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1. Introduction 

 

To date, the Central Account has met with very little opposition.  Its tenets are re-stated 

with regularity in countless articles and texts on the theory and application of latent variable 

modeling.  Seldom are these tenets subjected to scrutiny.  And yet, there have been dissenters.  

Very shortly after the birth of factor analysis and classical true-score theory, the American 

mathematician E.B. Wilson, in a series of  reviews (1928a, 1928b, 1929) of the factor theories of 

Charles Spearman and Truman Kelley, asked pointed questions about certain of what are, herein, 

identified as tenets of the Central Account.  One of Wilson's concerns was that, when a set of 

tests is described by the linear factor model, the factor scores referred to in the model's equations 

are not uniquely defined.  Spearman's work preceded the extensive use of "unobservability talk" 

that, nowadays, characterizes latent variable modeling.  Wilson quite reasonably read Spearman's 

stated aim to "objectively determine g" as the aim of producing a set of scores, one for each 

individual under study, that possessed the properties that the two-factor theory claimed that g-

scores should possess.  Thus, in his initial review of Spearman's Abilities, he complained that 

Spearman had not provided an example of a factor analysis worked right down to the scores.  

Taking matters into his own hands, Wilson used fictitious data to demonstrate the construction of 

g-, or common factor-, scores.  In doing so, he also established that there could be constructed 

more than one such set of scores, each set possessing all of the properties of common-factor 

scores.  That is, there did not exist a unique referent of the concept common factor to X.  Wilson 

quantified the degree of non-uniqueness inherent to his fictitious data by taking the difference 

between the two most dissimilar sets of common-factor scores.  The non-uniqueness property 

came to be known as the indeterminacy property of the linear factor model, and, over the years, 

many psychometricians, among them Spearman, Thomson, Camp, Piaggio, Ledermann, 

Kestelman, Heermann, Guttman, Schonemann, Steiger, Rozeboom, McDonald, and Mulaik, 

have devoted effort to its clarification.  Steiger and Schonemann (1978) provided a 

comprehensive history of the study of the indeterminacy property.    

Whereas the Central Account portrays the referent of latent variate to X as a detected, but 

unobservable, property/attribute (causal source) existing in nature, the indeterminacy property 

has been interpreted by some as implying that what is signified by this concept are, instead, the 

members of a set of constructed random variates, ontologically on par with any synthetic or 

component variate.  If this latter interpretation is correct, it would then seem to contradict the 

most fundamental features of the Central Account, for a constructed random variate certainly 

cannot be an unobservable cause or measured property of the phenomena represented by a set of 

manifest variates.  Without the Central Account, however, latent variable modeling loses its 

charm. Not surprisingly, then, there has been no dearth of experts who have felt compelled to 

step forward to do damage control.  And in their responses to the perceived threat, one seldom 

sees a concern for the correct characterization of latent variable models and modeling, but rather 

with the protection, at all costs, of the Central Account.  In this chapter, the mathematics of 

indeterminacy are reviewed, and, in the next chapter, the lengthy series of exchanges over the 



interpretation and implications of the mathematics, which constitute the "indeterminacy debate" 

of linear factor analysis.   

 

2. The Mathematics of Indeterminacy 

 

2a. What the linear factor model says about the factors θ and δ 

 

For particular set of manifest variates, Xj, j=1..p, distributed over a particular population, 

PT,   and ΩT, the 1× )1p(p
2

1
+  vector containing the non-redundant elements of ΣT, assume that 

ΩT ⊂ Mulf, i.e., X is described by the unidimensional linear factor model.  Assume also that the 

values of the model parameters for PT are ΠT=[Λo,Ψo].  In this case, X will then be said to be ulcf 

representable (in PT ), and X=Λoθθθθ+Ψo
1/2δδδδ will be called its ulcf representation. Model (2.8)-(2.9) 

symbolizes the factors as θ and δ.  In contrast to the manifest variates, however, the "meaning" 

of these symbols is left to be settled by the equations and associated distributional constraints 

standardly given as "the model", and, of course, the verbal accompaniment that is the Central 

Account.  The equations and distributional specifications alone merely claim that any set of 

(p+1) random variates, {Y,Z}, satisfying the requirements 
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are factors (Y a common factor, and Z, a vector of p specific factors) to X.  Let C be the set 

which contains all such common factors to X.  The symbol θ in the model equations then stands 

for any of the elements of C.  Two issues immediately present themselves.  First, can there be 

found a general construction formula for the common factors contained within C?  Second, what 

is the cardinality of the set C?  With regard the first issue, Piaggio (1931, 1933, 1935), working 

with finite dimensional score arrays, rather than random variates, derived construction formulas 

for the production of variates that satisfy (4.1)-(4.3).  In 1933, he proved the sufficiency of these 

formulas, i.e., that any scores constructed according to these equations will fit the factor model, 

and, in 1935, their necessity, i.e., that scores satisfying the factor model are always expressible in 

terms of these formulas.  Kestelman (1952) generalized Piaggio's formulas to the orthogonal, 

multiple-factor case.  Guttman (1955), situating his work within an abstract Euclidean vector 

space, derived construction formulas applicable to both the sample (data analytic) and population 

scenarios, and to the case of the oblique multiple factor model, and proved the necessity and 

sufficiency of these formulas.  In regard the second issue, Wilson (1928a; 1928b), once again 



working with finite dimensional score arrays, originally established that C is of infinite 

cardinality.  This property of the linear factor model, i.e., that C is of infinite cardinality, is called 

the indeterminacy property of the linear factor model.   

 

comment:  An important consequence of the indeterminacy property, and one that has notational 

significance, is that any statistical statement involving θθθθ is shorthand for the set of equivalent 

statements about each of the elements of C.  For example, to state that E(θθθθX)=Λo, is to state that 

"for all Y∈C, E(YX)=Λo". 

 

2b. Constructed factors to X  

 

 In terms of random variates, the Piaggio-Kestelman-Guttman construction formulas are 

(for ulf representation X=Λoθθθθ+Ψo
1/2δδδδ) 
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in which w=(1-Λo'Σ
-1
Λo), and 

 

(4.6)  C(si,X)=0, E(si)=0, V(si)=1. 

 

Each set of constructed random variates {θ,δ}i is produced by using (4.4)-(4.6) with a particular 

choice of a random variate si that satisfies (4.6).  This is why a given construction is indexed 

with the subscript i, and suggests that, rather than the {θ,δ}i notation, it might be more 

suggestive to employ {θi,δi}(si).  Any set of random variates constructed in accord with (4.4)-

(4.6) are sufficient for factor-hood, meaning that they do indeed possess all properties required to 

be called factors to X.  In particular,  
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 As was noted, Piaggio, Kestelman, and Guttman also proved that (4.4)-(4.6) are 

necessary conditions for factor-hood to X.  One must, however, be careful in regard the meaning 

of this.  It does not mean that all factors to X must necessarily be constructed random variates 

(although, it will be argued in Part II that this is precisely the case), but, instead, that any factors 

to X must be expressible as in (4.4) with (4.6).  The results of Piaggio, Kestelman, and Guttman, 

then, give: 

 

Theorem 1 (Definition of factors to X; Piaggio, 1933; Kestelman, 1952; Guttman, 1955): 
Because formulas (4.4)-(4.6) are both a necessary and sufficient for a set of random variates 

{Y,Z} to be factors to X (Y the common factor, Z the specifics), it follows that the concept 

common factor to X denotes a random variate expressible as in (4.4) with (4.6), and the concept 

specific factors to X denotes a random vector expressible as in (4.5) with (4.6).  Set C contains 

just those random variates expressible as in (4.4)-(4.6). 

 

Note, however, that, if X is ulcf representable, one could, in fact, go ahead and choose an si with 

properties (4.6), and actually construct a random variate as per (4.4), and this constructed random 

variate would be, by definition, a common factor to X.  How si would be chosen is not relevant.  

The symbol si could, for example, stand for the ith random number generator in a large set of 

such generators.  As Wilson (1928a; 1928b), and others, have shown, an endless sequence of 

such random variates could be produced, and each would be definitionally a common factor to 

X.  It would seem, then, fair enough to conclude that: 

 



i.) The set C containing the common factors to X contains an infinity of constructed random 

variates; 

 

ii)  If X is ulcf representable, it possesses an infinity of common factors.  Hence, there are an 

infinity of referents of the concept common factor to X, and this set of referents contains 

constructed random variates; 

 

iii) Because constructed random variates are contained in C, realizations of the common (and, by 

(4.5) and (4.6), the specific) factors to X can be taken.  Hence, the phrase "common factors can 

only be estimated, but not determined", and variants thereof, are incorrect; 

 

iv) At least some of the factors to X, those constructed in accord with (4.4)-(4.6), are not, then, 

"unobservable", "unknown", or "unmeasureable".  Hence, it cannot rightly be said that the 

"common factor to X is unobservable", at least if, by unobservable random variate, one means a 

random variate on which realizations cannot be taken.
1
 

 

Certainly, a number of prominent psychometricians have drawn these conclusions from a 

consideration of the indeterminacy property of ulcf representations.  However, as will be seen in 

the next chapter, there has also been a great deal of opposition to these conclusions.  This is not 

surprising, for these conclusions, and what they suggest about linear factor analysis, and, by 

implication, latent variable analysis in general, are in conflict with the Central Account, and, as 

was shown in the previous chapter, the discipline of psychometrics is deeply committed to the 

Central Account.  It has been shown that set C contains constructed random variates.  Whether it 

can contain anything other than constructed random variates, and, in particular, random variates 

whose distributions are comprised of measurements with respect a detected unobservable 

property/attribute (causal source) of the phenomena represented by X, these random variates 

merely expressible as in (4.4)-(4.6), will later be investigated.  For this, of course, is the issue of 

the correctness of the Central Account.  As already indicated, the aim will be to show that the 

CA is nonsense. 

  

2c. Indeterminacy property of ulcf representations 

 

 As was stated previously, Wilson established that the cardinality of C is infinite.  In this 

section, the mathematics that support this conclusion will be reviewed. 

 

Definition (Indeterminate Representation). Let X be ulcf representable, and let  X=Λoθθθθ+Ψo
1/2δδδδ 

be its ulcf representation.  If the cardinality of C is greater than unity, the representation is said to 

be indeterminate.  If a representation is not indeterminate, then it is determinate.   

 

It is, of course, possible that a given representation is indeterminate, but that certain of the (p+1) 

factor variates {θ,δδδδ} are individually determinate, meaning that, for each of these variates, the 

same construction appears in all sets {θi,δi}(si) that can be constructed.  It will, therefore, be 

necessary to speak, not only in terms of the determinateness of the representation, but also of the 

individual factors.  

                                                 
1 Of course, as was seen in Chapter 3, unobservability is taken by latent variable modellers as meaning something 

quite different from this.  



 

Definition (Indeterminate Factor Variate). Let X be ulcf representable, and let  X=Λoθθθθ+Ψo
1/2δδδδ 

be its ulf representation.  If the same construction θθθθi (or a particular δδδδji) appears in all sets 

{θi,δi}(si) that can be constructed, then θθθθi (or a particular δδδδji) is determinate.  Otherwise, it is 

indeterminate. 

 

Following Wilson (1928), the first terms of the construction formulas (4.4) and (4.5) may be 

symbolized Dθθθθ 
 
and Dδ, respectively, and the second terms as Iθθθθ(i) and Iδ(i).  That is,  

 

(4.13)  θi=Dθθθθ+Iθθθθ(i)   

 

and 

 

(4.14)  δi=Dδ+Iδ(i).  

 

 Now, Dθθθθ 
 
and Dδ are linear transformations of the manifest variates, while Iθθθθ(i) and Iδ(i) are 

not, they each being functions of a random variate that must merely satisfy the weak 

requirements of (4.6).  Clearly, Dθθθθ 
 
and Dδ are constant over the sets of common and specific 

factors to X, respectively, while different "I" components enter into each distinct construction.  

Required distributional properties, e.g., those required by model (2.14)-(2.15), are imparted to θi 

and δδδδi by choosing si to have, in addition to the properties (4.6), particular distributional 

properties, since the distributions of θi and δδδδi are determined jointly by X and si.  It is clear from 

construction formulas (4.4) and (4.5) that a given representation is determinate only if V(Iθθθθ(i) )=0 

and V(Iδj(i))=0 ∀i,j,  and that individual factor k is determinate only if the variate in the kth row 

of  the (p+1)-vector 
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has variance equal to zero.  Hence, if a representation is determinate, X possesses but one set of 

factors, X
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.  It must, therefore, be investigated if and when the variances of the 

variates (4.15) are equal to zero.  To do so, it is covenient to define a number of quantities.  

 

2d. Decompositions 

 

 As is well known, under model (2.8)-(2.9)   
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From (4.16) and (4.17), the squared multiple correlation between θ and X is  
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the conditional variance of θ given X=x is  

 

(4.19)  V(θθθθ|X=x)=V(θθθθ)(1-R
2
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and, hence, the expectation (over the range of X) of V(θθθθ|X=x) is 

 

(4.20)  E(V(θθθθ|X))=w. 

 

Analogously, 
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From these identities are defined the following decompositions: 
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From (4.13), (4.14), (4.25), and (4.26), it is then seen that V(Dθθθθ)=Λo'Σ
-1
Λo, V(Iθθθθ(i))=w,  
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2e. Conditions for Determinacy 

 

From (4.25) and (4.26), the ulcf representation X=Λoθθθθ+Ψo
1/2δδδδ is determinate only if 

V(Iθθθθ(i))=w=0 and all diagonal elements of  C(Iδ(i))=wΨo
-1/2ΛoΛo'Ψo

-1/2
 are equal to zero, which, 

because C(Iδ(i)) is gramian, implies that wΨo
-1/2ΛoΛo'Ψo

-1/2
 must be a null matrix.  The common 

factor θθθθ is determinate only if w=0, and the jth specific factor, δδδδj, only if either: 1) w=0; 2) λj=0; 

or 3) w=0 and λj=0.  Let  
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Then (Guttman, 1955, result (60)) 
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in which σ2
ζ is the jth diagonal element of Ψ.  It follows from (4.29), that: 



 

(4.32)  if t<-1, then E(V(θθθθ|X))<0; 

 

(4.33)  if t=-1, then E(V(θθθθ|X)) does not exist; 

 

(4.34)  if -1<t<0, then E(V(θθθθ|X))∈(1,∞]; 

 

(4.35)  if t=0, then E(V(θθθθ|X))=1. 

 

Now, since V(θ)=V(E(θ|X))+E(V(θθθθ|X))=1, condition (4.34) implies that V(E(θ|X))<0, which 

cannot be.  Note also that, from (4.29),  

 

(4.36)  as t→∞, E(V(θθθθ|X))→0. 

 

If, as stipulated by (2.8)-(2.9), Ψ is positive definite, i.e., gramian and non-singular, then 

α'Ψα>0 ∀ non-null p-vectors α.  Hence, if, for at least one item, λj≠0, then t>0, and 

E(V(θθθθ|X))∈[0,1).  Moreover, for finite p, t must be finite, and, hence,  

 

(4.37)  0<t<∞, and E(V(θθθθ|X))∈(0,1). 
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Ψ
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 is gramian and of rank unity, 

E(C(δδδδ|X)) contains at least one positive diagonal element.  Hence, it can be concluded that: 

 

Theorem 2 (Indeterminacy Property of ulcf representations; Guttman, 1955, Theorem 5): 

If the set of p manifest variates, X, is ulcf representable, with ulcf representation X=Λoθθθθ+Ψo
1/2δδδδ, 

then, for finite p: 

 

i. 0<V(Iθθθθ(i))<1, so that the common factor θθθθ is indeterminate; 

ii. C(Iδ(i)) possesses at least one positive diagonal element, so that at least one specific factor is 

indeterminate;  

iii. The ulf representation X=Λoθθθθ+Ψo
1/2δδδδ is indeterminate. 

 

In light of Theorem 2(i), Schonemann and Haagen (1987, p.841) suggest that it is a strange  

feature of the linear factor model that one begins an analysis with "information" in the form of an 

N×p matrix whose rows are realizations of X, not of X and θθθθ, and yet, when one partials from θθθθ 

all of the information about θθθθ that is contained in X, one is left with a positive residual variance, 

E(V(θθθθ|X))!  The additional "information" implied by this positive variance comes from si, which 

is wholly arbitrary save for the moment constraints of (4.6).    

 

2f. The Transformation Approach 

 

Schonemann  and Wang (1972) named (4.4)-(4.6), and variants thereof, the construction 

approach to the production of factors to X.  They also identified another historically important 

approach that they called the "transformation approach."  In the transformation approach, one 

seeks a (p+1)×(p+1) orthonormal matrix T with the property that 



 

(4.38)  [Λ:Ψ
1/2

]T=[Λ:Ψ
1/2

].  

 

 If such a matrix exists, it follows from (2.8), (2.9), and (4.38) that,  

 

(4.39)  X=[Λ:Ψ
1/2

]T 








δ

θ
=[Λ:Ψ

1/2
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and in which both 
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θ
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δ

θ
=T 









δ

θ
 contain factors to X.      

 

It can be shown that T not only exists, but is not unique.  Hence, an infinity of linearly related 

alternative constructions (a subset of the constructions contained in C) are given by this 

approach.  Wilson (1928a) employed this approach to illustrate the indeterminacy property, 

Thomson (1935) derived an expression for the matrix T for the case of the single-factor model, 

and Ledermann (1938) extended Thomson's result to the multiple orthogonal case.  Heermann 

(1966) employed Ledermann's result to work out alternative derivations of results due to 

Guttman (1955), while Schonemann (1971) gave a simplified proof of "Ledermann's lemma."  

 

Lemma 1 (Ledermann, 1938; Schonemann, 1971): Define an "orthogonal right unit" of a 

p×(p+m) matrix B, to be a (p+m)×(p+m) matrix M, MM'=I, M'M=I, satisfying BM=B. Then B 

always has an orthogonal right unit, M, and M is a function of an arbitrary m×m orthogonal 

matrix S.  

 

Proof 

 

Define the singular value decomposition of B to be B=V∆*
W', in which V is a p×p orthonormal 

matrix, ∆*
 is the p×(p+m) matrix [∆(p×p):0(p×m)], in which ∆(p×p) contains the singular values of B, 

and W is a (p+m)×(p+m) orthonormal matrix.  Partition W as W=[W1(p+m)×p:W2(p+m)×m], the 

columns of W1 a basis for the rows of B, and the columns of W2 a basis for the m-dimensional 

subspace of R
(p+m)

 that is orthogonal to the rows of B.  It then follows that B=V∆W1, W1'W1=Ip, 

and W1'W2=0.  Define M to be  

 

(4.40)  M=W1W1'+W2SW2',  

 

in which SS'=S'S=Im.  Then  

 

(4.41)  BM=V∆W1(W1W1'+W2SW2')=V∆W1=B, 

 

(4.42)  MM'=(W1W1'+W2SW2')(W1W1'+W2SW2')'= 

  W1W1'W1W1'+W1W1'W2S'W2'+W2SW2'W1W1'+W2SW2'W2S'W2' 

  =M'M=I(p+m), 

 

and M is a function of the arbitrary orthonormal matrix S◊ 

 



From Lemma 1, the following may be concluded. 

 
Theorem 3 (Transformation Approach): Let X be ulcf representable with ulcf representation 

X=Λoθθθθ+Ψo
1/2δδδδ, and let B=[Λo:Ψo

1/2
], a p×(p+1) matrix.  Then: 

 

1) B has an orthogonal right unit, M, which is a function of  an arbitrary orthonormal matrix S; 

2) M is given by (4.40); 

3) An infinity of distinct factor constructions (a subset of C) are given by the transformation M, 

each construction tied to a distinct choice of S. 

 

 

 

 

2g. Quantification of the degree of indeterminacy  

 

Theorem 2 established that the ulcf representation  X=Λoθθθθ+Ψo
1/2δδδδ is indeterminate.  The 

cardinality of C is infinity.  Since C contains an infinity of constructions {θθθθi,δδδδi}(si) each of which 

is a set of factors to X, it is of interest to inquire how "similar" are these distinct sets.  Of 

particular interest are the common factors to X.  The concept of similarity may be defined in 

many different ways.  It may, for example, be defined in terms of the correlation, or functions 

thereof, between pairs of distinct common factors  contained within C, or via a comparison of the 

patterns of relationship between distinct common factors to X, and selected external variates.  

The first sense of similarity is the basis for standard quantifications of indeterminacy, the topic of 

this section, while the second has been considered under the heading of "external variable 

theory", later to be reviewed.  The two senses are obviously related.  The following should be 

noted:    

 

i.  All sets of factors to X, {θi,δi}(si), have, according to (4.7)-(4.11), the same mean vector and 

covariance matrix, i.e., 
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ii. For ulcf representations in which {θ,δ} must have a particular distribution, e.g., as in model 

(2.14)-(2.15), all constructions contained within C have this distribution.    

 

iii. The fact that each set of factors to X has the same mean vector and covariance matrix, and, 

when required, the same distribution, does not imply that they are pair-wise, element-wise 

perfectly correlated.  The correlation matrix, Rij, of any two sets of factors, {θi,δi}(si) and 

{θj,δj}(sj) is 

 

 



(4.43) 

 

















−−

−+

−−−−−

−−−

),ρ(Ψ'ΛΛwΨΨΣΨ),ρ(ΛwΨΛΣΨ

),ρ(Ψ'ΛwΨΣ'Λ),ρ(wΛΣ'Λ

ji

1/2

ooo

1/2

o

1/2

o

11/2

ojio

1/2

oo

11/2

o

ji

1/2

oo

1/2

o

1

ojio

1

o

ssss

ssss

 

 

 

in which ρ(si,sj) is the correlation between the arbitrary random variates si and sj. According to 

(4.43), the degree of similarity, in the sense of mean-square difference, between any pair of 

alternative common or unique factors to X varies with ρ(si,sj).   

 There have been offered up a number of methods to quantify the indeterminacy inherent 

to a given ulcf representation.  Since, in practice, the common factors to X are of chief interest, 

these methods have generally centered on the similarity of the elements of set C. 

 

Ratio of indeterminate to determinate variance (Spearman, 1927; Holzinger, 1930). 

 

This measure is based on decomposition (4.13).  Call V(Dθ) the "determinate variance" 

and V(Iθθθθ(i)) the "indeterminate variance."  Because V(θi)= 1, V(Dθ)=Λ'Σ
-1
Λ=R

2
θ.X, and 

V(Iθθθθ(i))=w=1-Λ'Σ
-1
Λ=1-R

2
θ.X, the ratio of indeterminate to determinate variance is 
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Because 0≤R
2
θ.X≤1, it follows that 0≤RATθ≤∞, with large values of RATθ indicating a high 

degree of indeterminacy, and a value of zero indicating a determinate representation (i.e., that 

Card(C)=1).   

 

Ratio of square root of indeterminate variance to square root of determinate variance (Camp, 

1932).  

 

 This measure is defined as 

  

(4.45)  .
R

R1

'

'1

)V(

)V(
RATSD

2

2

o

 1-

o

o

 -1

o

θ

θ

θ

Xθ.

Xθ.

ΛΣΛ

ΛΣΛ

D

I −
=

−
==  

 

 

Since, 0≤R
2
θ.X≤1, it follows that 0≤RATSDθ≤∞, with large values of RATSDθ indicating a high 

degree of indeterminacy, and a value of zero indicating a determinate representation.  

 

Minimum correlation between distinct common factors, ρ*
 (Guttman,1955). 

 



Consider particular common factor to X, θi=Λo'Σ
-1

X+w
1/2

si.  Guttman (1955) showed that 

the element within C that is mean-square most dissimilar to θi, say θim, is constructed by 

choosing its arbitrary component to be -si: 

 

(4.46)  θim=Λo'Σ
-1

X-w
1/2

si. 

 

The correlation between these most dissimilar common factors to X, ρ*
, is Guttman's measure of 

indeterminacy.  Now, 

 

(4.47)   ρ*
=ρ(θi,θim)=ρ(Λo'Σ

-1
X+w

1/2
si,Λo'Σ

-1
X-w

1/2
si)=Λo'Σ

-1
Λo-w= 

Λo'Σ
-1
Λo-(1-Λo'Σ

-1
Λo)=2Λo'Σ

-1
Λo-1=2R

2
θ.X-1, 

 

so that, as with the previous two measures, ρ*
 is a function of R

2
θ.X.  Because there is no end to 

the arbitrary components si that could be produced, there is contained in C an infinity of pairs of 

common factors with precisely the same (minimum) correlation.  Hence, ρ*
 is a lower bound on 

the infinity of Pearson correlations defined on the set C.  Because 0≤R
2
θ.X≤1, it follows that -

1≤ρ*≤1, with -1 indicating maximum indeterminacy and 1 indicating determinacy.  However, it 

follows from Theorem 1 that, for finite p,  

-1≤ρ*
<1.  Note that, if Rθ.X=

2

1
=.707, then ρ*

=0, and that if Rθ.X=0, then ρ*
=-1, and C contains 

common factors to X that are reflections of each other.  That is, in the latter case, it would be 

possible to generate an infinity of pairs of common factors to X, the members of each pair in 

perfect disagreement with each other in regard the ordering of the members of population P.  In 

fact, unless R
2
θ.X>.707, C will contain pairs of common factors to X whose agreement is no 

better than that of two uncorrelated variates.  

 Schonemann and Wang (1972) surveyed a large number of published factor analyses in 

order to ascertain the degree of indeterminacy that might be expected when the linear factor 

model is employed in behavioural research.  They found that many of these analyses produced 

factor representations with negative values of ρ*
, prompting them to conclude that it is often the 

case that a set of "..."factor scores" can be predicted with more success from a set of random 

numbers than from an equivalent [set] of "factor scores"" (Schonemann and Wang, 1972, p.87).  

Note that, from (4.29), ρ*
 may be expressed as  

 

(4.48)  
)1t(

)1t(

+

−
 ,  

 

in which, once again, t=Λo'Ψo
-1Λo.  

 

Example 

 

To make the strengths of the linear relationships easily graspable, we will consider the artificial 

scenario in which X has population covariance matrix 
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X then has ulcf representation 

 

X= δθ
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.891000
0.85800
00.9980
000.901
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.513

.056

.434

, 

 

R
2
θ.X=.46, and ρ*

=-.079.  Note that, from (4.29), it follows that θi=Λo'Σ
-1

X+w
1/2

si= 

wΛo'Ψo
-1

X+w
1/2

si, in which w=(1-Λo'Σ
-1
Λo)=

)t1(

1

o+
=.54.  Hence, the construction formula is  
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in which C(si,X)=0, E(si)=0, V(si)=1.  On the other hand, an X with covariance matrix  
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has ulcf representation 

 

X= δθ
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.891000
0.85800
00.6540
000.901

.455

.513

.756

.434

, 

 

with Rθ.X=.686, ρ*
=.372, w=.314, and construction formula 
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2h. Minimum average correlation (Schonemann, 1971). 

 

If one considers not just the common factor, but also the specific factors, then the 

minimum correlation matrix, produced by replacing ρ(si,sj) with ρ(si,-si)=-1 in (4.43), is 

(Guttman, 1955)  
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Notice that, since o

1
2

1

o ΛΣ2Ψ − will, in general, be non-null, "...this brings us to the unhappy 

conclusion that common and unique factors are not entirely distinct entities when we consider 

the set of potential factor axes in total factor space" (Heermann, 1966, p.541).  That is, while it is 

the case that for any particular set, k, of factors to X, E(θkδk)=0, it is not necessarily the case that 

E(θjδk)=0, when j≠k.  Hence, some of X's common factors will be correlated with some of its 

specifics.  The minimum average correlation is the average of the diagonal elements of (4.49), 

i.e., the average of the (p+1) minimum correlations: 

 

(4.50)  τ=
)1p(

)R(tr min

+
. 

 

Using the transformation approach, Schonemann (1971) proved that, for the m factor orthogonal 

model, 

   

(4.51)  τ=
)mp(

)mp(

+

−
, 

 

which, as he noted, does not depend on Λo and Ψo, the parameters of the representation.  

Schonemann (1971) actually derived (4.50) under the mistaken belief that all of the constructions 

in C were related by Ledermann's transformation, and, hence, were pairwise linearly related.  He 

speculated (1971, p.28) that, if this were not the case, 
)mp(

)mp(

+

−
 would be but an upper bound to τ 

(since, then, there might exist non-linearly related constructions with even lower values of τ).  

Using the Lawley-Rao basis for the loadings matrix, McDonald (1974) provided an alternative 

proof of (4.51), and established that: i) (4.51) holds generally, i.e., τ is a minimum over all sets of 



factors to X, and not just linearly related sets; ii) Sets of factors to X are not, in general, pairwise 

linearly related.   

 

Theorem 3 (Minimum average correlation, unidimensional case): Let X be ulcf 

representable, and let its ulcf representation be X=Λoθθθθ+Ψo
1/2δδδδ.  Then τ=

)1p(

)R(tr min

+
= 

)1p(

)1p(

+

−
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Proof 

 

It follows from (4.48) that 
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Letting t=Λo'Ψo
-1
Λo, (4.52) can then be expressed as 

 

(4.53)  )1p()1p(
)t1(

t2t2t2t2
p

)t1(

t2
p21

)t1(

t2
t2

222

−=−+
+

−−+
=−

+
−+−

+
−  

 

 

2i. The eigenstructure of Ψo
-1/2ΣΨo

-1/2 
 

 

 Let X be ulcf representable, and let its ulcf representation be X=Λoθθθθ+Ψo
1/2δδδδ, so that 

Σ=ΛoΛo'+Ψo.  It then follows that 

 

(4.54)  Ψo
-1/2ΣΨo

-1/2
=Ψo

-1/2ΛoΛo'Ψo
-1/2

+I, 

 

and, hence, that 

 

(4.55)  |Ψo
-1/2ΣΨo

-1/2
-λ*I|=|Ψo

-1/2ΛoΛo'Ψo
-1/2

+I-λ*I|=|Ψo
-1/2ΛoΛo'Ψo

-1/2
-λ'I|, 

 

in which λ*  is an eigenvalue of Ψo
-1/2ΣΨo

-1/2
 and λ'=(λ*-1) is an eigenvalue of   

Ψo
-1/2ΛoΛo'Ψo

-1/2
.  Now, if Σ is of rank p, then Ψo

-1/2ΣΨo
-1/2

 is of rank p and possesses p non-zero 

eigenvalues.  Because Ψo
-1/2ΛoΛo'Ψo

-1/2
 is gramian, all of its eigenvalues λ' are nonnegative.  

However, the rank of this matrix is unity, so that λ'1>0, and λ'i=0, i=2...p.
2 

 It follows then that 

λ*1>1, and λ*i=1, i=2...p.  The eigendecomposition of Ψo
-1/2ΣΨo

-1/2
 is then  

                                                 

2 In the multi-factor case, the number of eigenvalues of  Ψ-1/2ΣΨ-1/2
 that are greater than unity is 

equal to the number of eigenvalues of Ψ-1/2ΛΛ'Ψ-1/2
 that are greater than zero, which, in turn, 

equals the number of eigenvalues of (Σ-Ψ) that are greater than zero, which, finally, is equal to 

the number of elements of θ (each of whose elements stands for a set of constructed factors of 
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in which Q1 is the first eigenvector, and Q2 the (p-1)×(p-1) matrix whose columns contain  

eigenvectors 2 through p.  From (4.54) and (4.56),  

 

(4.57)  (Ψo
-1/2ΣΨo

-1/2
-Λ*

)Q=(Ψo
-1/2ΛoΛo'Ψo

-1/2
+I-Λ*

)Q= 

  (Ψo
-1/2ΛoΛo'Ψo

-1/2
-(Λ*

-I))Q=(Ψo
-1/2ΛoΛo'Ψo

-1/2
-Λ')Q, 

 

from which it follows that 

 

(4.58)  Ψo
-1/2ΛoΛo'Ψo

-1/2
=(λ*1-1)Q1Q1', 

 

since the final (p-1) eigenvalues of  Ψo
-1/2ΛoΛo'Ψo

-1/2
 are equal to zero.  Finally, from (4.58),  

 

(4.59)  Λo=Ψo
1/2

Q1(λ*1-1)
1/2

. 

 

In the m-factor case, a Λo defined as Ψo
1/2

Q1(Π*m-1)
1/2

 satisfies Λo
'
Σ

-1
Λo

 
diagonal, and is said to 

be defined on the Lawley-Rao basis (see, e.g., McDonald, 1974). 

 Schonemann and Wang (1972) and McDonald (1974) use (4.59) to establish that: 

 

(4.60)  Λo'Ψo
-1Λo=(λ*1-1), 

 

and 

 

(4.61)  Λo'Σ
-1Λo=

1*

1* )1(

λ

−λ
. 

 

From (4.56), and the fact that Ψ1/2Σ-1Ψ1/2
=(Ψ-1/2ΣΨ-1/2

)
-1

, the eigendecomposition of Ψ1/2Σ-1Ψ1/2
 

is 
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Hence, from (4.61) and (4.62), Rmin may be represented as 

 

 

                                                                                                                                                             

cardinality infinity). 
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, 

from which follows Theorem 3, i.e., that tr(Rmin)= (p-1)

*1 *1

2 2
(1- ) + ( -1) + tr(I ) = (p -1)
λ λ

.  

McDonald (1974) used this result to show that Schonemann's tr(Rmin) result holds generally, and 

not just for linearly related factors.  Schonemann and Wang (1972, p.69) noted that if λ*1 is not 

greater than two, then, according to (4.63), the minimally related common factor pairs contained 

in C will be negatively correlated, a finding that seems to undermine the heuristic of deciding on 

the dimensionality of a linear factor representation on the basis of the number of λ*i that are 

greater than unity.  

 

2j. Linearly and non-linearly related factors to X 

 

 In the past, there existed uncertainty over the nature of the relationships between the 

infinity of sets of factors to X, and, in particular, whether these factors were pairwise linearly 

related.   McDonald (1974) clarified the issue.   

 

Definition  (Linear relatedness; McDonald, 1974). Let X and Y each be random t-vectors, 

with E(X)=E(Y)=0, C(X)=C(Y)=I, E(XY')=Rxy, and let C(X|Y=y), the conditional covariance 

matrix of X given that Y=y, be homoscedastic over y.  Then X and Y are, by definition, linearly 

related if and only if the diagonal of C(X|Y=y) contains zeros.   

 

Lemma 2 (Linear relatedness; McDonald, 1974): Let X and Y each be random t-vectors, with 

E(X)=E(Y)=0, C(X)=C(Y)=I, E(XY')=Rxy, and let C(X|Y=y), the conditional covariance matrix 

of X given that Y=y, be homoscedastic over y.  Then X and Y are linearly related if and only if 

Rxy is orthonormal, in which case X=RxyY.   

 

Proof. C(X|Y=y) is gramian.  Hence, if its diagonal elements are all zero, it must be a null 

matrix.  Since C(X|Y=y)=I-RxyRxy
'
, this will obtain only if  RxyRxy

'
=I, i.e., only if Rxy is an 

orthonormal matrix.  In this case, X=E(X|Y)+ε=E(X|Y)=RxyY▫ 

 

Theorem 4 (Linear relatedness of factors to X; McDonald, 1974): Let X be ulcf 

representable, let its ulcf representation be X=Λoθθθθ+Ψo
1/2δδδδ, and let {θi,δi}and{θj,δj}be any two 

sets of factors to X.  Then:  

i. The correlation matrix of {θi,δi}and{θj,δj}, Rij, is as given by (4.43); 

 

ii. Rij is an orthogonal right-unit of [Λo:Ψo
1/2

]; 

 



iii. The truth of any of the following implies the truth of the others: 

 

a) {θi,δi}and{θj,δj} are related by Ledermann's transformation; 

 

b) {θi,δi}and{θj,δj}are linearly related; 

 

c) Rij is orthonormal; 

 

d) ρ2
(si,sj)=1; 

 

e) si=ρ(si,sj)sj. 

 

iv. Rij is not necessarily orthonormal.  Hence, {θi,δi}and{θj,δj}are not necessarily linearly 

related, and, hence, are not necessarily related by Ledermann's transformation. 

 

Proof 

 

ii) Part (ii) of the theorem is proven by substitution.   

 

iii) (a↔b)   

 

→ 
 

Let {θi,δi}and{θj,δj} be related by Ledermann's transformation, i.e., let T be a matrix such that 

TT'=T'T=I and [Λ:Ψ
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]T=[Λ:Ψ
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], with the consequence that 
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θ [ ]' : jj δθ  T'=T'.  Hence,  

C(X|Y=y)=I-Rij'Rij=I-T'T=I-I=0. 
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Let {θi,δi}and{θj,δj} be linearly related.  Then, by Lemma 2, Rij is orthonormal, and 








j

j

δ

θ
=Rij' 










i

i

δ

θ
.  Thus X=[Λo:Ψo
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j

j

δ

θ
=[Λo:Ψo

1/2
]Rij' 









i

i

δ

θ
, and [Λo:Ψo

1/2
]=[Λo:Ψo

1/2
]Rij'.  Hence, Rij and 

Rij' are orthogonal right units to [Λo:Ψo
1/2

], and {θi,δi}and{θj,δj}are related by Ledermann's 

transformation▫ 

 

(b↔c)  From Lemma 2. 
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If Rij is orthonormal, it must be the case that Λo'Σ
-1Λo+wρ2

(si,sj)=1.  But this is the case only if  

ρ2
(si,sj)=1.   

 

← 
 

On the other hand, if ρ2
(si,sj)=1 is substituted into RijRij', then this matrix product is equal to the 

identity matrix◊ 

 

It may then be concluded that Ledermann's transformation, and Schoneman's restatement of this 

transformation, does not provide a formula for all constructions, but only the subset of factors to 

X that are linearly related.  

 

2k. External variate theory. 

 

Let X be ulcf representable, let its ulcf representation be X=Λoθθθθ+Ψo
1/2δδδδ, and consider the 

set C of common factors to X.  Measures of indeterminacy provide one indication of the 

similarity of these factors.  A second sense of similarity derives from a consideration of the set of 

correlations of these factors with a variate, Z, not belonging to X (i.e., an "external variate").  

The indeterminacy inherent to the ulcf representation of X can be quantified by the range of this 

set of external correlations.  Schonemann and Steiger (1978), Steiger (1979),  and Schonemann 

and Haagen (1987) have developed this line of thought.   

Let external variate Z have E(Z)=0 and V(Z)=1.  To derive the range of ρ(θi,Z) over the 

set C requires the following lemma due to McDonald (1977) and restated in Steiger (1979). 

Lemma 3 (Partial correlation inequality; McDonald, 1977): Let Y= 1

2

 
 
 
  

X

W

W

 be a (p+2)×1 

random vector, in which E(Y)=0, and  

 

 

ΣY=
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.  Then the correlation ρw1,w2 satisfies the inequality  

 

 

(4.64)  

 

σ'w1,xΣx
-1σx,w2-(1-R

2
w1.x)

1/2
(1-R

2
w2.x)

1/2≤ρw1,w2≤σ'w1,xΣx
-1σx,w2+(1-R

2
w1.x)

1/2
(1-R

2
w2.x)

1/2
.  



 

Proof 

 

The conditional correlation of W1 and W2, having partialed X from each, is  

 

 

(4.65)  
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Inequality (4.64) then follows from the fact that -1≤ρw1,w2|x≤1, and by noting the identities  

(1-σ'w1,xΣx
-1σ'w1,x)

1/2
=(1-R

2
w1.x)

1/2
 and (1-σ'w2,xΣx

-1σ'w2,x)
1/2

=(1-R
2

w2.x)
1/2

. 

 

 

Theorem 5 (Bounds on external correlations, ρρρρ(θi,Z); Steiger, 1979):  Let X be ulcf 

representable with ulcf representation X=Λoθθθθ+Ψo
1/2δδδδ.  The set of correlations between the θθθθi 

contained in C and any external variate Z: 

 

i)  Has lower bound (lb) equal to    

 

 

(4.66)  Λo'Σ
-1σX,Z-(1-R

2
Z.X)

1/2
w

1/2
  

 

 

and upper bound (ub) equal to     

 

 

(4.67)  Λo'Σ
-1σX,Z+(1-R

2
Z.X)

1/2
w

1/2
. 

 

 

ii) The θθθθi that yields the lower bound is constructed as  
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-1

X-(1-R
2

Z.X)
-1/2

w
1/2

(Z-σ'Z,XΣ-1
X) 

 

 

and that which yields the upper bound, 

 

 

(4.69)  Λo'Σ
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X+(1-R
2

Z.X)
-1/2

w
1/2

(Z-σ'Z,XΣ-1
X). 

 

 

iii) The range of the set of external correlations is equal to  
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Proof 

 

i) Given that X is ulcf representable, let Y=














Z

θ

X

i  and V(Z)=1, so that E(Y)=0, and 

ΣY=
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.  With W1 set to θθθθi and W2 set to Z, apply Lemma 3 to get   
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from which, upon noting that (1-σ'Z,XΣX
-1σ'X,Z)=(1-R

2
Z.X) and that (1-Λo'ΣX

-1
Λo)=w, (4.66) and 

(4.67) follow immediately. 

 

ii)  Note that  

 

 

(4.72)  ρ(θi,Z)=C(θi,Z)=C(Λo'Σ
-1

X+w
1/2

si,Z)=Λo'Σ
-1σx,z+w

1/2σsi,z.   

 

Now, Λo'Σ
-1σX,Z is constant over all θi in C.  Hence, the magnitude of ρ(θi,Z) varies only through 

σsi,Z.  For the upper bound, σsi,z must be maximized over all admissible random variates si.  The 

only restrictions on the choice of si are that E(si)=0, V(si)=1, and σX,si=0.  Hence, to maximize 

σsi,Z, one chooses si to be the unit variance random variate contained within the space of random 

variates uncorrelated with X, and closest, in a mean-square distance sense, to Z.  That is, si is the 

unit variance counterpart of the residual of Z after projection into the space of X: 

 

 

(4.73)   smax=(Z-σ'Z,XΣ
-1

X)(1-σ'Z,XΣ
-1σX,Z)

-1/2
. 

 

 

Because (1-σ'Z,XΣ
-1σX,Z)

-1/2
=(1-R

2
Z.X)

-1/2
, (4.69) follows immediately by substitution of (4.73) 

into (4.4).  On the other hand, 

 

(4.74)  smin=-smax, 

 

and (4.68) follows by substitution of -smax into (4.4). 

 

 



iii) Because, from (4.47), ρ*
=2Λo'Σ

-1Λo-1, it follows that (4.66) and (4.67) can be re-expressed as 
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1
(1-R

2
z.X)

1/2 2/1* )1( ρ−   

 

and     

 

(4.76)  Λo'Σ
-1σX,z+

2

1
(1-R

2
z.X)

1/2 2/1* )1( ρ− , 

 

respectively.  The range of the set of correlations is then the difference between (4.76) and 

(4.75), or   

 

(4.77)  2 (1-R
2

z.X)
1/2 2/1* )1( ρ− ◊ 

 

Result (4.77) makes clear that the range of the external correlations is a function of both: i) the 

degree of linear dependency of Z on X; and ii) the indeterminacy of the ulcf representation of X.  

In particular, because, for finite p, ρ*
<1, if R

2
z.X<1, it follows that (4.77) will be positive.  That 

is, the correlations of the common factors to X with Z will not all be equal.   

 

Note that: 

 

i) If the ulf representation of X is maximally indeterminate, i.e., ρ*
=-1, then, for fixed R

2
z.X<1, 

the set of external correlations has bounds  

 

 

(4.78)  [Λ'Σ-1σX,z-(1-R
2

z.X)
1/2

,Λ'Σ-1σX,z+(1-R
2

z.X)
1/2

], 

 

 

and the range is equal to 2(1-R
2

z.X)
1/2

. 

 

ii) If  σX,z=0, i.e., the manifest variates are each uncorrelated with Z, then the set of external 

correlations has bounds  

 

(4.79)  [-
2

1 2/1* )1( ρ− ,
2
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and the range is equal to 2 2/1* )1( ρ− . 

 

 

Example 

 



Consider once again the first correlation matrix from the previous example, this for a set of four 

manifest variates with ulcf representation  

 

X= δθ

















+
















.891000
0.85800
00.9980
000.901

.455

.513

.056

.434

, 

 

Rθ.X=.46, and ρ*
=-.079.  Imagine that for some external variate Z, σX,z is equal to   

 

 
















.523
.121-

.404

.301

. 

 

Then, lb=-.275, ub=.706, and the range of the correlations of Z with the elements of C, i.e., over 

the common factors to X, is .981.  That is, X possesses common factors that have a correlation 

with Z as small as -.275, and common factors that have a correlation with Z as large as .706. 

 

Consider, additionally, the following two scenarios from Steiger (1979).   

 

i) Imagine that each member of the set of ulcf representable manifest variates Xj described above 

is uncorrelated with Z, i.e.,  σX,z=0.  Obviously, then, the traditional regression estimator Λo'Σ
-1

X 

is also uncorrelated with Z.  Yet, because ρ*
=-.079,  

lb=Λo'Σ
-1σX,z-

2

1
(1-R

2
z.X)

1/2 2/1* )1( ρ− =-
2

1 2/1* )1( ρ− = -
2

1 2/1))079.(1( −− =-.735, ub=.735, 

and the range of the correlations of Z with the common factors to X is 1.47.  That is, despite the 

fact that the manifest variates contained in X are uncorrelated with Z, certain of the common 

factors to X are, nevertheless, strongly positively correlated with Z, while others are strongly 

negatively correlated with Z.  

 

ii) Within population P, let a set of p variates, X, be ulcf representable with ulcf representation 

X=Λxθθθθx+Ψx
1/2δδδδx, and a second set of q variates, Y, be ulcf representable with ulcf representation 

Y=Λyθθθθy+Ψy
1/2δδδδy.  Consider the two sets CX and CY.  The minimum correlation over the set CX  of 

common factors to X is, of course, equal to 2Λx'Σx
-1Λx-1, and the minimum correlation over the 

set Cy, 2Λy'Σy
-1Λy-1.  What can be said of the correlations between the θix contained in Cx and the 

θiy contained in Cy?  The correlation between a θix contained in Cx and a θiy contained in Cy is  

 

ρ(θix,θiy)=ρ(Λx'Σx
-1

X-wx
1/2

six,Λy'Σy
-1

Y-wy
1/2

siy)= 

 

 Λx'Σx
-1
ΣxyΣy
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Λy+wx
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-1
σysix+wy

1/2
Λx'Σx
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σxsiy+wx

1/2
wy

1/2
σsixsiy 

 

Consider the special case in which: i) Σxy is a null matrix, i.e., the manifest variates X are 

pairwise uncorrelated with the manifest variates Y; ii) ρ*
x=0=ρ*

y.  Choose  

six to be Λy'Σy
-1

Y(Λy'Σy
-1
Λy)

-1/2
 and siy to be Λx'Σx

-1
X(Λx'Σx

-1
Λx)

-1/2
.  These choices of six and siy 

are admissible choices because Σxy is a null matrix and, as a result:  



E(X(Λy'Σy
-1

Y(Λy'Σy
-1
Λy)

-1/2
))=0, E(Y(Λx'Σx

-1
X(Λx'Σx

-1
Λx)

-1/2
))=0, V(six)=1, V(siy)=1, E(six)=0, 

and E(siy)=0.  It follows, then, that 

 

ρ(θix,θiy)=wx
1/2
Λy'Σy

-1
σysix+wy

1/2
Λx'Σx
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1/2
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σsixsiy  (from (i)) 
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1/2
+wy

1/2
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1/2
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 =1, 

 

the final step, a consequence of (iii), and the following two identities: 1) w
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=

1
* 21 ρ

2

 −
 
 

; 2) Λ'Σ
-

1
Λ=

2

1
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 +
. 

 

If, instead, six is chosen to be -Λy'Σy
-1

(Λy'Σy
-1
Λy)

-1/2
Y and siy is chosen to be  

-Λx'Σx
-1

(Λx'Σx
-1
Λx)

-1/2
X, then ρ(θix,θiy)=-1.  One can then conclude that, even though E(XtYs)=0 

∀ t,s, so that RYj.X=0, j=1..p, when ρ*
x=0=ρ*

y, set CX nevertheless contains common factors that 

range from being perfectly negatively linearly related to perfectly positively linearly with the 

common factors contained in set CY.    

 

Theorem 6 (Perfect prediction of Z by {θθθθi,δδδδi}; Schonemann and Steiger, 1978):  Let X be 

ulcf representable, and let its ulcf representation be X=Λoθθθθ+Ψo
1/2δδδδ.  For any external variate Z, 

there always exists a set of factors to X, say, {θθθθz,δδδδz}such that R
2

Z.{θθθθz,δδδδz}, the squared multiple 

correlation between Z and {θθθθz,δδδδz}, is equal to unity. 

 

Proof  

 

With no loss of generality, let E(Z)=0 and V(Z)=1.  External variate Z can be expressed as 

 

 

(4.80) Z=σ'X,zΣ
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X+(Z-σ'X,zΣ
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X), 

 

 

in which the first term is the linear predictor of Z by X, and the second term is the corresponding 

residual variate.  Define sz to be (Z-σ'X,zΣ
-1

X)(1-R
2

z.X)
-1/2

 so that  

 

(4.81) Z=[X' sz]
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and note that E(sz)=0, V(sz)=1, and C(X,sz)=0.  It then follows that the set of random variates 
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in which B=
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 are factors to X.  Finally, from (4.81) and (4.82), it 

follows that 

 

 

(4.83) Z=[θθθθz δδδδz]B
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, 

 

i.e., that Z is a linear transformation of {θθθθz δδδδz}.  Hence, R
2

Z.{θθθθz,δδδδz} is equal to unity◊ 

 

Working with finite dimensional arrays, Schonemann and Haagen (1987) used this result to 

illustrate the absurd fact that, if X is ulcf representable, then, for any criterion measure 

whatsoever, e.g., the dates of Easter Sunday from 1960 to 1979, or the shoe sizes in inches of the 

members of P, there is a set of factors to X (one common and p specific) that predicts this 

criterion with multiple correlation equal to unity.     



 


