimates of this e¤ect less useful in their
own right; however, they form the basis for conceptualizing the di¤erence be-
tween the e¤ect of heterogeneous individuals on the composition of a �rm�s
workforce, as measured by the e¤ect de�ned in equation (14), and the e¤ect of
heterogeneous �rms on an individual�s career employment outcomes, as mea-
sured by the e¤ect in equation (15).

4.5 Industry E¤ects9

Industry is a characteristic of the employer. As such, the analysis of industry
e¤ects in the presence of person and �rm e¤ects can be accomplished by appro-
priate de�nition of the industry e¤ect with respect to the �rm e¤ects. We call
the properly de�ned industry e¤ect a �pure� industry e¤ect. Denote the pure
industry e¤ect, conditional on the same information as in equations (7) and (9),
as �k for some industry classi�cation k = 1; : : : ;K. Our de�nition of the pure
industry e¤ect is simply the correct aggregation of the pure �rm e¤ects within
the industry. We de�ne the pure industry e¤ect as the one that corresponds
to putting industry indicator variables in equation (9) and, then, de�ning what
is left of the pure �rm e¤ect as a deviation from the industry e¤ects. Hence,
�k can be represented as an employment-duration weighted average of the �rm

9This section is based upon the analysis in Abowd, Kramarz and Margolis (1999).

11



e¤ects within the industry classi�cation k:

�k �
NX
i=1

TX
t=1

�
1(K(J(i; t)) = k) J(i;t)

Nk

�
where

Nk �
JX
j=1

1(K(j) = k)Nj

and the function K(j) denotes the industry classi�cation of �rm j. If we insert
this pure industry e¤ect, the appropriate aggregate of the �rm e¤ects, into
equation (7), then

yit = xit� + �i + �K(J(i;t)) + ( J(i;t) � �K(J(i;t))) + "it

or, in matrix notation as in equation (9),

y = X� +D� + FA�+ (F � FA�) + " (16)

where the matrix A, J � K, classi�es each of the J �rms into one of the K
industries; that is, ajk = 1 if, and only if, K(j) = k. Algebraic manipulation
of equation (16) reveals that the vector �, K � 1, may be interpreted as the
following weighted average of the pure �rm e¤ects:

� � (A0F 0FA)�1A0F 0F : (17)

and the e¤ect (F � FA�) may be re-expressed as MFAF , where MZ �
I�Z (Z 0Z)� Z 0 denotes the column null space of an arbitrary matrix Z, and ()�
is a computable generalized inverse. Thus, the aggregation of J �rm e¤ects into
K industry e¤ects, weighted so as to be representative of individuals, can be ac-
complished directly by the speci�cation of equation (16). Only rank(F 0MFAF )
�rm e¤ects can be separately identi�ed using unrestricted �xed-e¤ects meth-
ods; however, there is neither an omitted variable nor an aggregation bias in
the estimates of (16), using either of class of estimators discussed below. Equa-
tion (16) simply decomposes F into two orthogonal components: the industry
e¤ects FA�, and what is left of the �rm e¤ects after removing the industry
e¤ect, MFAF . While the decomposition is orthogonal, the presence of X and
D in equation (16) greatly complicates the estimation by either �xed-e¤ects or
mixed-e¤ects techniques.

4.6 Other Firm Characteristic E¤ects

Through careful speci�cation of the �rm e¤ect in equation (13), we can estimate
the average e¤ect associated with any �rm characteristic, vjt; or any interaction
of �rm and personal characteristics, rjit, while allowing for unobservable �rm
and personal heterogeneity.
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4.7 Occupation E¤ects and Other Person � Firm Interac-
tions

If occupation e¤ects are interpreted as characteristics of the person, then they
are covered by the analysis above and can be computed as functions of � as
described in equation (11). Occupation e¤ects are often interpreted as an inter-
action between person and �rm e¤ects (Groshen 1991a, 1991b, 1996, implicitly).
Mixed e¤ects speci�cations are most appropriate in this case, and are discussed
in section 6.

5 Estimation by Fixed-e¤ects Methods

In this section we present methods for estimating the pure person and �rm e¤ects
speci�cation (7) by direct least squares, and consistent methods for estimating
generalizations of this speci�cation.

5.1 Estimation of the Fixed-E¤ects Model by Direct Least
Squares

This subsection directly draws from Abowd, Creecy and Kramarz (2002) (ACK,
hereafter). The normal equations for least squares estimation of �xed person,
�rm, and characteristic e¤ects are of very high dimension. Thus estimating the
full model by �xed-e¤ect methods requires special algorithms. In our earlier
work, e.g., Abowd, Finer and Kramarz (1999) (AFK, hereafter) and AKM, we
relied on statistical approximations to render the estimation problem tractable.
More recently, ACK developed new algorithms that permit the exact least
squares estimation of all the e¤ects in equation (7). These algorithms are based
on the iterative conjugate gradient method and rely on computational simpli�-
cations admitted by the sparse structure of the least squares normal equations.
They have some similarity to methods used in the animal and plant breeding lit-
erature.10 ACK also developed new methods for computing estimable functions
of the parameters of (7).

5.1.1 Least Squares Normal Equations

The full least squares solution to the estimation problem for equation (7) solves
the normal equations for all estimable e¤ects:24 X 0X X 0D X 0F

D0X D0D D0F
F 0X F 0D F 0F

35 24 �
�
 

35 =

24 X 0y
D0y
F 0y

35 (18)

10See Abowd and Kramarz (1999a) for a longer dicussion of the relation of these models to
those found in the breeding literature. The techniques are summarized in Robinson (1991) and
the random-e¤ects methods are thoroughly discussed in Neumaier and Groenveld (1998). The
programs developed for breeding applications cannot be used directly for the linked employer-
employee data application because of the way the breeding e¤ects are parameterized.
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In typical applications, the cross-product matrix on the left-hand side of the
equation is too high-dimensional to solve using conventional algorithms (e.g.,
those implemented in SAS, Stata, and other general purpose linear modeling
software based on variations of the sweep algorithm for solving (18)). AKM
present a set of approximate solutions based on the use of di¤erent conditioning
e¤ects, Z. AFK applies the best of these approximations with a much higher-
dimension Z.

5.1.2 Identi�cation of Individual and Firm E¤ects

Many interesting economic applications of equation (7) make use of the esti-
mated person and �rm e¤ects. Estimation requires a method for determining the
identi�ed e¤ects11 . The usual technique of sweeping out singular row/column
combinations from the normal equations (18) is not applicable to the ACK
method because they solve the normal equations without inverting the cross-
product matrix. Hence, identi�cation requires �nding conditions under which
the normal equations (18) can be solved exactly for some estimable functions
of the person and �rm e¤ects. In this sub-section we ignore the problem of
identifying the coe¢ cients � because in practice this is rarely di¢ cult.
The identi�cation problem for the person and �rm e¤ects can be solved by

applying graph-theoretic methods to determine groups of connected individuals
and �rms. Within a connected group of persons/�rms, identi�cation can be
determined using conventional methods from the analysis of covariance. Con-
necting persons and �rms requires that some of the individuals in the sample
be employed at multiple employers. When a group of persons and �rms is con-
nected, the group contains all the workers who ever worked for any of the �rms
in the group and all the �rms at which any of the workers were ever employed.
In contrast, when a group of persons and �rms is not connected to a second
group, no �rm in the �rst group has ever employed a person in the second
group, nor has any person in the �rst group ever been employed by a �rm in
the second group. From an economic perspective, connected groups of workers
and �rms show the realized mobility network in the economy. From a statis-
tical perspective, connected groups of workers and �rms block-diagonalize the
normal equations and permit the precise statement of identi�cation restrictions
on the person and �rm e¤ects.
The following algorithm constructsGmutually-exclusive groups of connected

observations from the N workers in J �rms observed over the sample period.12

For g = 1; :::; repeat until no firms remain:
The first firm not assigned to a group is in group g.

11Standard statistical references, for example Searle et al. (1992), provide general methods
for �nding the estimable functions of the parameters of equation (7). These methods also
require the solution of a very high dimension linear system and are, therefore, impractical for
our purposes.
12This algorithm �nds all of the maximally connected sub-graphs of a graph. The relevant

graph has a set of vertices that is the union of the set of persons and the set of �rms and
edges that are pairs of persons and �rms. An edge (i; j) is in the graph if person i has worked
for �rm j.
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Repeat until no more firms or persons are added to group g:
Add all persons employed by a firm in group g to group g.
Add all firms that have employed a person in group g to group g.
End repeat.

End for.
At the conclusion of the algorithm, the persons and �rms in the sample have

been divided into G groups. Denote the number of individuals in group g by Ng;
and the number of employers in the group by Jg. Some groups contain a single
employer and, possibly, only one individual. For groups that contain more than
one employer, every employer in the group is connected (in the graph-theoretic
sense) to at least one other employer in the group. Within each group g, the
group mean of y and Ng�1+Jg�1 person and �rm e¤ects are identi�ed. After
the construction of the G groups, exactly N + J �G e¤ects are estimable. See
the proof in Appendix 1 of ACK13 .

5.1.3 Normal Equations after Group Blocking

The identi�cation argument can be clari�ed by considering the normal equations
after reordering the persons and �rms by group. For simplicity, let the arbitrary
equation determining the unidenti�ed e¤ect set it equal to zero, i.e., set one
person or �rm e¤ect equal to zero in each group. Then the column associated
with this e¤ect can be removed from the reorganized design matrix and we can
suppress the column associated with the group mean. The resulting normal
equations are:

2666666666666666666664

X 0X X 0D1 X 0F1 X 0D2 X 0F2 � � � X 0DG X 0FG

D0
1X D0

1 D1 0 0 � � � 0 0
F 01X F 01 D1 0 0 � � � 0 0

D0
2X 0 0 D0

2D2 D0
2F2 � � � 0 0

F 02X 0 0 F 02D2 F 02F2 � � � 0 0

� � � � � � � � � � � � � � � � � � � � � � � �

D0
GX 0 0 0 0 � � � D0

GDG D0
GFG

F 0GX 0 0 0 0 � � � F 0GDF F 0GFG

3777777777777777777775

26666666666666666664

�

�1
 1

�2
 2

� � �

�G
 G

37777777777777777775

=

26666666666666666664

X 0y

D0
1y

F 01y

D0
2y

F 02y

� � �

D0
Gy

F 0Gy

37777777777777777775
(19)

After reordering by group, the cross-products matrix is block diagonal. This
matrix has full column rank and the solution for the parameter vector is unique.

13The grouping algorithm constructs groups within which �main e¤ect� contrasts due to
persons and �rms are identi�ed. In the linear models literature the �groups�are called �con-
nected data�. See Searle (1987), pp. 139-149 for a discussion of connected data. See Weeks
and Williams (1964) for the general algorithm in analysis of variance models.
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ACK do not solve equation (19) directly. Rather, they apply the technique dis-
cussed below to estimate the identi�able e¤ects.

5.1.4 Estimation by Direct Solution of the Least Squares Problem

Appendix 2 in ACK shows the exact algorithm used to solve equation (18).
It is a variant of the conjugate gradient algorithm, customized to exploit the
sparse representation of equation (18) and to accommodate very large problems
with many X variables. In practice, ACK apply this algorithm to the full set
of persons, �rms and characteristics shown in the design matrices of equations
(7) and (18). Unlike equation (19), the cross-product matrix in equation (18) is
not of full rank. Although the algorithm ACK use converges to a least squares
solution, the parameter estimates are not unique. They subsequently apply
the following identi�cation procedure to the estimated e¤ects. In each group,
they eliminate one person e¤ect by normalizing the group mean person e¤ect to
zero. ACK also normalize the overall mean person and �rm e¤ects to zero. This
procedure identi�es the grand mean of the dependent variable (or the overall
regression constant if X and y have not been standardized to mean zero) and a
set of N + J � G � 1 person and �rm e¤ects measured as deviations from the
grand mean of the dependent variable14 .

5.2 Consistent Methods for � and 
 (the �rm-speci�c re-
turns to seniority)

The preceding discussion focused on estimation of the pure person and �rm
e¤ects model (7). In this subsection, we discuss methods presented in AKM
for consistent estimation of more general representations of the person and �rm
e¤ects. In particular, we discuss consistent estimation of � and 
j in the general
representation of the �rm e¤ect (13). The method relies on within-individual-
�rm di¤erences of the data. It is robust in the sense that it requires no additional
statistical assumptions beyond those speci�ed in equation (4) and the general
de�nition of the �rm e¤ect (13).15 We should note, however, that this estimation
technique relies heavily on the assumption of no interaction between X and F .
Consider the �rst di¤erences:

yi;nit�yinit�1 = (xinit�xinit�1)�+
J(i;nit)(sinit�sinit�1)+ "init�"init�1 (20)
14The computer software is available from the authors for both the direct least squares

estimation of the two-factor analysis of covariance and the grouping algorithm. Computer
software that implements both the random and �xed e¤ects versions of these models used in
breeding applications can be found in Groeneveld (1998). The speci�c algorithm we use can
be found in Dongarra et al. (1991) p. 146.
15We have excluded vjt� from the �rm e¤ect (13), and assume a pure person e¤ect �i:
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for all observations for which J(i; nit) = J(i; nit�1), and where sinit represents
worker i�s seniority at �rm J (i; nit) in period nit.16 In matrix form:

4y = 4X� + eF
 +4" (21)

where 4y is fN� � 1, 4X is fN� � P , eF is fN� � J , 4" is fN� � 1, and fN�

is equal to the number of (i; t) combinations in the sample that satisfy the
condition J(i; nit) = J(i; nit�1). The matrix eF is the rows of the design of 

that correspond to the person-years (i; t) for which the condition J(i; nit) =
J(i; nit�1) is satis�ed. The least squares estimates of � and 
 are,e� = (4X 0M eF 4X)�1 4X 0M eF 4 y (22)e
 = ( eF 0 eF )�1 eF 0(4y �4Xe�): (23)

A consistent estimate of V[e�] is given by
g
V[e�] = (4X 0M eF 4X)�1(4X 0M eF e
M eF 4X)(4X 0M eF 4X)�1

where

e
 �
2664
e
[4"1] 0 � � � 0

0 e
[4"2] � � � 0
� � � � � � � � � � � �
0 0 � � � e
[4"N� ]

3775
and

e
[4"i] �
266664

f4"2in2 f4"in2f4"in3 � � � f4"in2f4"inTif4"in3f4"in2 f4"2in3 � � � f4"in3f4"inTi
� � � � � � � � � � � �f4"inT1 f4"in2 f4"inT1 f4"in3 � � � f4"inTi f4"inTi

377775 :
It is understood that only the rows of 4" that satisfy the condition J(i; nit) =
J(i; nit�1) are used in the calculation of e
, which is therefore fN� � fN�. Notice
that this estimator does not impose all of the statistical structure of the basic
linear model (7).

6 The Mixed Model

In this Section, we focus on a mixed model speci�cation of the pure person
and �rm e¤ects model. The mixed model arises when some, or all, of the
observable characteristics, person e¤ects, and �rm e¤ects in equation (9) are
treated as random, rather than �xed, e¤ects. There is considerable confusion
in the literature about the comparison of �xed and mixed e¤ects speci�cations,

16 In our preceding notation for the general �rm e¤ect (13), seniority is an element of ob-
servable match-speci�c characteristics rijt:

17



and so we take pains in this section to de�ne terms in a manner consistent with
the enormous statistical literature on this subject.
Consider the matrix formulation of the pure person and �rm e¤ects model,

given in (9). We focus on the cases treated by Woodcock (2003) and Abowd and
Stinson (2003), where the parameters � on observable characteristics are treated
as �xed, and where the pure person and �rm e¤ects � and  are random.17 This
speci�cation corresponds closely to the hierarchical models that are common in
some other applied settings, for instance in the education literature.18

The mixed model is completely speci�ed by (9) and the stochastic assump-
tions19

E [�jX] = E [ jX] = E ["jD;F;X] = 0 (24)

Cov

24 �
 
"

������X
35 =

24 �2�IN 0 0
0 �2 IJ 0

0 0 R

35 : (25)

It is worth noting that unlike some random e¤ects speci�cations encountered
elsewhere in the econometric literature, the mixed model we have speci�ed does
not assume that the design of the random e¤ects (D and F ) is orthogonal to
the design (X) of the �xed e¤ects (�). Such an assumption is almost always
violated in economic data.
A variety of parameterizations of the residual covariance R are computation-

ally feasible. Woodcock (2003) considers several in detail. Abowd and Stinson
(2003) consider two more in the context of speci�cations that allow for multiple
jobs in the same (i; t) pair and multiple measures of the dependent variable.
The simplest parameterization is R = �2"IN� : This speci�cation is useful for
making comparisons with the �xed-e¤ect estimation procedure.
The most general parameterization estimated by Woodcock (2003) allows

for a completely unstructured residual covariance within a worker-�rm match.
Let M denote the number of worker-�rm matches (jobs) in the data, and let ��
denote the maximum observed duration of a worker-�rm match. Suppose the
data are ordered by t within j within i: In the balanced data case, where there
are �� observations on each worker-�rm match, we can write

R = IM 
W (26)
17 In fact, Woodcock (2003) decomposes the pure person e¤ect �i into observable (ui�) and

unobserved components (�i) as in equation (10). He treats � as �xed and �i as random. For
clarity of exposition we focus here on the simpler case where �i is random.
18 In the education literature, schools are analogous to �rms and students are analogous

to workers. Because education data typically exhibit far less mobility (of students be-
tween schools) than we observe in labor market data, the usual speci�cation nests stu-
dent e¤ects within school e¤ects. The analogous hierarchical speci�cation is therefore
yit = xit� + �ij +  j + "it; where �ij is the person e¤ect (nested within �rm), and where
 j and �ij are speci�ed as random e¤ects. Dostie (2005) and Lillard (1999) estimate related
mixed e¤ects speci�cations for wages where the �rm e¤ect is nested within individuals, e.g.,
yit = xit� + �i +  ij + "it.
19 In general, statisticians do not explicitly condition these expectations on X because they

are primarily concerned with experimental data, where X constitutes part of the experimental
design. Econometricians, however, are most often confronted with observational data. In this
setting, X can rarely be considered a �xed component of the experimental design.
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where W is the �� � �� within-match error covariance.20 The extension to unbal-
anced data, where each match between worker i and �rm j has duration � ij � �� ,
is fairly straightforward. De�ne a �� � � ij selection matrix Sij with elements on
the principal diagonal equal to 1, and o¤-diagonal elements equal to zero.21 Sij
selects those rows and columns of W that correspond to observed earnings out-
comes in the match between worker i and �rm j: Then in the unbalanced data
case, we have

R =

2666666666664

S011WS11 0 0 � � � 0 0 0

0
. . . 0 � � � 0 0 0

0 0 S01J1WS1J1 � � � 0 0 0
...

...
...

. . .
...

...
...

0 0 0 � � � S0N1WSN1 0 0

0 0 0 � � � 0
. . . 0

0 0 0 � � � 0 0 S0NJNWSNJN

3777777777775
:

(27)

6.1 REML Estimation of the Mixed Model

Mixed model estimation is discussed at length in Searle et al. (1992) and McCul-
loch and Searle (2001). There are three principal methods that can be applied

to estimate the variance components
�
�2�; �

2
 

�
and R : ANOVA, Maximum

Likelihood (ML), and Restricted Maximum Likelihood (REML). ANOVA and
ML methods are familiar to most economists; REML less so.22 Since REML
is by far the most commonly used estimation method among statisticians, it is
worth giving it a brief treatment.
REML is frequently described as maximizing that part of likelihood that

is invariant to the �xed e¤ects (e.g., �). More precisely, REML is maximum
likelihood on linear combinations of the dependent variable y; chosen so that
the linear combinations do not contain any of the �xed e¤ects. As Searle et
al. (1992, pp. 250-251) show, these linear combinations are equivalent to resid-
uals obtained after �tting the �xed portion of the model (e.g., X�) via least

20Woodcock (2003) estimates this parameterization of R under the assumption that W is
symmetric and positive semi-de�nite.
21For example, if �� = 3 and a match between worker i and �rm j lasts for 2 periods,

Sij =

24 1 0
0 1
0 0

35 :
22REML estimation of mixed models is commonplace in statistical genetics and in the plant

and animal breeding literature. In recent years, REML has in fact become the mixed model
estimation method of choice in these �elds, superceding ML and ANOVA.
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squares.23 The linear combinations k0y are chosen so that

k0X� = 0 8� (28)

which implies
k0X = 0: (29)

Thus k0 projects onto column null space of X; and is therefore

k0 = c0
h
IN� �X (X 0X)

�
X 0
i

(30)

� c0MX (31)

for arbitrary c0; and where A� denotes the generalized inverse of A: When X
has rank r � p; there are only N� � r linearly independent vectors k0 satisfying
(28).
De�ne K 0 = C 0MX with rows k0 satisfying (28), and where K 0 and C 0 have

full row rank N�� r: REML estimation of the variance parameters is maximum
likelihood on K 0y under normality. For y � N (X�;V) it follows that

K 0y � N (0;K 0VK) (32)

where V = DD0�2� + FF 0�2 + R is the conditional covariance of y implied by
(25). The REML log-likelihood (i.e., the log-likelihood of K 0y) is

logLREML = �
1

2
(N� � r) log 2�� 1

2
log jK 0VKj� 1

2
y0K (K 0VK)

�1
K 0y: (33)

The REML estimator of the variance parameters has a number of attractive
properties. First, REML estimates are invariant to the choice of K 0:24 Second,
REML estimates are invariant to the value of the �xed e¤ects (i.e., �). Third,
in the balanced data case, REML is equivalent to ANOVA.25 Under normal-
ity, it thus inherits the minimum variance unbiased property of the ANOVA
estimator.26 Finally, since REML is based on the maximum likelihood princi-
ple, it inherits the consistency, e¢ ciency, asymptotic normality, and invariance
properties of ML.
Inference based on REML estimates of the variance components parame-

ters is straightforward. Since REML estimation is just maximum likelihood on
(33), REML likelihood ratio tests (REMLRTs) can be used. In most cases,
REMLRTs are equivalent to standard likelihood ratio tests. The exception is

23Note this exercise is heuristic and serves only to motivate the REML approach. Under
the stochastic assumptions (24) and (25), the least squares estimator of � is not BLUE. The
BLUE of � is obtained by solving the mixed model equations (35).
24Subject to rows k0 satisfying (28).
25The usual statistical de�nition of balanced data can be found in Searle (1987). Under this

de�nitions, longitudinal linked data on employers and employees are balanced if we observe
each worker employed at every �rm, and all job spells have the same duration. Clearly, this
is not the usual case.
26 In contrast, ML estimators of variance components are biased since they do not take into

account degrees of freedom used for estimating the �xed e¤ects.
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testing for the presence of some random e¤ect 
. The null is �2
 = 0: Denote
the restricted REML log-likelihood by logL�REML: The REMLRT statistic is
� = �2 (logL�REML � logLREML) : Since the null puts �2
 on the boundary of
the parameter space under the alternative hypothesis, � has a non-standard
distribution. Stram and Lee (1994) show the asymptotic distribution of � is
a 50:50 mixture of a �20 and �

2
1: The approximate p-value of the test is thus

0:5
�
1� Pr

�
�21 � �

��
:

6.2 Estimating the Fixed E¤ects and Realized Random
E¤ects

A disadvantage of REML estimation is that it provides no direct means for
estimating the �xed covariate e¤ects �. Henderson, in Henderson et al. (1959)
derived a system of equations that simultaneously yield the BLUE of � and Best
Linear Unbiased Predictor (BLUP) of the random e¤ects. These equations have
become known as the mixed model equations or Henderson equations. De�ne
the matrix of variance components

G =

�
�2�IN 0
0 �2 IJ

�
: (34)

The mixed model equations are24 X 0R�1X X 0R�1
�
D F

��
D0

F 0

�
R�1X

�
D0

F 0

�
R�1

�
D F

�
+G�1

3524 ~�
~�
~ 

35 =
24 X 0R�1y�

D0

F 0

�
R�1y

35
(35)

where ~� denotes solutions for the �xed e¤ects, and ~� and ~ denote solutions for
the random e¤ects. In practice, of course, solving (35) requires estimates of R
and G: Common practice is to use REML estimates ~G and ~R.
The BLUPs ~� and ~ have the following properties. They are best in the

sense of minimizing the mean square error of prediction

E

��
~�
~ 

�
�
�
�
 

��0
A

��
~�
~ 

�
�
�
�
 

��
(36)

where A is any positive de�nite symmetric matrix. They are linear in y; and
unbiased in the sense E(~�) = E (�) and E(~ ) = E ( ) :
The solutions to equation (35) also have a Bayesian interpretation. If we

suppose that the prior distribution for � is N (0;
) and the prior distribution

for (�;  ) is N (0; G), then the posterior mean E [(�; �;  ) jy] !
�
~�; ~�; ~ 

�
; the

solution of (35), as j
j ! 1. (See Goldberger (1962), Searle et al. (1992, pp.
331-3) and Robinson (1991)).
The mixed model equations make clear the relationship between the �xed

and mixed model estimation. In particular, as jGj ! 1 with R = �2"IN� , the
mixed model equations (35) converge to the normal equations (18). Thus the
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mixed model solutions (~�; ~�; ~ ) converge to the least squares solutions (�̂; �̂;  ̂):
In this sense the least squares estimator is a special case of the mixed model
estimator.

6.3 Mixed Models and Correlated Random-e¤ects Models

Since Chamberlain (1984) introduced his extension of methods by Cramér (1946)
and Mundlak (1978) for handling balanced panel data models with random ef-
fects that were correlated with the X variables, econometricians have gener-
ally referred to the Chamberlain class of models as �correlated random-e¤ects
models.�Statisticians, on the other hand, usually mean the Henderson (1953)
formulation of the mixed-e¤ects model that gives rise to equation (35), with G
nondiagonal, when they refer to a correlated random-e¤ects model.
It is important to distinguish between correlated random-e¤ects models

based on the mixed model equations (G nondiagonal) and orthogonal design
models, which can occur within either a �xed-e¤ects or random-e¤ects inter-
pretation of the person and �rm e¤ects. Orthogonal design means that one or
more of the following conditions hold:

X 0D = 0; orthogonal person-e¤ect design and personal characteristics

X 0F = 0; orthogonal �rm-e¤ect design and personal characteristics

D0F = 0; orthogonal person-e¤ect and �rm-e¤ect designs

An economy with random assignment of persons to �rms could satisfy these
conditions. However, virtually all longitudinal linked employer-employee data,
as well as most other observational data in economics, violate at least one of
these orthogonal design assumptions. Recognition of the absence of orthogonal-
ity between the e¤ects is the basis for the �xed-e¤ects estimator approximations
discussed in section 5 and the di¢ culty associated with solving the mixed-model
equations, in general (see Robinson, 1991, Searle, et al. 1992, Neumaier and
Groeneveld, 1996, and Groeneveld, 1998).
To relate the Chamberlain-style correlated random-e¤ects model to the mixed

model estimator, we consider a single time-varying X, which we give the com-
ponents of variance structure:

xit = �i + &it (37)

where
Corr[�i; �i] 6= 0

V[&it] = �

and
Corr[&it; "ns] = 0 8i; n; s; t

This speci�cation implies that Corr[�i;  J(i;t)] 6= 0 as long as G is nondiagonal:
Then, to derive the Chamberlain estimating system for a balanced panel data
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model, assume that Ti = T for all i and compute the linear projection of yi on
xi

yi = xi�+ �i (38)

where � is the T � T matrix of coe¢ cients from the projection and �i is the
T � 1 residual of the projection. Chamberlain provides an interpretation of the
coe¢ cients in � that remains valid under our speci�cation.
Because the �rm e¤ect is shared by multiple individuals in the sample, how-

ever, the techniques proposed by Chamberlain for estimating equation (38) re-
quire modi�cation. The most direct way to accomplish the extension of Cham-
berlain�s methods is to substitute equation (37) into equation (7), then restate
the system of equations as a mixed model. For each individual i in period t we
have �

yit
xit

�
=

�
� i +  J(i;t) + �it
�i + &it

�
: (39)

where � i = �i + �i� and �it = "it + &it�: Stacking yi and xi, de�ne

mi �
�
yi
xi

�
; and m �

24 m1

� � �
mN

35
All other vectors are stacked conformably. Then, the mixed-e¤ects formulation
of equation (39) can be written as

m = D1� +D2� + F3 + � (40)

where D1; D2; and F3 are appropriately speci�ed design matrices, � is the N�1
vector of person e¤ects entering the y equation, � is the N � 1 vector of person
e¤ects entering the x equation, and

� =

266664
�1
&1
� � �
�N
&N

377775
is the stacked joint error vector. Problems of this form, with � ; �; and  cor-
related and D1; D2; and F3 nonorthogonal look unusual to economists but are
quite common in animal science and statistical genetics. Software to solve the
mixed model equations and estimate the variance matrices for equation (40)
has been developed by Groeneveld (1998) and Gilmour et al. (1995) and some
applications, other than the one presented above, are discussed in Robinson
(1991) and Tanner (1996). The methods exploit the sparse structure of D1; D2;
and F3 and use analytic derivatives to solve (35). Robert (2001) and Tanner
(1996) provide algorithms based on simulated data techniques.
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7 Models of Heterogeneity biases in incomplete
models

The analyses in this section are based upon the exact �xed-e¤ects estimator for
model (9) given by the solution to (18).

7.1 Omission of the �rm e¤ects

When the estimated version of equation (9) excludes the �rm e¤ects,  , the
estimated person e¤ects, ��, are the sum of the underlying person e¤ects, �,
and the employment-duration weighted average of the �rm e¤ects for the �rms
in which the worker was employed, conditional on the individual time-varying
characteristics, X:

�� = � + (D0MXD)
�1D0MXF : (41)

Hence, ifX were orthogonal toD and F , so thatD0MXD = D0D andD0MXF =
D0F , then the di¤erence between �� and �, which is just an omitted variable bias,
would be an N � 1 vector consisting, for each individual i, of the employment-
duration weighted average of the �rm e¤ects  j for j 2 fJ(i; ni1); :::; J(i; niT )g:

��i � �i =
TiX
t=1

 J(i;nit)

Ti
;

the person-average �rm e¤ect. Similarly, the estimated coe¢ cients on the time-
varying characteristics in the case of omitted �rm e¤ects, ��, are the sum of the
parameters of the full conditional expectation, �, and an omitted variable bias
that depends upon the conditional covariance of X and F , given D:

�� = � + (X 0MDX)
�1X 0MDF :

7.2 Omission of the person e¤ects

Omitting the pure person e¤ects (�) from the estimated version of equation (9)
gives estimates of the �rm e¤ects,  ��, that can be interpreted as the sum of
the pure �rm e¤ects,  , and the employment-duration weighted average of the
person e¤ects of all of the �rm�s employees in the sample, conditional on the
time-varying individual characteristics:

 �� =  + (F 0MXF )
�1F 0MXD�: (42)

Hence, ifX were orthogonal toD and F , so that F 0MXF = F 0F and F 0MXD =
F 0D, the di¤erence between  �� and  , again an omitted variable bias, would
be a J � 1 vector consisting of the employment-duration weighted average of
person e¤ects �i for (i; t) 2 fJ(i; t) = j and t 2 fni1; : : : ; niTigg for each �rm j:
That is,

 ��j �  j =
NX
i=1

TiX
t=1

�
�i 1(J(i; nit) = j)

Nj

�
;
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the �rm-average person e¤ect. The estimated coe¢ cients on the time-varying
characteristics in the case of omitted individual e¤ects, ���, are the sum of
the e¤ects of time-varying personal characteristics in equation (9), �, and an
omitted variable bias that depends upon the covariance of X and D, given F :

��� = � + (X 0MFX)
�1X 0MFD�: (43)

This interpretation applies to studies like Groshen (1991a, 1991b, 1996).

7.3 Inter-industry wage di¤erentials

We showed above that industry e¤ects are an aggregation of �rm e¤ects that
may be inconsistently estimated if either person or �rm e¤ects are excluded from
the equation. We consider these issues now in the context of inter-industry wage
di¤erentials as in Dickens and Katz (1987), Krueger and Summers (1987, 1988),
Murphy and Topel (1987), Gibbons and Katz (1992). The �xed or random
e¤ects estimation of the aggregation of J �rm e¤ects into K industry e¤ects,
weighted so as to be representative of individuals, can be accomplished directly
by estimation of equation (16). Only rank(F 0MFAF ) �xed �rm e¤ects can be
separately identi�ed; however, the mixed-e¤ects model can produce estimates
of all realized industry and �rm e¤ects.
As shown in AKM, �xed-e¤ects estimates of industry e¤ects, ��, that are

computed on the basis of an equation that excludes the remaining �rm e¤ects,
MFAF , are equal to the pure industry e¤ect, �, plus an omitted variable bias
that can be expressed as a function of the conditional variance of the industry
e¤ects, FA, given the time-varying characteristics, X, and the person e¤ects,
D:

�� = �+

�
A0F 0Mh

D X
iFA

��1
A0F 0Mh

D X
iMFAF 

which simpli�es to �� = � if, and only if, the industry e¤ects, FA, are orthog-
onal to the subspace MFAF , given D and X, which is generally not true even
though FA and MFAF are orthogonal by construction. Thus, consistent �xed-
e¤ects estimation of the pure inter-industry wage di¤erentials, conditional on
time-varying personal characteristics and unobservable non-time-varying per-
sonal characteristics requires identifying information on the underlying �rms
unless this conditional orthogonality condition holds. Mixed-e¤ects estimation
without identifying information on both persons and �rms likewise produces re-
alized inter-industry wage e¤ects that confound personal and �rm heterogeneity.
Similarly, AKM show that �xed-e¤ects estimates of the coe¢ cients of the

time-varying personal characteristics, ��, are equal to the true coe¢ cients of the
linear model (9), �, plus an omitted variable bias that depends upon the con-
ditional covariance between these characteristics, X, and the residual subspace
of the �rm e¤ects, MFAF , given D:

�� = � +

 
X 0M�

D FA
�X
!�1

X 0Mh
D FA

iMFAF 
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which, once again, simpli�es to �� = � if, and only if, the time-varying personal
characteristics, X, are orthogonal to the subspace MFAF , given D and FA,
which is also not generally true. Once again, both �xed-e¤ects and mixed-e¤ects
estimation of the � coe¢ cients produces estimates that confound personal and
�rm heterogeneity when both types of identifying information are not available.
To assess the seriousness of the heterogeneity biases in the estimation of

industry e¤ects, AKM propose a decomposition of the raw industry e¤ect into
the part due to individual heterogeneity and the part due to �rm heterogene-
ity. Their formulas apply directly to the �xed-e¤ects estimator of equation (9)
and can be extended to the estimated realized e¤ects in a mixed-e¤ects model.
When equation (16) excludes both person and �rm e¤ects, the resulting raw
industry e¤ect, ���k , equals the pure industry e¤ect, �, plus the employment-
duration weighted average residual �rm e¤ect inside the industry, given X, and
the employment-duration weighted average person e¤ect inside the industry,
given the time-varying personal characteristics X:

��� = �+ (A0F 0MXFA)
�1A0F 0MX(MFAF +D�)

which can be restated as

��� = (A0F 0MXFA)
�1A0F 0MXF + (A

0F 0MXFA)
�1A0F 0MXD�; (44)

which is the sum of the employment-duration weighted average �rm e¤ect, given
X and the employment-duration weighted average person e¤ect, given X. If
industry e¤ects, FA, were orthogonal to time-varying personal characteristics,
X, and to the design of the personal heterogeneity, D, so that A0F 0MXFA =
A0F 0FA, A0F 0MXF = A0F 0F , and A0F 0MXD = A0F 0D, then, the raw inter-
industry wage di¤erentials, ���, would simply equal the pure inter-industry wage
di¤erentials, �, plus the employment-duration-weighted, industry-average pure
person e¤ect, (A0F 0FA)�1A0F 0D�, or

���k = �k +
NX
i=1

TiX
t=1

1[K(J(i; nit)) = k]�i
Nk

Thus, statistical analyses of inter-industry di¤erentials that exclude either per-
son or �rm e¤ects confound the pure inter-industry wage di¤erential with an
average of the person e¤ects found in the industry, given the measured personal
characteristics, X:

8 Endogenous Mobility

The problem of endogenous mobility occurs because of the possibility that in-
dividuals and employers are not matched in the labor market on the basis of
observable characteristics and the person and �rm e¤ects. A complete treatment
of this problem is beyond the scope of this article; however, it is worth noting
that the interpretation of equations (7) and (9) as conditional expectations given
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the person and �rm e¤ects is not a¤ected by some forms of endogenous mobility.
If the mobility equation is also conditioned on X;D; and, F , then the e¤ects in
the referenced equations are also structural as long as mobility does not depend
upon ":
Matching models of the labor market, such as those proposed by Jovanovic

(1979) and Woodcock (2003) imply the existence of a random e¤ect that is
the interaction of person and �rm identities. Such models are amenable to
the statistical structure laid out in section 6; however, to our knowledge the
application of such techniques to this type of endogenous mobility model has
only been attempted recently using linked employer-employee data. We present
these attempts now.

8.1 A Generalized Linear Mixed Model

Mixed model theory and estimation techniques have been applied to nonlinear
models with linear indices. These are usually called generalized linear mixed
models, and include such familiar speci�cations as the probit, logit, and tobit
models augmented to include random e¤ects. See McCulloch and Searle (2001)
for a general discussion.
Woodcock (2003) estimates a mixed probit model with random person and

�rm e¤ects as the �rst step of a modi�ed Heckman two-step estimator. The goal
is to correct for truncation of the error distribution in a mixed model of earnings
with random person and �rm e¤ects. This truncation arises from endogenous
mobility in the context of an equilibrium matching model. Speci�cally, the
Woodcock (2003) matching model predicts that earnings are observed only if
the worker-�rm match continues, and that the continuation decision depends
on person-, �rm-, and tenure-speci�c mobility e¤ects that are correlated with
the person and �rm e¤ects in the earnings equation. At tenure � ; the match
continues only if "it � �"i� where

�"i� = ��� � �i� � �j� (45)�
�i�
�j�

�
� N

��
0
0

�
;

�
�2�� 0

0 �2��

��
:

When "it � N (0; V� ) ; the marginal probability of observing the earnings out-
come yit is

Pr ("it � �"i� ) = 1� �
���� � �i� � �j�

V
1=2
�

�
= �

�
�� + �i� + �j�

V
1=2
�

�
(46)
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where � is the standard normal CDF. Then we have

E [yitj"it � �"i� ] = �+ x0it� + �i +  j + V
1=2
�

�
�
��+�i�+�j�

V
1=2
�

�
�
�
��+�i�+�j�

V
1=2
�

�
= �+ x0it� + �i +  j + V

1=2
� �i� (47)

where �i� is the familiar Inverse Mills�Ratio.
The truncation correction based on (46) and (47) proceeds as follows. The

�rst step is to estimate a continuation probit at each tenure level with ran-
dom person- and �rm-speci�c mobility e¤ects �i� and �j� . Woodcock (2003)
estimates probits using the Average Information REML algorithm of Gilmour,
Thompson, and Cullis (1995), applied to the method of Schall (1991). The
Schall (1991) method extends standard methods for estimating generalized lin-
ear models to the random e¤ects case. The basic idea is to perform REML on a
linearization of the link function �: The process requires an iterative reweighting
of the design matrices of �xed and random e¤ects in the linearized system, see
Schall (1991) for details. With estimates of the realized random e¤ects ~�it and
~�j� in hand, Woodcock (2003) constructs an estimate ~�i� of the Inverse Mills�
Ratio term for each observation. Including ~�i� as an additional time-varying co-
variate in the earnings equation corrects for truncation in the error distribution
due to endogenous mobility.

8.2 A Model of Wages, Endogenous Mobility and Partic-
ipation with Person and Firm E¤ects

Following Buchinsky, Fougère, Kramarz, and Tchernis (2003), and the struc-
tural interpretation they develop, Be¤y, Kamionka, Kramarz, and Robert (2003,
BKKR hereafter) jointly model wages with a participation equation and an
inter-�rm mobility equation that include state-dependence and unobserved het-
erogeneity. A �rm-speci�c unobserved heterogeneity component is added to the
person-speci�c term. Like the linear models discussed in detail above, the wage
equation includes person and �rm e¤ects.
Inter-�rm mobility at date t depends on the realized mobility at date t� 1.

Similarly, participation at date t depends on past participation and mobility.
Hence, we include initial conditions, modeled following Heckman (1981). This
yields the following system of equations:
Initial Conditions:

zi1 � U1;:::;J
yi1 = I

�
XY
i1�

Y
0 + �

Y;E
zi1 + vi1 > 0

�
wi1 = yi1

�
XW
i1 �

W + �W;Ezi1 + �i1

�
mi1 = yi1I

�
XM
i1 �

M
0 + �M;E

zi1 + ui1 > 0
�
:
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Main Equations: 8t > 1;

zit = yit�1 ((1�mit�1)zit�1 +mit�1e�it) + (1� yit�1)�
� � U1;:::;J e�it � U(1;:::;J)�(zit�1)
yit = I

0B@
Mmit�1 + 

Y yit�1 +X

Y
it �

Y + �Y;Ezit + �
Y;I
i + vit| {z }

y�it

> 0

1CA
wit = yit

�
XW
it �

W + �W;Ezit + �W;Ii + �it

�
mit = yitI

0B@
mit�1 +X
M
it �

M + �M;E
zit + �M;I

i + uit| {z }
m�
it

> 0

1CA :

The variable zit denotes the latent identi�er of the �rm and J(i; t) denotes the
realized identi�er of the �rm at which worker i is employed at date t. Therefore,
J(i; t) = zit if individual i participates at date t. yit andmit denote, respectively,
participation and mobility, as previously de�ned. yit is an indicator function,
equal to 1 if the individual i participates at date t. mit is an indicator function
that takes the following values:

yit+1 = 1 yit+1 = 0
yit = 1 mit = 1 if J(i; t+ 1) 6= J(i; t) mit censored

mit = 0 if J(i; t+ 1) = J(i; t)
yit = 0 mit = 0 p.s. mit = 0 p.s.

Table 1: Mobility

The variable wit denotes the logarithm of the annualized total labor costs.
The variables X are the observable time-varying as well as the time-invariant
characteristics for individuals at the di¤erent dates. Here, �I and �E denote the
random e¤ects speci�c to, respectively, individuals or �rms in each equation. u,
v and � are the error terms. There are J �rms and N individuals in the panel
of length T . All stochastic assumptions are described now.
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8.3 Stochastic Assumptions

In order to specify the stochastic assumptions for the person and �rm-e¤ects,
BKKR �rst rewrite their system of equations as:

zit = yit�1 ((1�mit�1)zit�1 +mit�1e�it) + (1� yit�1)�
yit = I

0B@
Mmit�1 + 

Y yit�1 +X

Y
it �

Y +
Ezit�
Y;E +
Iit�

Y;I + vit| {z }
y�it

> 0

1CA
wit = yit

�
XW
it �

W +
Ezit�
W;E +
Iit�

W;I + �it

�
mit = yit:I

0B@
mit�1 +X
M
it �

M +
Ezit�
M;E +
Iit�

M;I + uit| {z }
m�
it

> 0

1CA
for each t > 1, where 
Eit is a design matrix of �rm e¤ects for the couple (i; t).
Hence, it is a 1 � J matrix composed of J � 1 zeros and of a 1 at column zi;t.
Similarly, 
Iit is a 1�N matrix composed of N � 1 zeros and of a 1 at column
i. The model includes two dimensions of heterogeneity. This double dimension
crucially a¤ects the statistical structure of the likelihood function. The presence
of �rm e¤ects makes the likelihood non-separable (person by person). Indeed,
the outcomes of two individuals employed at the same �rm, not necessarily at
the same date, are not independent.
The next equations present the stochastic assumptions for the person and

�rm e¤ects:

�E =
�
�Y;E ; �M;E ; �Y;E ; �W;E ; �M;E

�
of dimension [5J; 1]

�I =
�
�Y;I ; �W;I ; �M;I

�
of dimension [3N; 1]:

Moreover,

�E j�E � N (0; DE
0 ) (48)

�I j�I � N (0; DI
0) (49)

DE
0 = �

E 
 IJ (50)

DI
0 = �

I 
 IN (51)

where �E (resp. �I) is a symmetric positive de�nite matrix [5; 5] (resp. [3; 3])
with mean zero. Notice that these assumptions imply that correlations between
the wage, the mobility, and the participation equations come from both per-
son and �rm heterogeneity (in addition to that coming from the idiosyncratic
error terms). Furthermore, these assumptions exclude explicit correlation be-
tween di¤erent �rms (for instance, the authors could have considered a non-zero
correlation of the �rm e¤ects within an industry, a non-tractable assumption).
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Notice though that BKKR could have included in the wage equation, for in-
stance, the lagged �rm e¤ects of those �rms at which a worker was employed in
her career. This is di¢ cult, but feasible in this framework.
Finally, they assume that the idiosyncratic error terms follow:0@ vit

�it
uit

1A �iid N

0@0@ 0
0
0

1A ;

0@ 1 �yw� �ym
�yw� �2 �wm�
�ym ��wm 1

1A1A :

Notice that experience and seniority are complex and highly non linear func-
tions of the participation and mobility equations. Because all these person and
�rm e¤ects are correlated between equations, the presence of experience and
seniority in the wage equation induces a correlation between these two variables
and the person and the �rm e¤ect in the same equation. Indeed, in the termi-
nology introduced above, the BKKR model exhibits correlated random e¤ects.
BKKR estimate this model on French data using Monte-Carlo Markov Chains

methods (Gibbs sampling and the Hastings-Metropolis algorithms).

9 Conclusion

We have presented a relatively concise tour of econometric issues surrounding
the speci�cation of linear models that form the basis for the analysis of linked
longitudinal employer-employee data. Our discussion has focused on the role of
person and �rm e¤ects in such models, because these data a¤ord analysts the
�rst opportunity to separately distinguish e¤ects in the context of a wide variety
of labor market outcomes. We have shown that identi�cation and estimation
strategies depend upon the observed sample of persons and �rms (the design
of the person and �rm e¤ects) as well as on the amount of prior information
one imposes on the problem, in particular, the choice of full �xed-e¤ects or
mixed-e¤ects estimation.
We do not mean to suggest that these estimation strategies are complete.

Indeed, many of the methods described in this chapter have been used by only a
few analysts and some have not been used at all in the labor economics context.
We believe that future analyses of linked employer-employee data will bene�t
from our attempt to show the relations among the various techniques and to
catalogue the potential biases that arise from ignoring either personal or �rm
heterogeneity.
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