
Mathematical Logic
* I don’t take any credit for the material in this file. This is just for my own reference.

Contents

1 Propositional Logic 1
1.1 Propositional Modal Logic . 2

1.1.1 Syntax . 2
1.1.2 Semantics . 2
1.1.3 Proof Theory of Modal Logic . 3
1.1.4 Temporal Logic of Concurrency . 4
1.1.5 Linear-time Temporal Logic (LTL) . 5
1.1.6 Computation Tree Logic(CTL) . 6
1.1.7 CTL* . 6
1.1.8 Epistemic Logic . 6
1.1.9 Public Announcement Logic . 7

1.2 Natural Deduction . 7
1.2.1 Natural Deduction in Sequent Form . 7

1.3 Sequent Calculus . 7

2 First Order Logic 7
2.1 Syntax . 7
2.2 Semantics . 8
2.3 Many-Sorted Logic . 9

3 Second Order Logic 9

4 Special Topics 9
4.1 Negation as Failure . 9
4.2 Answer Set Programming . 10

1 Propositional Logic

A disjunction of literals L1 ∨ . . . ∨ Lm is valid iff there are 1 ≤ i, j ≤ m such that Li is ¬Lj .

Let φ be a formula of propositional logic. Then φ is satisfiable iff ¬φ is not valid.

A formula is in negation normal form (NNF) if negation is only applied to variables and ¬,∧,∨
are the only connectives.

A clause is a Horn clause if it contains at most one positive literal.
A Horn formula is a conjunction of horn clauses (thus a special case of CNF).
Horn clauses can always be rewritten with exactly one positive literal (and some negative literals),
using the constants ⊥,>.
Horn clauses can be represented as (p1 ∧ . . . ∧ pn)→ pn+1.

The algorithm for finding the unique minimal satisying truth assignment of a Horn formula φ:

� Mark all occurences of T true.

1

� If p1 ∧ . . . ∧ pk are all marked true and (p1 ∧ . . . ∧ pk) → p is one of the conjuncts in φ, then
mark p true. Repeat until a fixpoint is reached (i.e. until there is no more change).

� Make the remaining atoms false.

φ is satisfiable iff ⊥ is not marked true. If φ is satisfiable, the algorithm returns the minimal
satisfying truth assignment (in terms of the number of atoms that are set true).

Γ 2 ψ is easier to prove than Γ � ψ because in the former case we need only one model, while in the
latter we potentially have to consider infinitely many.
Γ ` ψ is easier to prove than Γ 0 ψ because in the former case we need only a proof of ψ from Γ,
while in the latter we potentially have to consider all proofs using Γ.

1.1 Propositional Modal Logic

Modal logic is a formalism that extends propositional and first order logic by adding operators to the
language to express modalities (epistemic, doxastic, temporal, . . .). In this report we will focus on
propositional modal logic.
Modal logic is more expressive than first-order logic and corresponds to a fragment of second-order
logic. For example the so-called McKinsey schema M : 23A → 32A is not defined by any set of
first order sentences.

1.1.1 Syntax

Given a set of modality symbols MOD, the language of (propositional) modal logic (LM) is inductively
defined using the following BNF (m ∈ MOD)[Blackburn and Benthem, 2007]:

ϕ ::= p | > | ⊥ | ¬ϕ | (ϕ ∧ ϕ) | �mϕ

Denotation of �mϕ depends on the context. For example in context of reasoning about beliefs, �mϕ
denotes “agent m believes that ϕ”. The symbol 3 is defined as 3ϕ ≡ ¬�¬ϕ.

1.1.2 Semantics

The semantics of modal logic is based on the concept of possible worlds. These worlds comprise of the
actual world and alternative worlds representing different ways the world could have been. The idea
of possible worlds dates back to the German philosopher Gottfried Leibniz but its usage in modal
logic and development of possible world semantics (described below) is attributed to Saul Kripke.
Given a set W of possible worlds and a set {Rm}m∈MOD of the accessibility relations between worlds, a
frame is a tuple 〈W, {Rm}m∈MOD〉. A (Kripke) model M is a triple 〈W, {Rm}m∈MOD, V 〉 where V is a
valuation function mapping each propositional variable to a subset of W of worlds in which p is true. If
|MOD| = 1, we writeR instead of {Rm}m∈MOD and � instead of �m. [Blackburn and Benthem, 2007]

Given a model M = 〈W, {Rm}m∈MOD, V 〉 and w ∈W , definition of ϕ being true (or satisfied) in M
at w is as follows [Blackburn and Benthem, 2007]:

M,w � p iff w ∈ Vp
M,w � ¬p iff M,w 2 p
M,w � ϕ ∧ ψ iff M,w � ϕ and M,w � ψ
M,w � �mϕ iff for all v ∈W such that wRmv we have M,v � ϕ

A formula ϕ is true in M (M � ϕ), if M,w � ϕ for all w ∈ W . A formula is valid (� ϕ) if it is true
at every model. [Chellas, 1980]

2

1.1.3 Proof Theory of Modal Logic

Consider the set V of formulas that are valid in all Kripke models. Many of these formulas are
“related” to each other. For example the formulas p∨¬p and �(p∨¬p) are both in V and are related
in the sense that based on the fact that p ∨ ¬p is in V and based on the semantics of �, we expect
that �(p ∨ ¬p) must be in V as well. So the question is “can we come up with a set of formulas
F ⊂ V and a set of rules R of producing new formulas such that F and R together produce V ?” It
turns out the answer is yes, and the following F and R do the job. Define F as the set of all the
tautologies of propositional logic plus the following formula (axiom K)

K. �(ϕ ⊃ ψ) ⊃ (�ϕ ⊃ �ψ)

And let R consist of the following rules

Modus Ponens. From ϕ and ϕ ⊃ ψ infer ψ

Necessitation. From ϕ infer �ϕ

F and R together are called “the basic modal system K” [van Ditmarsch et al., 2007].

There are some formulas that are not valid in all Kripke models but we expect them to be among
valid formulas in specific modal systems. For example if we use �ϕ to denote “ϕ is known”, we want
the formula �ϕ ⊃ ϕ always hold. Or if �ϕ denotes “ϕ is believed” then we want the formula ¬�⊥
always hold. The question is “if we add these formulas (axioms) to the set F defined above (call the
resulting set F ′), can we apply some restrictions on Kripke model so that the set V ′ of valid formulas
in the restricted Kripke models is the same as the set of formulas produced by F ′ and R?” It turns
out this is possible. Consider the following formulas/axioms (these are the axioms that are related
to the subject of this report):

T. �ϕ ⊃ ϕ
4. �ϕ ⊃ ��ϕ

5. ¬�ϕ ⊃ �¬�ϕ
D. ¬�⊥

Adding axiom T to F corresponds to setting the restriction on Kripke models that their accessibility
relation be reflexive. 4 corresponds to transitive relations, 5 corresponds to euclidean relations and
D corresponds to serial relations.
Two modal axiom systems which are relevant to the subject of this report are KT451 which is called
S5 and is regarded as logic of knowledge (epistemic logic), and KD45 which is regarded as logic of be-
lief. S5 captures the class of Kripke models with equivalence relations (reflexive/euclidean/transitive
or equivalently reflexive/symmetric/transitive) and KD45 captures the class of serial transitive Eu-
clidean models. [van Ditmarsch et al., 2007]
An epistemic model is a (Kripke) model where the relation is an equivalence relation. Also it is
common to use S (set of states) instead of W (set of worlds). So an epistemic model is represented as
M = 〈S, {∼a}a∈A, V 〉, where A is the set of agents. It is common to use the operator Km instead of
�m and K̂m for 3m. The formula Kaϕ denotes “agent a knows that ϕ” and K̂aϕ denotes “ϕ is con-
sistent with a’s knowledge”. Similarly for logic of belief we use Baϕ and B̂aϕ with natural denotations.

1This is the basic modal system K extended by adding the axioms T , 4, and 5.

3

1.1.4 Temporal Logic of Concurrency

Given a language based on a countable set Φ of atomic formulae, a logic is defined to be any set
Λ ⊆ Fma(Φ)2 such that

� Λ includes all tautologies

� Λ is closed under the rule of detachmennt, i.e, if A,A→ B ∈ Λ then B ∈ Λ.

A logic is normal if it contains the schema K : 2(A→ B)→ (2A→ 2B), and is closed under the
rule of Necessitation, i.e, if `Λ A then `Λ 2A.3

Consider a propositional language with two modal connectives [F] and [P]. A frame for this language
has the form (S,RF , RP) with the modelling:

M �s [F]A iff sRF t implies M �t A

M �s [P]A iff sRP t implies M �t A

We want sRP t iff tRF s so that [F] and [P] express properties of the same time-orderig. We can
capture this property by the following schemata:

CP : A→ [P]〈F 〉A
CF : A→ [F]〈P 〉A

With this property RF and RP are interdefinable, so we may take one relation as primitive, and use
frames F = (S,R), where R ⊆ S × S, with the modelling:

M �s [F]A iff sRt implies M �t A

M �s [P]A iff tRs implies M �t A

It is also natural to require a temporal ordering to be transitive. This property can be captured by
the following schemata:

4P : [P]A→ [P][P]A

4F : [F]A→ [F][F]A

So we define a time-frame to be any structure F = (S,R) with R a transitive relation on S and
with the modelling just given.

A temporal logic is any normal logic in the language of [F] and [P] that contains the schemata:
CP , CF , 4P , 4F .

The smallest temporal logic which is K{P,F}CPCF 4P 4F is commonly known as Kt in the literature
(only one of 4P and 4F is required in the definition of Kt; the other one is derivable from the remain-
ing axioms).

It is useful to introduce the connective � by

�A := [P]A ∧A ∧ [F]A

The connective � behaves like a S5 modality in connected frames4.

2The set of all formulae generated from Φ.
3`Λ A iff A ∈ Λ
4A frame is connected if it satisfies ∀s∀t(sRt ∨ s = t ∨ tRs). There is no schema that is valid in precisely the

connected frames.

4

A linear temporal logic is any normal logic in the language of [F]− [P] that contains the smallest
temporal logic Kt, and also the schemata

�A→ [P][F]A

�A→ [F][P]A

Temporal Logic of Concurrency

Syntax:
A ::= p | ⊥ | A1 → A2 | �A | #A | A1UA2

A state sequence is a pair F = (S, σ), where σ is a surjective function ω → S enumerating S as a
sequence σ0, σ1, . . . , σn, . . . possibly with repitition (for example when S is finite).

A model M = (S, σ, V) on a state sequence is defined in the usual way.

The relation M �j A meaning “A is true at the jth state σj in M” is defined by

M �j p iff σj ∈ V (p)
M �j #A iff M �j+1 A
M �j �A iff for all k ≥ j, M �k A

The definitions of M � A and F � A are as usual.

1.1.5 Linear-time Temporal Logic (LTL)

Syntax:
φ :: > | ⊥ | Classical | Xφ | Fφ | Gφ | φUφ

A transition system M = (S,→, L) is a set of states S endowed with a transition relation → (a
binary relation on S), such that every s ∈ S has some s′ ∈ S with s → s′, and a labelling function
L : S → P(Atoms). Transition systems are also called models.

A path π in a model M = (S,→, L) is an infinite sequence of states s1, s2, . . . in S such that for all
i ≥ 1, si → si+1. We write the path as s1 → s2 → We write πi for the path starting at si.

Let M = (S,→, L) be a model and π = s1, s2, . . . be a path in M. Whether π satisfies an LTL
formula is defined by the satisfaction relation as follows:

π � >
π 2 ⊥
π � p iff p ∈ L(s1)
... (classical)
π � Xφ iff π2 � φ
π � Gφ iff for all i ≥ 1 πi � φ
π � Fφ iff there exists i ≥ 1 s.t. πi � φ (Fφ ≡ >Uφ)
π � φUψ iff there exists i ≥ 1 s.t. πi � ψ and for all j ∈ {1, . . . , i− 1} πj � φ

Suppose M = (S,→, L) is a model, s ∈ S, and φ an LTL formula. We write M, s � φ if for any
execution path π of M starting at s, we have π � φ.

5

1.1.6 Computation Tree Logic(CTL)

Syntax:

φ :: Classical | AXφ | EXφ | AFφ | EFφ | AGφ | EGφ | A[φUφ] | E[φUφ]

Safety: Only one process is in its critical section at any time.
LTL: G(¬(c1 ∧ c2))
CTL: AG(¬(c1 ∧ c2))

Liveness: Whenever a process requests to enter its critical section, it will eventually be permitted
to do so.
LTL: G(t1 → Fc1) ∧G(t2 → Fc2)
CTL: AG(t1 → AFc1) ∧AG(t2 → AFc2)

Non-blocking A process can always request to enter its critical section.
LTL: —
CTL: AG(n1 → EXt1) ∧AG(n2 → EXt2)

No strict sequencing: Processes need not enter their critical section in strict sequence.
LTL: ¬[G(c1 → c1W (¬c1 ∧ ¬c1Wc2))]
CTL: EF (c1 ∧ E[c1U(¬c1 ∧ E[¬c2Uc1])])

Fairness constraint: Under certain conditions an event will occur (or fail to occur) infinitely often.

1.1.7 CTL*

The LTL formula φ equal to the CTL∗ formula A[φ].

E[φ ∨ ψ] = E[φ] ∨ E[ψ]
A[φ ∧ ψ] = A[φ] ∧A[ψ]

1.1.8 Epistemic Logic

Given a countable set of atomic propositions P and a finite set of agents A,
an epistemic model is a structure M = 〈S, {∼a}a∈A, V 〉, where

� S is a set of states.

� ∼a is a function, yielding for every a ∈ A an equivalence relation ∼a⊆ S × S.

� V : P → 2S is a valuation function that for every p ∈ P yields the set V (p) ⊆ S of states in
which p is true.

The language of epistemic logic (LK) is inductively defined by the BNF

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ

The semantics of epistemic logic is as follows:

M, s � p iff s ∈ Vp
M, s � ¬ϕ iff M, s 2 ϕ
M, s � ϕ ∧ ψ iff M, s � ϕ and M, s � ψ
M, s � Kaϕ iff for all t ∈ S : s ∼a t implies M, t � ϕ

We say that ϕ is true in M (written M � ϕ), if M, s � ϕ for all s ∈ S.
Formula Kaϕ stands for ‘agent a know that ϕ’.

6

1.1.9 Public Announcement Logic

Given an epistemic model M = 〈S,∼, V 〉,

The language of the public announcement logic (LK[]) is inductively defined by the BNF

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | [ϕ]ϕ

The semantics of the public announcement logic is as follows:

M, s � p iff s ∈ Vp
M, s � ¬ϕ iff M, s 2 ϕ
M, s � ϕ ∧ ψ iff M, s � ϕ and M, s � ψ
M, s � Kaϕ iff for all t ∈ S : s ∼a t implies M, t � ϕ
M, s � [ϕ]ψ iff M, s � ϕ implies M |ϕ, s � ψ

Where M |ϕ = 〈S′,∼′, V ′〉 is defined as follows: (JϕKM = {s ∈ S |M, s � ϕ})

S′ = JϕKM
∼′a = ∼a ∩ (JϕKM × JϕKM)
V ′p = Vp ∩ JϕKM

That is to say, those states which announcement formula is false in them are excluded from model as
a result of announcement, because after announcement it is commonly known that these states are
no longer possible.

Formula [ϕ]ψ stands for ‘after announcement of ϕ, it holds that ψ’. It is assumed that announce-
ments are truthful and public. That the announcement is public, means that all agents can hear the
announcement, that they know that the other agent can hear the announcement, that they know
that the other agents know that the other agents can hear the announcement, etc., ad infinitum.

1.2 Natural Deduction

1.2.1 Natural Deduction in Sequent Form

1.3 Sequent Calculus

2 First Order Logic

2.1 Syntax

A first-order language with equality is specified by two disjoint sets of symbols, called the vocabulary
of the language:

1. Logical symbols: The interpretation of these is fixed by the rules of first-order logic.

� Parentheses of all shapes and sizes

� Logical connectives: ⊃,¬
� Variables (infinitely many): x, y, z, x1, y1, z1, . . .

� Equality symbol: =

2. Non-logical symbols (parameters/signature): These vary with the interpretation.

� Quantifier symbol: ∀.

7

� Predicate symbols: For each n ≥ 0, a set (possibly empty) of symbols, called n-place or
n-ary predicate symbols.

� Function symbols: For each n ≥ 0, a set (possibly empty) of symbols, called n-place or
n-ary function symbols. 0-ary function symbols are called constant symbols.

There are two types of legal syntactic expressions in FOL: terms and formulas. Intuitively, a term
will be used to refer to something in the world, and a formula will be used to express a proposition.
The set of terms of FOL is the least set satisfying these conditions:

� Every variable is a term;

� If t1, . . . , tn are terms, and f is a function symbol of arity n, then f(t1, . . . , tn) is a term.

The set of formulas of FOL is the least set satisfying these constraints:

� If t1, . . . , tn are terms, and P is a predicate symbol of arity n, then P (t1, . . . , tn) is a formula;

� If t1 and t2 are terms, then t1 = t2 is a formula;

� If α and β are formulas, and x is a variable, then ¬α, (α ∧ β) and ∀x.α are formulas.

2.2 Semantics

a structure (or interpretation) S for a given first-order language is a function whose domain is the
set of parameters of the language, and is defined by:

� ∀S is a nonempty set, called the universe or the domain of the structure S. The universe is
usually written |S|.

� For each n-ary predicate symbol P of the language, PS ⊆ |S|n. This is called the extension of
P in the structure S.

� For each n-ary function symbol f of the language, fS is an n-ary function on |S|, i.e. fS : |S|n → |S|.
In particular, when n = 0, so that f is a constant symbol, fS is simply some element of the
universe.

It is sometimes useful to think of the interpretation of predicates in terms of their characteristic
functions. In this case, when P is a predicate of arity n, we view PS as an n-ary function to {0, 1}.
This characteristic function allows us to see more clearly how predicates of arity 0 (i.e., the proposi-
tional symbols) are handled. In this case, PS will be either 0 or 1. We can think of the first one as
meaning “false” and the second “true”. For the propositional subset of FOL, then, we can ignore D
completely, and think of an interpretation as simply being a mapping, from the propositional symbols
to either 0 or 1.

Truth in a Structure

Suppose s : V → |S| called a variable assignment, is defined on the set V of variables.
Define an extension s̄ : T → |S| of the function s, on the set T of all terms as follows

� For each variable v, s̄(v) = s(v)

� If t1, . . . , tn are terms and f is an n-ary function symbol, then
s̄(f(t1, . . . , tn)) = fS(s̄(t1), . . . , s̄(tn)).

8

We can now define �S φ[s], meaning that the formula φ is true in the structure S when its variables
are given the values specified by s:

�S t1 = t2[s] iff s̄(t1) = s̄(t2)
�S P (t1, . . . , tn)[s] iff 〈s̄(t1), . . . , s̄(tn)〉 ∈ PS
�S ¬φ[s] iff not �S φ[s]
�S (φ ⊃ ψ)[s] iff �S ¬φ[s] or �S ψ[s]
�S (∀x)φ[s] iff for every d ∈ |S|, �S φ[s(x|d)]

Here, s(x|d) is the function that is exactly like s except that for the variable x it assigns the value d.

2.3 Many-Sorted Logic

3 Second Order Logic

- Informally, a relation R will be second-order (but not first-order) definable whenever, it is defined
inductively using the pattern:
“R is the smallest set such that ...” or
“R is the intersection of all sets such that ...”

4 Special Topics

4.1 Negation as Failure5

A relation instance is false if we fail to prove that it is true. To show that P is false we do an
exhaustive search for a proof of P . If every possible proof fails6, ∼P is ‘infered‘. This is the way
both PLANNAR (Hewwitt[1972]) and PROLOG (Roussel[1975], Warren et al.[1977]) handle negation.

So it is basically a proof rule:
` (∼ ` P) infer ` ∼P

where the proof that P is not provable is always the exhaustive but unsuccessful (i.e. failed) search
for a proof of P .

Note that to assume that a relation instance is false if it is not implied, is to assume that the database
gives complete information about the true instances of its relations. This is the closed world assump-
tion reffered to by Reiter[1978] and Nicolas and Gallaire[1978].

The Query Evaluation Process is essentially a linear resolution proof procedure with negated literals
‘evaluated’ by a failure proof. However we shall view the alternate derivations of the search space
as different paths of a non-deterministic evaluation which can SUCCEED, FAIL or not terminate.
A path terminates with SUCCESS if its terminal query is the empty query. A path terminates
with FAILURE if the selected literal of its terminal query does not unify with the consequent literal
of the selected database clause. The subsequent selection of a database clause, and the attempted
unification is a non-deterministic step of the evaluation. Finally a non-terminating evaluation path
comprises an infinite sequence of queries each of which is derived from the initial query as described
below.

5Keith C. Clark, Negation as Failure, Logic and Databases, 1978
6This has a special meaning defined later

9

Evaluation Algorithm: Until an empty query is derived, which the evaluation succeeds, proceed as
follows: Select a literal Li from the current query ← L1& . . .&Ln. The selection rule is constrained
so that a negative literal is only selected if it contains no variables.

� Case 1: Li is a positive literal R(~t).
Non-deterministically choose a database clause about R

R(~t′)← L′1& . . .&L′m

and try to unify Li with R(~t′). If Li doesn’t unify with R(~t′), FAIL (this path). If Li does
unify, replace the current query with the derived query

← {L1& . . .&Li−1 & L′1 . . .&L
′
m & Li+1& . . .&Ln}θ

If there is no database clause about the relation of the selected clause, FAIL.

� Case 2: Li is a negative ground literal ∼P .
Attempt to discover whether ∼P can be assumed as a lemma, i.e. recursively enter the query
evaluation with← P as a query. If the evaluation of← P SUCCEEDS, FAIL. If the evaluation
of← P FAILS for every path of its non-deterministic evaluation, assume ∼P as a lemma. Hence
replace the current query by

← L1& . . .&Li−1 & Li+1& . . .&Ln

Examples (propositional for simplicity):
KB : {a← b}
Query : a
We resolve ← a with a← b, and we get ← b (new query after replacement). There is no rule in KB
with b in the head so FAIL this path. There is no other path so, FAIL.

KB : {a← b, b← a}
Query : a
We resolve ← a with a ← b, and we get ← b. Then we resolve ← b with b ← a, and we get ← a.
Again resolve with a← b. This is a non-terminating path. So we cannot decide whether a is inferred.

KB : {a← ∼b}
Query : a
We resolve ← a with a← b, and we get ← ∼b. Now the query is ∼b (second case in the algorithm).
We continue with ← b. There is no rule in KB with b in the head so this path FAILS. There is no
other path so, FAIL for every path. Hence we get empty query, so SUCCEED.

4.2 Answer Set Programming

� Inference-based approach (e.g. resolution in logic, top-down rule-based reasoning, Prolog):
Provide a specification of the problem. A solution is given by a derivation of an appropriate
query.

� Model-based approach (e.g. ASP, also SAT):
Provide a specification of the problem. A solution is given by a model of the specification.

� Rules represent constraints on the program.

� A (normal) rule, r , is of the form

a0 ← a1, . . . , am, not am+1, . . . , not an.

10

� A (normal) logic program is a finite set of rules.

� Given a set of atoms X from Π, ΠX is obtained from Π by deleting each rule having a notA
in its body with A ∈ X and then all negative atoms of the form notA in the bodies of the
remaining rules. Then X is an answer set of Π just if ΠX “generates” X, i.e. Cn(ΠX) = X.
An answer set is a minimal set of atoms satisfying the rules.

� The program {p← not p} has no answer sets.

� An integrity constraint is of the form

← a1, . . . , am, not am+1, . . . , not an.

It can be translated into a normal rule by mapping to to (x a new symbol)

x← a1, . . . , am, not am+1, . . . , not an, not x.

� A choice rule is of the form

{a1, . . . , am} ← am+1, . . . , an, not an+1, . . . , not ao

The idea of a choice rule is to express choices over subsets of atoms. Any subset of its head
atoms can be included in a stable model, provided the body literals are satisfied. Thus, for
instance, the program P = {a←, {b} ← a} has two stable models, {a} and {a, b}. For another
example, at a grocery store you may or may not buy pizza, wine, or corn.
{buy(pizza), buy(wine), buy(corn)} :- at(grocery).

� A cardinality rule is of the form

a0 ← l{a1, . . . , am, not am+1, . . . , not an}u.

Cardinality rules allow for controlling the cardinality of subsets of atoms via the lower bound l
and upper bound u.

� A conditional literal is of the form

l : l1 : . . . : ln

The purpose of this construct is to govern the instantiation of the head literal l through the
literals l1, . . . , ln. In this respect, a conditional literal l : l1 : . . . : ln can be regarded as the list
of elements in the set {l|l1, . . . , ln}.
For example, given three facts color(red), color(green), and color(blue), the integrity
constraint

:- color(v42,C) : color(C).

results in
:- color(v42,red), color(v42,green), color(v42,blue).

� Classical negation: We can add classical negation to ASP (for atoms only) but it does not add
to its expressive power.
we extend our set of atoms A by A = {¬a|a ∈ A} such that A ∩ A = ∅. That is, ¬a is the
classical negation of a and vice versa. The semantics of classical negation is enforced by the
addition of the following set of rules

P¬ = {← b,¬b | b ∈ A}

11

References

[Blackburn and Benthem, 2007] Blackburn, P. and Benthem, J. V. (2007). Moda logic: A semantic
perspective. In Patrick Blackburn, J. V. B. and Wolter, F., editors, Handbook of Modal Logic,
volume 3 of Studies in Logic and Practical Reasoning. Elsevier.

[Chellas, 1980] Chellas, B. (1980). Modal Logic. Cambridge University Press.

[van Ditmarsch et al., 2007] van Ditmarsch, H., van der Hoek, W., and Kooi, B. (2007). Dynamic
Epistemic Logic. Springer.

Vahid Vaezian (vvaezian [at] sfu.ca), February 3, 2018

12

