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XVI 
 

A Survey of Replacement Variate Generators 
 

 

1.  Introduction 

 

 In this section, the replacement variate rationale that characterizes the 

employment of component and latent variate generators is illustrated through a 

consideration of a number of well-known generators ("models").   All replacement variate 

generators considered are analyzed with respect their population characteristics.  In 

practice, the parameters of generators have to be estimated on the basis of a sample 

drawn from the population P under study.  The sole aim of the current treatment is the 

reorientation of traditional thinking on latent variable and component "models", and, in 

particular, the recognition of these "models" as replacement variate generators.  The aim 

is not to rehash in great detail the mathematical details of particular generators, there 

already being in existence many accounts of this subject matter.     

 

2. The first principal component (pc1) generator 

 

Let Y contain a set of p input variates Yj, j=1..p, jointly distributed in a population 

P under study.  The scores that comprise the distributions of these variates are produced 

by following some particular set of rules of score production {r1,r2,...,rp}.  To begin, let 

X=Y-µY, so that E(X)=0 and EXX'=Σ. 

 

PC1  replacement variates 

 

 A replacement variate c is sought such that   

 

ri) c=t'X  

 

rii) V(c)=t'Σt is a maximum over all unit length t, i.e., t s.t. t't=1. 

 

From (ri) it follows that any distributional requirements made of c can be brought about 

only if X satisfies complementary distributional requirements.  While, for purposes of 

hypothesis testing, it is common to treat X as multivariate normal, which, if correct, 

induces c to be univariate normal, no such distributional requirements are here stipulated.  

Note also that the symbol c stands for each of the constituents of set C, i.e., any random 

variate that satisfies (ri)-(rii).   

 

Existence 

 

A p-vector t must be found that satisfies (ri) and (rii).  The solution is well known.  Let 

φ=t'Σt-γ(t't-1).  The partial derivatives of φ with respect t and γ are 
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From (15.1), it follows that t is the first eigenvector v1, and γ the first eigenvalue λ1, of Σ.  

Obviously, then, c=v1'X is the first principal component of the distribution of X.  The 

replacement variate c will, therefore, be labeled c1.  Requirements (ri)-(rii) define the 

pc1-generator, and, because c1 always exists, the input variates X are always replaceable 

under the pc1-generator, i.e., X is always pc1-replaceable.   

 

Cardinality of replacement 

 

Because Σ is gramian and of rank t≤p, it possesses p eigenvalue/eigenvector pairs, 

{[λ1,v1], [λ2,v2],…,[λp,vp]}, but only t of the eigenvalues are non-zero.  From well known 

theory (Jolliffe, ), the pc1 replacement is unique, i.e., Card(C)=1, as long as λ1>λ2, for 

then there exists no ambiguity as to the choice of t, i.e., it will be the eigenvector of Σ 

associated with λ1.  And, of course, one could continue on and discuss the conditional 

principal component generators which yield the 2nd through tth principal component 

variates. 

 

Construction formula 

 

 The construction formula is 

 

(15.3)  c1=v1'X.         

 

Consequences: 

 

The following are quantitative consequences of the pc1 replacement, or, in other words, 

consequences of (ri)-(rii). 

 

Ci)  E(c1)=E(v1'X)=0  (from (15.1) and (ri)) 

 

Cii) V(c1)=t'Σt=v1'Σv1=λ1  (from (15.2)) 

 

i.e., the variance of the replacement variate c is equal to the first eigenvalue of Σ. 

 

Ciii) X=v1c1+r, in which r=(I-v1v1')X. 

 

That is, the pc1 replacement can be given a model-like presentation, the phenomena 

represented by the Xj made to look as if they are related to phenomena represented by the 

terms c1 and r.  The fact that replacement variate generators can often be expressed in 
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this way has helped to maintain the false picture that latent variate generators represent 

relations between unobservable and observable entities.  But note that, prior to analysis, 

i.e., prior to the employment of Σ to derive v1, there existed no rule for the production of 

scores comprising the distributions of c1 and r.  These terms are not linked to constituents 

of natural reality by antecedently stipulated rules of correspondence.  Consequence (Ciii) 

is simply a useful decomposition of the input variates in terms of constructed replacement 

variates. 

 

Civ) E(c1r')=E(v1'XX'(I-v1v1'))=v1Σ-v1Σv1v1'=λ1v1'-λ1v1'=0'  (from (Cii)  

          and (15.2)) 

 

Cv)  E(c1X')=E(v1'XX')=v1'Σ= λ1v1'     (from (15.2)) 

 

Cvi)  E(r)=E(I-v1v1')X=0   

 

Cviii)  E(Xr')=E(XX'(I-v1v1')')=Σ-Σv1v1'=Σ-v1v1'λ1    (from (15.2))  

 

Cix)  E(rr')=E((I-v1v1')XX'(I-v1v1')')=Σ-v1v1'λ1=∑
=

p

2i

iii vvλ , 

 

in which vi is the ith eigenvector, and λi, the ith eigenvalue, of Σ.  Note that, since 

(I-v1v1') is indempotent and of rank (p-1), rank(E(rr'))=(p-1).  Thus, Σ is decomposable 

as follows: 

 

Cx) Σ=C(E(X|c1))+E(C(X|c1))=C(E(X|c1))+E(rr')=A+B, 

 

in which A is the rank unity matrix v1v1'λ1, and B is the rank (p-1) matrix ∑
=

p

2i

iii vvλ . 

Optimality properties 

 

 As is clear from (ri)-(rii), the PC1 replacement finds a linear combination of the 

input variates, c=t'X, that has maximum variance among all of those linear combinations 

for which  t't=1.  This linear combination is c1, the first principal component of the 

distribution of X.  The replacement of the Xj by c1 is optimal in a variety of other 

important, and well known, senses, several of which are, herein, reviewed:  

 

i.  Consider the vector of residuals, X-(t'Σt)
-1Σtt'X, of the linear regression of the input 

variates Xj, j=1..p, on a linear combination t'X (t't=1) of the input variates.  The 

replacement variate c1=v1'X is that choice of linear combination of the Xj which 

minimizes Etr(X-(t'Σt)
-1Σtt'X)(X-(t'Σt)

-1Σtt'X)'), i.e., the expected value of the sum of 

squared residuals.  In other words, the replacement variate c1 is that variate that is most 

"similar" to the p input variates when the latter are taken as a set.  Knowledge of the p 

parameters of the regressions of the Xj on c1 allows for the calculation of 
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)1p(p
2

1
+ implied covariances and variances, Σ̂ , and these are as close as possible to 

being perfect reproductions of the elements of Σ. 

 

Proof.  The aim is to find the t that minimizes  

 

trE(X-(t'Σt)
-1Σtt'X)(X-(t'Σt)

-1Σtt'X)'=tr(Σ)-tr(Σt(t'Σt)
-1

tΣ), 

 

subject to t't=1.  Since tr(Σ) is not a function of t, the task becomes one of  maximizing 

trΣt(t'Σt)
-1

t'Σ=t'Σt subject to t't=1.  But this is precisely the same eigenproblem as (15.1)-

(15.2), and yields the same solution, i.e., t=v1, in which v1 is the first eigenvector of  Σٱ 
 

To put this another way, to possess replacement variate c1 in conjunction with v1, yields a 

set of linear conditional expectations (linear predictions) of the Xj, 

 

X̂ =E(X|c)=v1v1'X, 

 

that reproduces the original input variates X better than any other single linear 

combination of the Xj. 

 

Replacement Loss 

 

 Since the aim of the replacement is to derive a variate c1 such that knowledge of 

the p parameters of the regressions of the Xj on c1 can be used to reproduce the 

)1p(p
2

1
+ covariances and variances of Σ, it is natural to quantify the degree to which this 

aim has been achieved.  The vector of linear regressions of the Xj on the replacement 

variate c1 is v1c1.  The loss inherent to the replacement of the p input variates by c1 is, 

therefore, given by the elements of the matrix Σ- Σ̂ = Σ-E(v1c1v1'c1)= 

Σ- v1v1'λ1=∑
=

p

2i

iii 'vvλ =VrΛrVr
'
, in which the columns of Vr contain eigenvectors 2 

through t of Σ, and diagonal matrix Λr contains the corresponding eigenvalues.  A natural 

measure of replacement loss is then tr(VrΛrVr
'
VrΛrVr

'
)=∑

=

p

2i

2

iλ , or, better yet, the ratio of 

this quantity to tr(ΣΣ)=∑
=

p

1i

2

iλ , which is equal to the sum of the squared elements of Σ. 

 

Characteristics of C 

 

 Under the condition that λ1> λ2, the set C contains but one variate, and, hence, a 

description of the properties of C is a description of the properties of c1.  Therefore, one 

need not consider the similarity of the elements of C, but certainly might consider what 
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the pc1 replacement implies about the relationship between the single pc1 replacement 

variate c1 and external variates (variates not part of the set of input variates).  Let Z 

contain a set of external variates.  As is well known, 

 

 

(15.4)  E(c1Z')=E(v1'XZ')=v1'ΣXZ       

 

and 

 

(15.5)  ρ(c1,Z')=
1λ

1
v1'ΣXZDZ

-1/2
       

 

in which DY
-1/2

 is the diagonal matrix containing the reciprocals of the standard 

deviations of the Zj. 

   

Testability 

 

 Because X is always pc1-replaceable, there is no need for a test of replaceability.  

However, since the essence of the replacement is variance and covariance explanation, it 

is perfectly reasonable to consider hypotheses about the value of  λ1 in some population 

P.  For example, in light of optimality property (i), it might be tested whether the vector 

of residuals of the linear regressions of the input variates Xj, j=1..p, on the replacement 

variate c1 has a null covariance matrix, i.e., whether λ1=tr(Σ), or, equivalently, whether it 

is the case that rank(Σ)=1.  This hypothesis will, in practice, always be false, but, as will 

be discussed later, so will be the hypotheses standardly tested in the employment of the 

linear factor generator.  

   

2. The unidimensional linear common factor (ulcf) generator 

 

 The mathematics of factor analysis are well known.  In this section, these 

mathematics are presented as they should always have been presented, i.e., without 

reference to the Central Account.   In a comparison of linear factor and component 

analysis, Mulaik (1990) states that "...the essential feature of a component model is that a 

component variable is defined as some specific linear composite of a set of observed 

variables chosen in some particular way to optimize some quantitative criterion" (p.53).  

But, as will be seen, if the sentence part "linear composite of a set of observed variables" 

were to be replaced by "constructed random variate", this would, as McDonald's 1975 

analysis managed to show, constitute a perfectly accurate description of both the ulcf and 

pc1 generators.  For, as with the pc1 generator, the ulcf generator is a recipe for the 

construction of variates that must satisfy a set of quantitative requirements that are 

uniquely those of the linear factor generator.  Let Y contain a set of p input variates Yj, 

j=1..p, jointly distributed in a population P under study.  The scores that comprise the 

distributions of these variates are produced by following the some particular set of 

antecedently stipulated rules of score production {r1,r2,...,rp}.  Once again, let X=Y-µY so 

that E(X)=0 and EXX'=Σ. 
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ulcf replacement variates 

  

 A continuous variate θ is sought such that  

 

ri)  E(θ)=0 

 

rii)  V(θ)=Eθ
2
=1, 

 

and  

 

riii) The p residuals, l, of the linear regressions of the input variates, Xj, j=1..p, on θ 

have a covariance matrix that is diagonal and positive definite. 

 

Note: In this particular formulation of the ulcf generator, no further requirements are 

placed on the distribution of θ. 

 

Consequences of (ri)-(riii) 

 

Ci) The linear conditional expecation of X given θ=θo is equal to  

 

 E(X|θ=θo)lin=E(Xθ)θo=σx,θθo       (from (rii)) 

 

To square the treatment with standard notation, symbolize σx,θ as Λ, in which case 

E(X|θ=θo)lin=Λθo.  The following are, then, consequences of the ulcf replacement:  

 

Cii) l=X-Λθ 

 

 

Ciii) X=Λθ+l 

 

This is the ulcf decomposition of X.  As alluded to earlier, the appearance of this 

decomposition helped foster the misconception that the ulcf generator represents 

structural relations between phenomena represented by the input variates, on the one 

hand, and an unobservable property (cause) represented by θ, on the other.  This is, of 

course, an illusion, for while the scores that comprise the distribution of each Xj were 

indeed produced by an antecedently stipulated rule of score production rj, and, 

occasionally, can be correctly claimed to be signified by an ordinary language concept, 

"φ", this is not the case for the scores that comprise the distributions of each of θ and l.  

Without such antecedently stated rules of score production to establish correspondence 

relations, the symbols θ and l cannot rightly be said to stand for any features of natural 

reality.  They are simply place-holders for any random variates (vectors) that satisfy the 

requirements of the ulcf generator.  

 

Civ) E(θl')=Eθ(X-Λθ)'=Λ'-Λ'=0.    (from (rii) and EθX=σx,θ=Λ)  
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Cv) E(l)=E(X-Λθ)=0      (from E(X)=0 and (ri)) 

 

Cvi)  Σ =E(XX')= C(E(X|θ))+E(C(E(X|θ))=E((Λθ+l)(Λθ+l)')=ΛΛ'+Ψ. 

   

 

       (from (rii), (riii), and (Cii)) 

 

Cvii)   E(Xl')=E((Λθ+l)l')=Ψ      (from (Cii) and (riii)) 

 

Cviii)  θ cannot be constructed as a linear combination of the Xj.  That is, there does not 

exist a vector t such that θ=t'X and also that (ri)-(riii) are satisfied. 

 

Proof  By (riii), C(l)=Σ-σx,θσx,θ'=Ψ, with Ψ diagonal and positive definite, and, hence, of 

rank p.  Now, if θ=t'X, for some t, then σx,θ=Σt and  

C(l)=Σ-Σtt'Σ=Σ-Σt(t'Σt)
-1

t'Σ=Σ1/2
(I-Σ1/2

t(t'Σt)
-1

t'Σ1/2
)Σ1/2

.  But (I-Σ1/2
t(t'Σt)

-1
t'Σ1/2

) is 

idempotent and of rank (p-1).  Hence, C(l) is of rank (p-1), which contradicts (riii).   

 

Existence 

 

 The implication [(ri)-(riii)]→[Σ=ΛΛ'+Ψ, Ψ diagonal and positive definite] is true.  

Therefore, ~[Σ=ΛΛ'+Ψ, Ψ diagonal, positive definite]→~[(ri)-(riii)] is also true.  Hence, 

if Σ cannot be decomposed as ΛΛ'+Ψ, Ψ diagonal and positive definite, then [(ri)-(riii)] 

cannot obtain, i.e., X cannot be ulcf replaced.  Similarly, [Σ=ΛΛ'+Ψ, Ψ diagonal and 

positive definite]→[(ri)-(riii)] is true (Wilson, 1928a; Guttman, 1955), hence, ~[(ri)-

(riii)]→~[Σ=ΛΛ'+Ψ, Ψ diagonal and positive definite] is true.  A necessary and sufficient 

condition that X be ulcf-replaceable is, then, that Σ=ΛΛ'+Ψ, in which Ψ is diagonal and 

positive definite.  That is, there exists at least one random variate θ that satisfies (ri)-(riii) 

iff Σ=ΛΛ'+Ψ, Ψ diagonal and positive definite.  Piaggio (1931), Kestelman (1952), and 

Guttman (1955) derived general formulas for the construction of θ.   

 The factor analytic decomposition Σ=ΛtΛt'+Ψ, in which Ψ is diagonal and 

positive definite, for t>1, is not sufficient for a t-dimensional lcf replacement.  The 

unidimensional quadratic replacement, for example, also yields the decomposition 

Σ=Λ2Λ2'+Ψ, Ψ diagonal and positive definite.   

 

Cardinality of replacement 

 

 As will be recalled from Chapter IV, if X is ulcf-replaceable, then Card(C)=∞. 

(Wilson, 1928a; Piaggio, 1931).  That is, if a particular X is ulcf-replaceable, then its 

replacement is not unique, there being constructible an infinity of random variates each of 

which satisfies (ri)-(riii).  

 

Construction formula 
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 Recall from Chapter IV, that, if X is ulcf-replaceable, the construction formula for 

ulcf replacement variates (elements of set C), is θi=Λ'Σ-1
X+w

1/2
si, in which  

w=(1-Λ'Σ-1Λ) and si is an arbitrary random variate for which C(si,X)=0, E(si)=0, and 

V(si)=1 (Piaggio, 1931; Kestelman, 1952; Guttman, 1955).  It follows then that li=X-

Λθi=X-Λ(Λ'Σ-1
X+w

1/2
si)=ΨΣ

-1
X-w

1/2Λsi.  If additional distributional requirements are 

placed on the θi, then, because the distribution of X is an empirical matter, these 

requirements must ultimately be realized through requirements imposed on the si.   

 

Note:  In multidimensional linear factor replacements, because Σ=ΛTT'Λ'+Ψ=Λ*Λ*
'+Ψ, 

for any T such that TT'=T'T=Im, the matrix Λ is also indeterminate.  A choice must then 

be made as to a favoured matrix of regression weights, before the construction formula is 

defined.  The role played by Thurstone's principal of parsimony is to provide a rationale 

for choosing a favored Λ. 

 

 As was seen in Chapter V, some have claimed that, because ulcf replacement 

variates ("common factors") are constructed in accord with a formula that involves an 

arbitrary random variate si, these variates must be absurdities.  McDonald and Mulaik, in 

particular, have taken this apparent absurdity as a prima facie argument that ulcf 

replacement variates (i.e., random variates constructed so as to satisfy (ri)-(riii)) are not 

really common factors to X.  However, they are wishing for something that latent 

variable models cannot deliver, namely the Central Account.  What the employment of 

the ulcf generator does allow is a test of replaceability, and, if a particular X is deemed to 

be ulcf replaceable, the right to produce replacement variates that satisfy precisely 

requirements (ri)-(riii) that are unambiguously imposed by the ulcf generator.  Because 

requirements (ri)-(riii) are the defining requirements of the ulcf generator, the variates 

that satisfy these requirements cannot help but be ulcf replacement variates.  The 

"paradox" mentioned in Chapter IV, that, when one partials from θ all of the information 

about θ that is contained in X, and yet is left with a positive residual variance, E(V(θ|X)), 

is indicative of the fact that one must go beyond the input variates to construct a new 

variate that satisfies (ri)-(riii).  It is a fact that variates that satisfy requirements (ri)-(riii) 

cannot also be functions of the input random variates (this was proven very nicely in 

McDonald, 1975).  It is also a consequence of the defining requirements of the ulcf 

generator that if a particular X is ulcf-replaceable, then it is ulcf-replaceable by an 

infinity of variates, each not a function of X.  There cannot be anything mysterious or 

controversial about this, for this consequence arises from the requirements 

unambiguously imposed by the ulcf generator.  If the replacement variates generated 

under the ulcf generator are "absurd", the problem lies in the choice of defining 

requirements, i.e., in the very formulation of the linear factor generator.    

 In passing judgment on the ulcf replacement several points must be borne in 

mind:  

 

i) Every replacement variate generator produces its particular brand of optimal 

replacement variates at a cost.  This can mean that a replacement variate constructed by a 

generator to satisfy requirement A cannot then have property B.  Two costs of the brand 

of optimality required of a ulcf replacement variate are that Card(C)=∞ and that it is not 
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possible that such variates are functions of the input random variates.  Once again, there 

can be nothing controversial  about this, because it follows directly from requirements 

(ri)-(riii) that unambiguously characterize the ulcf-generator, and that were stipulated by 

psychometricians when they invented linear factor analysis.  No replacement generator 

can deliver on all senses of optimality.  If a replacement is desired in which Card(C)=1, 

then the cost will be the sacrificing of certain of the senses of optimality upon which the 

ulcf generator currently does deliver.   

 

ii) It is true that there is a third cost of ulcf replacement optimality, for it does not seem 

that a θi whose construction includes an arbitrary random variate, si, could be used to 

scale individuals, this, occasionally, being an aim of a factor analysis.  But current 

practice, which has the researcher retaining the mythology of the Central Account, and 

insisting that preference should be given to "factor score estimators" over the variates 

constructed so as to satisfy the defining requirements of the ulcf generator, must be 

overhauled.  If it is deemed essential to produce a variate that can be used to scale 

individuals, then the linear factor generator is the wrong choice, because its replacement 

variates do not satisfy this requirement.  They, uniquely, insist upon (ri)-(riii), and 

replacement variates that satisfy (ri)-(riii) possess undesirable properties with respect the 

aim of scaling individuals;  

 

iii) The foregoing  analysis makes it sound as if the development of linear factor analysis 

featured a careful planning in regard the optimality/cost profile of the replacement 

variates produced under the ulcf generator.  Techniques are not usually developed in so 

careful a fashion.  In fact, Spearman, busy as he was deducing social policy implications 

of the employment of linear factor analysis, and positing various mental energies, simply 

did not understand what his "model" entailed.  First, he wrongly believed that Garnett had 

proven that the factors of factor analysis were "unique", a proof to which he attached 

great importance: 

 

There is another particularly important limitation to the divisibility of the 

variables into factors.  It is that the division into general and specific 

factors all mutually independent can be effected in one way only; in other 

words, it is unique.  For the proof of this momentous theorem, we have to 

thank Garnett (Spearman, 1927, p.v11). 

 

Dodd's review of factor analysis reinforced this view: "The converse proposition that, if 

(I) is true, 'g' and 's' alone determine the observed variables was assumed in this [Hart and 

Spearman, 1912] article and not proved until later (12, 18, 23)" (1928, p.213).  It is 

unreasonable to expect Spearman and his contemporaries to have possessed a flawless 

grasp of the logic of his newly introduced technique. Mistakes, unwarranted suppositions, 

and uncertainty are very often a part of the early history of novel technology.  However, 

when Wilson corrected his misconceptions about factor analysis, Spearman chose to 

misrepresent the facts, rather than, perhaps, rethink the formulation of his generator.  The 

rapid evolution of the Central Account mythology, and the consequent need to protect it, 

meant that the dispassionate analysis of optimality/cost tradeoffs in regard the ulcf-



 10 

 

 

 

replacement was effectively foregone.  In the end, the only thing for the discipline to do 

was to fabricate stories (e.g., the estimation of unobservable measurements) to explain 

away the "absurdity" of the ulcf replacement.      

 

Characteristics of set C 

 

 Set C, which contains the ulcf replacement variates (those variates constructed as  

θi=Λ'Σ-1
X+w

1/2
si, in which w=(1-Λ'Σ-1Λ), and si is an arbitrary random variate for which 

C(si,X)=0, E(si)=0, and V(si)=1) is of infinite cardinality.  In addition to describing the 

properties that the θi must possess for inclusion in C, it is clearly of interest to describe 

other general features of C, notably the distinctness of the replacement variates it 

contains.  A number of these features, including the smallest correlation between 

members of C (Guttman's ρ*
), and the range of correlations between members of C and 

an "external variate", were considered in Chapter IV.  

 

Testability 

 

 If the distribution of X in particular population P happens to be multivariate 

normal, then there exist well known tests (see, e.g., Lawley & Maxwell, 1963) of the 

hypothesis Ho: [Σ=ΛΛ'+Ψ, Ψ diagonal and positive definite] against the alternative H1: [Σ 

is any gramian matrix].  These tests are tests of the hypothesis that a set of input variates, 

Xj, j=1..p, are ulcf-replaceable.   

 

Optimality criteria 

 

 The primary sense of optimality to which answers a ulcf replacement variate, θi, 

is that which is clear from (ri)-(riii), these the defining requirements of the ulcf generator:   

 

θi is a variate that replaces the input variates, Xj, j=1..p, in the sense that the p slope 

parameters, λj, of the linear regressions of the Xj on θi can be used to reproduce the 

)1p(p
2

1
−  unique covariances contained in Σ.   

 

That is, if X is ulcf-replaceable,  

 

 

(15.6)  σjk=σxj,θσxk,θ=λjλk, j≠k. 

 

 

Hence, the )1p(p
2

1
− pair-wise linear dependencies of the joint distribution of the Xj can 

be accounted for by knowledge of the linear relationships between the Xj and a single 

constructed random variate, i.e., by a single dimension.  In particular, each of the variates 

θi contains all of the information in regard the pairwise linear relationships among the Xj 

in the sense that, once the Xj have been conditioned on any of the θi, there exist no further 
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pairwise linear dependencies among the Xj.  In addition to this primary sense of 

optimality, ulcf replacement variates have been alleged to be optimal in a number of 

consequent, or secondary, senses.  

 

i. Invariance properties 

   

 The ulcf replacement of a particular set of input variates, say XA, possesses a 

number of attractive invariance properties.  Let XA be ulcf replaceable, with ulcf 

representation XA=ΛAθ+l.  The replacement variates to XA are, then, constructed as 

θi=ΛA'ΣA
-1

X+wA
1/2

si, in which wA=(1-ΛA'ΣA
-1ΛA), and si is an arbitrary random variate 

for which C(si,XA)=0, E(si)=0, and V(si)=1.  Set CA contains the θi.  Now, consider which 

features of the replacement of XA survive if XA is rescaled by a diagonal, positive definite 

matrix D (this matrix might, for example, contain the reciprocals of the standard 

deviations of the XAj), producing a new set of input variates Z=DXA.  It turns out that: 

 

a.  The input variates Z are still ulcf replaceable, and, in fact, are replaceable by the 

variates contained in CA.  The vector of regression parameters (of Z on each of the 

variates contained in CA) is equal to ΛZ=DΛA.   

 

b.  The ulcf decomposition  ΣZ=DΣAD is simply DΣAD=DΛAΛA'D+DΨAD= ΛZΛZ'+ΨZ. 

  

It can be seen, then, that if XA is ulcf replaceable, and the parameters of this replacement 

are known, Z=DXA is also ulcf replaceable, and the parameters of its ulcf replacement are 

simply rescaled versions of the parameters of the ulcf replacement of XA. 

 

ii. Generalizability 

 

 This topic will be considered in detail in a later section on the variate domain 

formulation of the ulcf replacement.  The issue pertains to the conditions under which a 

subset of variates that ulcf-replace a particular set of variates X
*
, i.e., a subset of the 

variates contained in CX*, ulcf-replace, not only X
*
, but additional variates.  In such a 

case, the products of a given factor analysis (ulcf-replacement) may rightly be said to 

"reach beyond the original set of input variates." 

 

Replacement Loss 

 

 Because the aim of the ulcf replacement is to derive a variate θ such that 

knowledge of the p slope parameters of the regressions of a set of input variates Xj, 

j=1..p, on θ, can be used to reproduce the )1p(p
2

1
−  unique covariances contained in Σ, 

and since, in most applications, this aim will not be fully realized, it is only natural to 

quantify the degree to which this aim has been achieved.  Because X is ulcf-replaceable 

only if ΣX= ΛΛ'+Ψ for some particular choice of Λ and Ψ, in which Ψ is diagonal and 

positive definite, the quantification of replacement loss can be carried out by quantifying 

the discrepancy between ΣX and Σ = ΛΛ' +Ψ� �� � , in which Λ� and Ψ� are chosen so as to 
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make Σ� as close as possible to ΣX.  The estimation of  this discrepancy is at root of 

RMSEA measures of fit now employed within the field of structural equation modeling.  

 

Additional restrictions  

 

 A variety of additional requirements or restrictions have, for a variety of reasons, 

been considered by psychometricians.  Several examples are, herein, discussed. 

 

Distributional requirements for θ:  The ulcf generator (2.7)-(2.8) does not require of ulcf 

replacement variates that they have some particular distribution, whereas generator 

(2.11)-(2.12) requires that each has a normal distribution.  Distributional requirements 

made of ulcf replacement variates have, traditionally, been misportrayed as 

"assumptions."  They are, in fact, additional restrictions that must be satisfied by variates 

in order for them to be ulcf-replacement variates.  Now, distributional claims about X 

must "make sense", in that they must square with evidence about the distribution of X in 

P, culled from samples drawn from P.  The moment requirements that must be satisfied 

by the si are that C(si,X)=0, E(si)=0, and V(si)=1.  Given that X has some particular 

density gX, the distribution of si can always be chosen so as to yield some desired 

continuous distribution for the θi, because θi=ΛX'Σ-1
X+w

1/2
si, and, as a result, 

i i

-1
-1

-1i i
θ (X,s ) i1/2

i t

X θ (θ -Λ'Σ X)
f = J f , t (X,s ) dt

s t w

      
→      

     
∫  , in which t is any vector 

chosen so that the transformation of 
i

X

s

 
 
 

 to 
iθ

t

 
 
 

 is non-singular, and J(.→.) is the 

jacobian of the transformation.  Bartholomew has repeatedly stated (e.g., 1980, p.295) 

that, because the distribution of θi is "unknown", it may be chosen "to suit our 

convenience."  Clearly, this latitude in regard the distribution of θi does not come about 

as a result of its being "unknown" (if it was truly "unknown", the task would then be one 

of discovery, and he would have no business choosing this distribution "to suit his 

convenience"), but as a result of the requirements imposed by the ulcf generator on 

random variates in order that they can rightly be called latent variates to X.    

 

Additional requirements to yield Card(C)=1:  As was evident from Chapters IV and V, 

the fact that, under the ulcf replacement, Card(C) is equal to infinity, has been the cause 

of consternation amongst psychometricians.  It has been suggested herein that the true 

source of this concern was not the non-uniqueness of the ulcf replacement per se, but 

rather the idea that common factors are constructed random variates, and the threat this 

poses to the Central Account.  Regardless, various suggestions, some of these dating back 

to Spearman's responses to E.B. Wilson, have been made as to how determinate linear 

factor replacements might be achieved.  These suggestions, being as they were entries in 

the indeterminacy debate, have typically been offered up as "ways to save the factor 

model."  The factor "model" is, however, a replacement variate generator, and, hence, the 

issue is a very general one, pertaining as it does to conditions under which a replacement 
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generator can be made to yield a replacement in which Card(C)=1.  Several of these 

conditions will now be reviewed and critiqued. 

 

i. Extra-factor analytic research. In a number of his papers, Mulaik has recommended that 

further research could be undertaken to resolve the "indeterminacy impasse" in a given 

application of factor analysis.  His ideas were discussed in some detail in Chapters V and 

VI.  To recount, he mentions two possibilities.  In the first, parameter estimates generated 

in an application of a factor analytic generator are employed as a clue in a subsequent 

search for some natural phenomenon that, on non-factor analytic grounds could be judged 

as the cause of the phenomena represented by the manifest variates.  As was noted, this 

program of research would then effectively change the nature of latent variable modeling, 

and would lead to the discarding of the CA mythology.  In the second, Mulaik envisions 

extra-factor analytic research undertaken to facilitate the selection of one preferred 

variate from among those in C.  It was argued that this suggestion suffers from Mulaik's 

mistaken view that variates are the objects of scientific inquiry, and that, additional 

knowledge about some psychological phenomena, say, that of self-esteem, might be used, 

in a given application, to pick out from set C a "true" common factor.  As argued in Part 

II, contrary to the confusions inherent to the practice of latent variate interpretation, the 

variates contained in C are not signified by concepts from ordinary language.  They are 

not, e.g., various types of self-esteem or dominance.  They are just variates, differentiated 

according to their statistical properties and means of production.  The only way to put 

Mulaik's second suggestion into operation would be by formulating further quantitative 

stipulations that would single out an element of C as the ulcf replacement of a given X.  

In the next section, one such stipulation is considered. 

 

ii. Variate domain foundation. The variate domain, or "behaviour domain", treatment of 

latent variable modeling has been a topic of some controversy.  The idea is that the set of 

p input variates to be analyzed in a given application  are but a subset of the variates 

contained in a population (domain) of variates that could potentially have been analyzed.  

The aim of factor analyses based on subsets drawn from this domain is then to allow for 

the making of inferences about the domain, notably about the identities and natures of the 

factors of the domain.  There is no question that both Spearman and Guttman came to 

view it as essential that factor analysis be founded on the variate domain conception.  

McDonald (e.g., 1996a, p.598) has further taken his abstractive property conception of 

the referent of the concept latent variate to X as implying a variate domain foundation to 

latent variable modeling.  The variate domain conception has been controversial because, 

as was seen in Chapter V, many have seen it as the key to ridding factor analytic practice 

of the difficulties caused by the indeterminacy property of the ulcf replacement.  

Moreover, its treatment has been burdened by non-mathematical obscurities,  notably in 

regard the concept of behaviour domain itself, and the means by which to decide what is, 

and is not, contained within a given domain.   

The current treatment will: i) Review the variate domain treatment from the 

perspective of the logic of replacement variate generators.  The mathematics reviewed 

draws heavily upon the papers of Mulaik and McDonald (1978) and McDonald and 

Mulaik (1979), these papers representing the most satisfactory integration of variate 
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domain thinking into practical application.
1
; ii) Show that McDonald's use of the variate 

domain as foundation for his abstractive property interpretation of latent variable 

modeling is a covert attempt to assert the truth of the Central Account.  The following 

conclusions will be reached:  

 

a) The mathematics of the variate domain treatment of latent variable modeling 

establish that, under certain highly restrictive conditions,  the number of replacement 

variates of a subset of p input variates drawn from a domain of variates that, additionally, 

replace the remaining (k-p) variates contained in the domain, decreases as k increases, 

until, in the limit, i.e., as k→∞, it is equal to unity.  That is, if certain very restrictive 

conditions hold, the latitude inherent to the replacement of a given set of variates, A, can 

be reduced by insisting that the variates that replace set A, also replace an increasingly 

large number of additional variates;  

 

b) The conditions that must be satisfied in order for this limiting uniqueness to 

obtain are prohibitively severe;  

 

c) McDonald is mistaken that "difficulties in the traditional use of the linear factor 

model", and, in particular, those attendant to the practice of latent variate interpretation, 

are eliminated by employing a behaviour domain foundation.  In fact, his abstractive 

property notion is just the CAM dressed in fancy clothing, and the fact that a replacement 

is unique does not save the CAM.  Regardless of the cardinality of a replacement, latent 

variable models are not detectors of properties/attributes, and the practice of latent variate 

interpretation, resting, as it does, on a claim of the coherence of non-normative, 

conceptual signification, makes no sense;  

 

d) The conditions that must be satisfied so as to support the claim that, in the 

limit, the cardinality of a ulcf replacement is unity, render equivalent a variety of distinct 

replacement generators, including the ulcf, pc1, and image generators.  That is to say, the 

replacement variates produced by these generators happen to coincide under the special 

condition of limiting uniqueness of the ulcf replacement.  

 

Basic results 

 

 As was seen in Chapter V, the indeterminacy property of ulcf representations, a 

property that has to do with the latitude inherent to ulcf replacements, has frequently been 

misportrayed as an issue of "measurement precision" or "predictive efficacy."  Not 

surprisingly, then, the attempt to remedy problems perceived to arise from the 

indeterminacy property through the use of limiting results based on variate domain 

formulations have standardly been misportrayed as solutions to measurement and 

predictive problems.  But the issue of determinacy in the limit bears neither on  

measurement, nor prediction (although it has a mathematical kinship with the latter), but, 

                                                 
1 An earlier (1996) account, Maraun (1996), was alleged by Professor Mulaik to constitute a 

misrepresentation of Mulaik(1978).   I must acknowledge the correctness of Mulaik's charge, and hope, this 

time, to do justice to his fine paper.   
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rather, on the reduction in the cardinality of the set of variates that ulcf replace some 

particular X
*
. 

 Consider a simple example of the linear prediction of a random variate Z by a set 

of p random variates {X1,X2,...,Xp}.  For convenience, let all variates have expectations 

of zero.  One seeks a p-vector of real coefficients, α, such that the squared Pearson 

Product Moment Correlation of Z and X'α, ρ2
(Z,X'α), is a maximum.  Maximizing 

ρ2
(Z,X'α) is equivalent to minimizing the quantity 

 

 

(15.7)  E(Z-X'α)
2
         

 

 

and the solution, α=ΣX
-1σXZ, exists and is unique so long as ΣX

-1
 exists.  The squared 

Pearson Product Moment Correlation of Z and the optimal linear predictor X'ΣX
-1σXZ is 

called the squared multiple correlation coefficient, or coefficient of determination, and is 

symbolized as R
2

Z.X.  The quantity (1-R
2

Z.X) corresponds to the proportion of variation in 

Z not linearly associated with X.  Now, R
2

Z.X=1 only if Z lies in the span of 

{X1,X2,...,Xp}, for this is precisely the condition under which there exists a vector of real 

coefficients α such that E(Z-X'α)
2
=0.  If this condition does not obtain, as is typically the 

case, the linear prediction of Z by{X1,X2,...,Xp} will be less than perfect.  In marked 

contrast to the determinacy of ulcf replacements (the case in which ρ*
=1), R

2
Z.X can attain 

the value of unity when the number of predictors is finite, its value determined by the 

"naturally occuring" joint distribution of Z and X in the population P under study.  That 

is, unless the variates themselves are constructed in some artificial manner, the joint 

distribution of Z and X in a population P under study can be viewed as a constituent of 

natural reality, and R
2

Z.X, a desciption of certain of its properties. 

 Now, consider adding a (p+1)th variate, Y, to the set of predictors.  The (1+p+1)-

element joint distribution of (Z,X,Y) in population P is now of interest.  Because 

R
2

Z.(X:Y)=R
2

Z.X+R
2

Z.(Y|X), in which R
2

Z.(Y|X) is the squared semi-partial correlation of Z and 

Y, i.e., the squared correlation of Z and (Y-X'ΣX
-1σXY), and R

2
Z.(Y|X)≥0, it follows that 

R
2

Z.(X:Y)≥R
2

Z.X.  That is, adding a (p+1)th variate, Y, to the predictive set will improve the 

linear prediction of Z so long as Z is linearly associated with the residual from the linear 

regression of Y on X.  Note, however, the important fact that Z, the variate to be 

predicted, does not change as a function of the variates contained in the set of predictors.  

Variate Z is precisely the same variate after the addition of Y as it was before the 

addition of Y.  Thus, regardless of which predictors are used, or how many predictors are 

used, it is always clear what is to be predicted, and how predictive efficacy can be 

partitioned with respect the predictors. 

 This general issue of prediction, and the complimentary issue of the adding of 

predictor variates to improve prediction, does not describe the determinacy issue of ulcf 

replacements.  The distinction between the two scenarios is clear when it is noted that the 

variate θ that appears in the equations of the ulcf generator is not fixed prior to analysis.  

Prior to analysis, no rule exists by which scores on θ are produced.  Hence, there does not 

exist a joint distribution of scores on θ and those on {X1,X2,...,Xp}, in population P, 

whose properties can be studied in the determination of a predictive relationship between 
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θ and {X1,X2,...,Xp}.  The symbol θ represents any random variate that satisfies the 

requirements imposed by the ulcf generator in the replacement of {X1,X2,...,Xp}.  The 

distributional specifications that are sometimes a part of the ulcf generator, e.g., that θ 

and {X1,X2,...,Xp} have a joint normal distribution, are requirements imposed on the 

distribution of constructed random variate θ by the ulcf generator.  Supplementing 

{X1,X2,...,Xp} with additional variates turns out, not surprisingly, to generate additional 

requirements that must be satisfied by a variate that is to qualify as a ulcf replacement 

variate.  Determinacy in the limit, then, is not a predictive issue, but is, rather, about 

nested sets of replacement variates, and the possibility that, by increasing the number of 

input variates that must be replaced, enough restrictions will eventually be imposed to 

bring about a replacement in which Card(C)=1.  To motivate analysis of this topic, 

consider a simple example in which many of the key issues are evident.   

 Let there be a particular set of p input variates Xo, and let this set be ulcf 

replaceable with ulcf representation Xo=Λoθθθθ+Ψo
1/2δδδδ.  Let the set of replacement variates 

to Xo be C[Xo], and note that this set has minimum correlation equal to  

ρ*
(Xo)=2R

2
θ.(Xo)-1=2Λo'ΣXo

-1Λo-1 (see 4.47).  The variates, θθθθi, contained in C[Xo], and 

constructed as θi=Λo'ΣXo
-1

Xo+wo
1/2

si (wo=(1-Λo'Σo
-1Λo), C(si,Xo)=0, E(si)=0, and V(si)=1), 

each have the properties E(θθθθi)=0, V(θθθθi)=1, and E(Xoθθθθi)=Λo.  Now, add a (p+1)th variate V 

to the set, Xo, of input variates.   

 

Theorem (Steiger, 1996): A sufficient condition for the set [Xo:V] to be ulcf-replaceable 

by a subset S(C[Xo]) of C[Xo] is that E(XoV)=κΛo, for some real number κ≠0. 

 

Proof 

 

If E(XoV)=κΛo, for some real number κ≠0, then [Xo:V] is ulcf-replaceable, with ulcf 

representation  

 

 

(15.8)  
1

o o 2
Λ

Ω
κ

   
= +   

   

X
φ ε

V
,        

 

in which V(φ)=1, C(ε)=I, C(φ,ε)=0, and Ω=
o

2 2

V

Ψ

(σ κ )

 
 

− 

�

�
.  Because E(Xoφ)=Λo, the 

variates φj contained in set C[Xo:V], i.e., the variates that replace [Xo:V], are also contained 

in C[Xo].  That is, there exists a non-empty subset of C[Xo] that ulcf-replaces [Xo:V]□ 

 

Note that the replacement variates to [Xo:V] contained in set C[Xo:V] are constructed as  

φj=[Λo:κ]'Σ(Xo:V)
-1

o 
 
 

X

V
+W

(Xo:V)
1/2

sj, and that C[Xo:V] has minimum correlation  
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ρ*
(Xo:V)=2R

2
φ.(Xo:V)-1=2[Λo:κ]'Σ(Xo:V)

-1
oΛ

κ

 
 
 

-1.  Because Ω is positive definite, it follows 

that 

 

 

(15.9)            

 t(Xo:V)=[ ]
-1

oo

o 2 2 -1

V

ΛΨ
Λ ' : κ

κ(σ κ )

   
   

−   

�

�

=Λo'Ψo
-1Λo+κ

2
(σ2

V-κ2
)
-1

>Λo'Ψo
-1Λo=t(Xo). 

  

 

Hence, from (4.48), it follows that 

 

 

(15.10)  ρ*
(Xo:V)=

o

o

(X :V)

(X :V)

(t -1)

(t +1)
 >

o

o

(X )

(X )

(t -1)

(t +1)
= ρ

*
(Xo)     

  

That is, the minimum correlation for set C[Xo:V] is larger than that for set C[Xo].  Thus, if 

Xo is ulcf replaceable, insisting that a subset of its replacement variates replace, 

additionally, a (p+1)th input variate V has the effect of imposing additional requirements 

on the replacement, the result being a reduction in the latitude inherent to the 

replacement.  The implication is that, if X is ulcf replaceable, and it is insisted that a 

subset of its replacement variates replace an increasingly larger number of additional 

variates, then, if this replaceability continues to obtain, the number of imposed 

requirements will eventually render the cardinality of this subset unity.     

 However, the conditions under which this convergence to unique replacement will 

take place are severe, as will later be seen.  It is suggestive to note that if just a single 

variate is added to set Xo, a reduction in the cardinality of the replacement will occur only 

if E(XoV) is equal to κΛo, κ≠0.  As Steiger (1996a, Theorem 2) shows, this is equivalent 

to the requirement that the linear conditional expectation of V given Xo is a linear 

function of the determinate parts of the replacement variates, θi.  The proof runs as 

follows:  

 

E(V|Xo=Xo)=
o o

-1

oX V Xσ 'Σ X .   Because 
oX Vσ =E(XoV) must be equal to κΛo, κ≠0, 

E(V|Xo=Xo) must then equal κΛo'ΣXo
-1

Xo=κDθθθθ (see 4.2iii).  Hence, the additional variate 

V must only be linearly related to a single linear composite, κDθθθθ, of the original input 

variates, Xo.   

 

 Let it be the case that E(XoV)=κΛo, κ≠0.  It follows then that all of the 

replacement variates contained in C[Xo:V] possess the properties required for inclusion in 

C[Xo], but not all of the variates contained in C[Xo] have the covariance of κ with V 

required for inclusion in C[Xo:V].  Only a subset do.  Hence, C[Xo:V] ⊂ C[Xo].  What are the 

additional restrictions imposed on the replacement variates θi=Λo'ΣXo
-1

Xo+wo
1/2

si, the 
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satisfaction of which admits them to S(C[Xo])?  To put it another way, what distinguishes 

subset S(C[Xo]) from the other θi contained in C[Xo]?  Clearly, as for any variate contained 

in C[Xo], these variates must satisfy: E(θiXo)=Λo, E(θi)=0, and V(θi)=1.  These properties 

are realized by the imposition of moment constraints on si, namely that E(siXo)=0, 

E(si)=0, and V(si)=1.  Variates in S(C[Xo]) additionally satisfy the requirement that 

E(θiV)=κ.  This requirement is equivalent to the requirement that   

 

 

(15.11)  E((Λo'ΣXo
-1

Xo+wo
1/2

si)V)=κ,    

 

 

which obtains only if   

 

(15.12)  σVSi=
oo

-1

o X VX

1/2

o

(κ -Λ 'Σ σ )

w
       

 

Hence, the elements of the subset S(C[Xo]) of variates that replace both the original set of 

input variates Xo and, additionally, the variate V, are constructed by choosing si so as to  

satisfy one further restriction, that σVSi=
oo

-1

o X VX

1/2

o

(κ -Λ 'Σ σ )

w
. 

 

 Now, let the situation of a "domain of variates" be considered. 

 

Definition (domain of input variates).  A domain, D, of input variates is a set of input 

variates, Xj, j=1..k, jointly distributed in some population, PT, from which subsets of 

variates can be drawn as input to particular analyses.   

 

 Note, that with the notion of "domain of variates" comes the implication that the 

variates represent phenomena of a "similar type".  McDonald and Mulaik, for example 

speak of variates that "...have been selected on the basis of certain common attributes 

defined in advance..." (1979, p.305).  The idea is that there exists a rule rσ for the 

production of a potentially unlimited number of "indicators" of some construct σ of 

interest.  Mulaik (1996, p.582) makes this explicit: "I would now emphasize that having a 

prior definition of a domain in general, whether with a determinate common factor or not, 

means distinguishing the variables of the domain in some way external to the model by, 

say, some mark, some behavioral attribute, some operation and context of measurement 

that is an observable distinguishing feature of each variable in the domain."  The 

researcher can then envision constructing a "universe of content or behaviour 

domain...defined in advance of any statistical analysis" (McDonald & Mulaik, 1979, 

p.302).  It was argued in Chapter IX that Mulaik and McDonald's grasp of concept 

meaning and signification is confused, and that their program is problematic on many 

fronts.  The issue of interest at the moment, however, is the mathematics of limiting 

determinacy. 
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Let there be a domain, D, containing k input variates, Xi, i=1..k.  For convenience, 

let these variates have expectations of zero, and imagine drawing p<k of these variates 

for analysis.  The p variates sampled are placed in random vector XA, and the remaining 

m=(k-p) of the variates of D in vector XB.  Let XA be ulcf-replaceable with ulcf 

representation XA=ΛAθθθθA+ΨA
1/2δδδδA, and let C[A]  stand for the set of ulcf replacements to 

XA.  The minimum correlation of the replacement is equal to ρ*
(A)=2R

2
θ.(A)-1= 

2ΛA'Σ(A)
-1ΛA-1, and the variates contained in C[A] are constructed as  

θi=ΛA'Σ(A)
-1

XA+wA
1/2

si, in which wA=(1-ΛA'Σ-1ΛA), C(si,X)=0, E(si)=0, and V(si)=1.  

Each of the variates contained in C[A] has the properties E(θθθθi)=0, V(θθθθi)=1, and E(Xθθθθi)=ΛA.  

 

Definition (A-replaceability): Domain D will be said to be A-replaceable if  there exists 

a  subset of C[A], SD(C[A]), whose elements each ulcf-replace the variates contained in D.  

If such a subset exists, its elements will be called A-replacements to D. 

 

Theorem (A-replaceability): Let XA be ulcf-replaceable with ulcf representation 

XA=ΛAθθθθA+ΨA
1/2δδδδA. Domain D is, then, A-replaceable if and only if [XA:XB] is ulcf-

replaceable. 

 

Proof 

 

→ 

 

Assume that D is A-replaceable: There exists a subset of C[A], SD(C[A]), whose elements, 

φi, ulcf-replace the variates of D.  Because the variates φi are contained in C[A], it must be 

the case that E(XAφi)=ΛA, and, hence, that the ulcf representation of the variates 

contained in D is 

  

 

(15.13)  εφ
X

X 2

1

B

A

B

A Ω
Λ
Λ

+






=







,        

 

 

in which V(φ)=1, C(ε)=I, C(φ,ε)=0, and Ω1/2
 is a diagonal, positive definite matrix.  That 

is, [XA:XB] is ulcf-replaceable.   

 

← 

 

Assume that [XA:XB] is ulcf-replaceable, with ulcf representation 

 

 

(15.14)  εφ
X

X 2

1

BB

A Ω
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+







=








,        
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in which V(φ)=1, C(ε)=I, C(φ,ε)=0, and Ω1/2
 is a diagonal, positive definite matrix.  Then  

 

 

(15.15)  C[XA:XB]= 







+

+
=









BBBB

BA

BBAB

BAAA

U'ΛΛ'γΛ
'ΛγUγγ

''

''
E

XXXX

XXXX
  

 

 

and, since E(XAXA')=γγ'+UA, it must be that γ=ΛA, and, hence, that E(XAφ)=ΛA.  Thus, 

the variates φi that ulcf replace [XA:XB], those contained in C[A:B], are also contained in 

C[A].  In other words, there exists a subset of CA that ulcf-replaces [XA:XB], and domain 

D is A-replaceable□ 

 

 Note that, if domain D is A-replaceable, UA=E(XAXA')-ΛAΛA'=ΨA.  Note also the 

severity of the restrictions that must be satisfied by the distribution of [XA:XB] in order 

that D be A-replaceable.  From (7.15), it follows, in analogy to the single variate case, 

that it must be possible to choose a vector of real coefficients ΛB such that 

E(XAXB')=ΛAΛB' and E(XBXB')=ΛBΛB'+UB, in which UB is diagonal and positive 

definite.  The number of such restrictions is an increasing function of m, the number of 

variates contained in XB.  If k is taken as being very large, then the number of restrictions 

that must be satisfied by the distribution of [XA:XB] will also be very large.  Given that 

domain D is A-replaceable, let the set C[D] contain its replacement variates.  Elements of 

C[D] are constructed as φi=[ΛA:ΛB]'Σ(A:B)
-1 









B

A

X

X
+W

(A:B)
1/2

si.   Set C[D] has minimum 

correlation equal to ρ*
(A:B)=2R

2
φ.(A:B)-1=2[ΛA:ΛB]'Σ(A:B)

-1 








B

A

Λ
Λ

-1.   

Theorem  (relationship between sets C[D] and C[A] under A-replaceability):  If domain 

D is A-replaceable, then every replacement variate φi contained in C[D] is also contained 

in C[A], i.e., C[D] ⊂ C[A], but not every variate, θθθθ, contained in C[A] is contained in C[D].  

That is, C[A] ⊄ C[D], and the set of A-replacements to D is a proper subset of C[A]. 

 

Proof (Mulaik & McDonald, 1978) 

 

Set C[D] contains those variates φi that ulcf replace [XA:XB], and, because D is A-

replaceable, it must be the case that E(XAφi)=ΛA.  That is, C[D] ⊂ C[A].  Thus, given that D 

is A-replaceable, C[D] is precisely that set of variates, SD(C[A]), that is both contained in 

C[A] and replaces the variates contained in set B.  What remains to be shown is that not 

every variate contained in C[A] is also contained in C[D].  The correlation, ρij[A], between 

any two replacement variates contained in C[A] must lie within the bounds ρ*
(A)≤ρij[A]≤1, 

while the correlation ρij[D], between any two replacement variates contained in C[D] must 

lie within the bounds ρ*
(A:B)≤ρij[D]≤1.  Because  

 

(15.16)  C[XA:XB]= 







+

+

BBBAB

BAAAA

U'ΛΛ'ΛΛ
'ΛΛΨΛΛ

 ,     
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with both ΨA and UB diagonal and positive definite,   

 

 

(15.17) 

 t(A:B)= [ ] 













−

B

A
1

B

-1

A
BA Λ

Λ
U

Ψ
'Λ:'Λ
�

�
=ΛA'ΨA

-1ΛA+ΛB'UB
-1ΛB>ΛA'ΨA

-1ΛA=t(A).   

 

Hence,  

 

 

(15.18)  ρ*
(A:B)=

)1t(

)1t(

)B:A(

)B:A(

+

−
 >

)1t(

)1t(

)A(

)A(

+

−
= ρ

*
(A).      

 

 

Let particular variate θ
*
 be an element of set C[D], and hence, also an element of C[A].  

Then also contained in C[A] is a subset of replacement variates, min(C[A],θ
*
), each of 

which has minimum correlation ρ*
(A) with θ

*
.  Since the minimum correlation for C[D] is 

equal to ρ*
(A:B), which is greater than ρ*

(A), the variates in min(C[A],θ
*
) cannot be elements 

of C[D]□ 

 

 Given the A-replaceability of D, all of the variates φi contained in C[D] have the 

property that E(XAφi)=ΛA.  That is, these variates are also contained in C[A].  However, 

the variates θi that are contained in C[A] do not necessarily have the property that 

E(XBθi)=ΛB, this required for inclusion in C[D].  Only a subset of the variates contained in 

C[A] have this property.  Hence, C[D] ⊂ C[A].  Once again, it can be asked what additional 

restrictions are imposed on the replacement variates θi=ΛA'Σ(A)
-1

XA+wA
1/2

si, the 

satisfaction of which admits them to SD(C[A]).  Such variates must satisfy the 

requirements that E(θiXA)=ΛA, E(θi)=0, V(θi)=1, and the additional requirement that 

E(θiXB)=ΛB.  The first three properties are realized by the imposition of the standard 

moment constraints on si, namely that E(siXA)=0, E(si)=0, V(si)=1.  To satisfy the 

additional requirement that E(θiXB)=ΛB, it must be the case that  

 

 

(15.19)  E((ΛA'Σ(A)
-1

XA+wA
1/2

si)XB')=ΛB', 

 

 

and, hence, that  

 

 

(15.20)  σBSi= 1/2

A

A

1

ABAB

w

)ΛΣΣΛ( −
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Thus, if D is A-replaceable, the elements of the subset SD(C[X]) of variates which both 

replace the original set of input variates, XA, and, additionally, the variates XB, are 

constructed by choosing si variates which satisfy the m additional moment constraints of 

(15.20).  Hence, further specifications are added to the standard construction formula, or 

recipe, of the ulcf replacement generator. 

 

Theorem  (convergence to uniqueness of the A-replacements to D):  Let domain D be 

A-replaceable.  Then, as m, the number of variates contained in XB grows indefinitely 

large, i.e., k→∞, the cardinality of the set of A-replacements to D converges to unity,  

i.e., Card(SD(C[A]))→1. 

 

Proof 

 

If domain D is A-replaceable, then, as k→∞, t(A:B) of (15.17) becomes increasingly large, 

and  ρ*
(A:B)=

)1t(

)1t(

)B:A(

)B:A(

+

−
→1.  Hence, in the limit, C[D] contains but one variate, i.e., 

Card(SD(C[A])→1□ 

 

 Now, this, and analogous results, is the raison d'etre of the variate domain 

response to the indeterminacy problem.  For it shows one way in which a single 

replacement variate can be singled out as preferred from among the elements of C[A]: The 

preferred variate is that variate that is contained in C[A] and, additionally, replaces a very 

large number of additional variates.  It must be noted, however, that: 

 

i) Such a variate does not necessarily exist.  Within the framework discussed herein, its 

existence requires that, as m→∞, D continues to be ulcf-replaceable.  As mentioned 

earlier, this will only occur given the satisfaction of an enormous number of restrictions 

on the elements of the covariance matrix of the variates to be replaced. 

 

ii) Contrary to the views of Spearman, Piaggio, and, in certain installments, McDonald 

and Mulaik,  the issue of limiting determinacy can be subsumed neither within the logic 

of standard prediction, nor reliability.   Determinacy in the limit is just the limiting 

uniqueness of a replacement.  It is the special situation in which, by adding variates to the 

set that must be replaced, so many restrictions are eventually imposed that only one 

replacement variate to XA, one variate constructed as θi=ΛA'Σ(A)
-1

XA+wA
1/2

si, satisfies 

them all.  This means of achieving uniqueness of replacement is akin to that encountered 

in non-metric multidimensional scaling, wherein a t-dimensional solution configuration is 

"tightened" through the addition of variates to be represented in the configuration.      

 

Theorem (relationships between A-replaceable domains):  Let there be three sets of 

variates, XA consisting of p variates, XB of m variates, and XC of n variates, and let there 

be no overlap in these sets. Let XA be ulcf replaceable with ulcf representation 

XA=ΛAθθθθA+ΨA
1/2δδδδA, C[A]  be the set of replacement variates to XA, and  
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ρ*
(A)=2R

2
θ.(A)-1=2ΛA'Σ(A)

-1ΛA-1 be its minimum correlation.  The following statements 

regarding the variate domains [A:B], [A:C], and [A:B:C] are true: 

 

i.  Domain [A:B:C] is A-replaceable if and only if [XA:XB:XC] is ulcf-replaceable; 

 

ii. If domains  [A:B], [A:C], and [A:B:C] are each A-replaceable, and S1(C[A]), S2(C[A]), 

and S3(C[A]) are those subsets of C[A] that A-replace [A:B], [A:C], and [A:B:C], 

respectively, then S1(C[A]) ≡ C[A:B], S2(C[A]) ≡ C[A:C], and S3(C[A]) ≡ C[A:B:C]. 

 

iii. If domains [A:B] and [A:C] are each A-replaceable, then C[A:B],C[A:C] ⊂ C[A] 

 

iv.  If domains [A:B], [A:C], and [A:B:C] are each A-replaceable, then 

C[A:B:C] ⊂ C[A:B],C[A:C] 

 

v.  If domain [A:B:C] is A-replaceable, then, as (m+n)→∞, the cardinality of the set of 

A-replacements to [A:B:C] converges to unity, i.e., Card(S3(C[A]))→1. 

 

vi. If domains [A:B] and [A:C] are each A-replaceable, ρ(φi,ωj), the correlation between 

any member of C[A:B] and any member of C[A:C], satisfies the bounds  

ρ*
(A)=2ΛA'Σ(A)

-1ΛA-1≤ρ(φi,ωj)≤1.    

vii.  The upper bound of (vi) is obtained if, in addition to the conditions stated in (vi), 

[A:B:C] is A-replaceable and m and n both go to infinity. 

 

Proof 

 

i.  The proof  is analogous to that of the eariler theorem on A-replaceability□  

 

ii.  Let:  

 

Set [A:B] be A-replaceable and [XA:XB] have ulcf representation 

 

 

(15.21)  
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Set C[A:B] contain the replacement variates to [XA:XB], this set having minimum 

correlation equal to ρ*
(A:B)=2R

2
φ.(A:B)-1=2[ΛA:ΛB]'Σ(A:B)

-1 








B

A

Λ
Λ

-1; 

 

Set [A:C] be A-replaceable and [XA:XC] have ulcf representation 
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(15.22)  
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Set C[A:C] contain the replacement variates to [XA:XC], this set having minimum 

 

correlation equal to ρ*
(A:C)=2R

2
ω.(A:C)-1=2[ΛA:ΛC]'Σ(A:C)

-1 








C

A

Λ
Λ

-1;   

Set [A:B:C] be A-replaceable, and [XA:XB:XC] have ulcf representation 

 

 

(15.23)  
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Set C[A:B:C] contain the replacement variates to [XA:XB:XC], this set having minimum 

correlation equal to ρ*
(A:B:C)=2R

2
ν.(A:C)-1=2[ΛA:ΛB:ΛC]'Σ(A:B:C)

-1














C

B

A

Λ
Λ
Λ

-1.  

 Consider the first set equality, S1(C[A]) ≡ C[A:B].  C[A:B] contains those variates φi 

that replace [XA:XB], and, because [A:B] is A-replaceable, have the property that 

E(XAφi)=ΛA.  That is, they are also contained in C[A].  Hence, C[A:B] is precisely that set 

of variates contained in C[A] that replaces, in addition to the variates of set A, the variates 

of set B.  Thus, S1(C[A]) ≡ C[A:B].  The two other equalities are proven in analogous 

fashion□ 

 

iii. Because E(ωXA]=ΛA, the variates ωi that are contained in C[A:C] are also contained in 

C[A].  Analogously, since E(φXA]=ΛA, the variates, φi, contained in C[A:B] are also 

contained in C[A].  That there exist variates in C[A] that are not contained in C[A:B], and 

also variates contained in C[A] that are not contained in C[A:C] follows from an argument 

involving minimum correlations analogous to that of the proof of Theorem (relationship 

between sets C[D] and C[A] under A-replaceability)□ 

 

iv. Because, from (7.23), E(νXA)=ΛA, E(νXB)=ΛB, and E(νXC)=ΛC, the variates, νi, 

contained in C[A:B:C] are also contained in each of C[A:B] and C[A:C].  That there exist 

variates in each of C[A:B] and C[A:C] that are not contained in C[A:B:C] follows from an 

argument involving minimum correlations analogous to that of the proof of Theorem 

(relationship between sets C[D] and C[A] under A-replaceability)□ 

 

v.  ρ*
(A:B:C) =

)1t(

)1t(

)C:B:A(

)C:B:A(

+

−
.  As (m+n)→∞, t(A:B:C)→∞, and ρ*

(A:B:C)→1□ 
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vi.  Because ρ(φi,ωj) is a correlation defined on population P, the upper bound is obvious.  

For the lower bound, note that, because [A:B] and [A:C} are, at least, individually A-

replaceable, the variates φi contained in C[A:B] and the variates ωj contained in C[A:B] are 

also contained in C[A].  The elements of set C[A] cannot be correlated less than 

ρ*
(A)=2ΛA'Σ(A)

-1ΛA-1□ 

 

vii. If m→∞ and n→∞, then Card(S1(C[A]))→1 and Card(S2(C[A]))→1.  Hence, 

Card(C[A:B])→1 and Card(C[A:C])→1.  If [A:B:C] is, in addition, A-replaceable, then it has 

ulcf representation (7.22) with the replacement variates ν contained in set C[A:B:C].  Now, 

from (iv), C[A:B:C] ⊂ C[A:B],C[A:C].  That is, the variates νi are contained in both C[A:B] and 

C[A:C].  But since the cardinalities of C[A:B] and C[A:C]  are both unity, it must also be that 

Card(C[A:B:C])=1, and this single replacement variate is contained in both C[A:B] and C[A:C]. 

Obviously then, ρ(φi,ωj)=1□  

  

Theorem  (convergence to uniqueness of the A-replacements to [A:B:C]): Let there 

be two domains of variates, D1 consisting of the p variates contained in XA, and a 

remaining m variates contained in XB, and D2 consisting of the variates contained in XA, 

and a remaining n variates contained in XC, and let there be no overlap between XA, XB, 

and XC.   Finally, let domain D3 consist of the union of the variates contained in XA, XB, 

and XC.  If D3 is A-replaceable, then, as (m+n)→∞, Card(SD3(C[A])→1, in which 

SD3(C[A]) is the subset of C[A] that A-replaces D3.  

 

Proof 

 

If domain D3 is A-replaceable, then, as (m+n)→∞, t(A:B:C) becomes increasingly large, and  

ρ*
(A:B:C)=

)1t(

)1t(

)C:B:A(

)C:B:A(

+

−
→1.  Hence, in the limit, C[D3] contains but one variate.  That is, 

Card(SD3(C[A])→1□ 

 

 In groundbreaking work, Guttman (e.g., 1955) had earlier considered the problem 

of limiting determinacy.  His treatment was based on a consideration of a domain of 

variates, {X1,X2,...Xk}, and the behaviour of the sequence, Σk=ΛkΛk'+Ψk, formed by 

drawing successively more variates from this domain.  That is, he was interested in the 

conditions under which the sequence remains ulcf-representable as the number of variates 

to be represented becomes large.  Guttman defined limiting determinacy (here given for 

the case of a unidimensional replacement) as when nn
1

n ΛΣ'Λ
n

lim −

∞→
=1, and identified 

conditions under which this determinacy obtains.  One necessary condition is given in the 

next theorem. 

 

Theorem (convergence to diagonal matrix of Σk
-1

; Guttman, 1955): If a sequence of 

domains Dk is determinate in the limit, then, as k→∞, Σk
-1

 converges to a diagonal 

matrix. 
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Proof 

 

If the ulcf replacement of Dk is determinate in the limit, then kk
1

k ΛΣ'Λ
k

lim −

∞→
=1.  

Because, for all k, Σk=ΛkΛk'+Ψk, in which Ψk is diagonal and positive definite, it follows 

that  

Σk
-1

=Ψk
-1

-Ψk
-1ΛkΛk

'Ψk
-1

ak, in which ak=(1+Λk
'Ψk

-1Λk)
-1

.  As kk
1

k ΛΣ'Λ
k

lim −

∞→
=1, 

k

1

kkk ΛΨ'Λ1(
k

lim
a

k
lim −

+
∞→

=
∞→

)=∞, and, Σk
-1

 converges to Ψk
-1

, a diagonal matrix□   

 

 If one could design a study in which a core set of p variates is augmented by 

additional variates, then Guttman's criterion could be used to gain insight into whether 

limiting uniqueness of the ulcf replacement is, at all, possible.  What would be required is 

a demonstration that, as more variates were added, the sequence of sets of variates  

remained ulcf representable, and Sk
-1

 moved towards diagonality.  If this can be 

demonstrated, then it is possible that an essentially unique ulcf replacement can be 

obtained with relatively few variates, especially if the magnitudes of the regression 

parameters contained in Λk are large relative to the magnitudes of the parameters 

contained in Ψk
-1

. 

 As shown in McDonald and Mulaik (1979), what has been called, herein, A-

replaceability is not the only means by which the limiting uniqueness of a replacement 

can be achieved.  A-replaceability requires that a subset of the ulcf-replacements of a 

core set of variates ulcf-replace, not only these original variates, but a set of additional 

variates drawn from the same variate domain.  One might consider relaxing this 

requirement somewhat by requiring that a subset not only ulcf-replace the core set of 

variates, but partially replace a set of additional variates.  The sense of partial 

replaceability one insists upon is open to negotiation, with McDonald and Mulaik (1979) 

allowing the residuals of the linear regressions of certain of the input variates (but not 

those of the original set) on the replacement variates to correlate.  

 Now, as the mathematics suggest, insisting that some of the replacement variates 

of a set of input variates replace an additional m variates, imposes additional 

requirements on the replacement, and effectively reduces the range of variates that satisfy 

the full set of imposed requirements.  This might then appear to be a promising means to 

achieve a replacement with a cardinality of unity.  However, there seems to have arisen 

within psychometrics the general attitude that the mere possibility of unique replacements 

within variate domains settles concern in regard non-unique replacements 

(indeterminacy).  This view will have to be brought to heal, for variate domain 

technology bears fruit in regard the production of unique replacements only if researchers 

actually follow the paths of action suggested by it, and only when these paths are 

available.   

 If the user of latent variate technology were in the habit of employing the insights 

available from variate domain treatments to reduce the cardinality of replacements that 

suffer from indeterminacy, his use of these generators would have a very particular look.  
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He would, for example, test the conditions that must be fulfilled in order for the limiting 

uniqueness to obtain, report upon aborted attempts to achieve a unique replacement when 

the conditions were not met, calculate measures such as Guttman's ρ*
, carefully describe 

the rules for inclusion of variates in domains of interest, and, importantly, describe how 

this domain was sampled.  This is all made clear in Mulaik and McDonald (1978) in 

which it is stated that: "...we believe that in practice researchers should initially attempt a 

strict definition of the domain of empirical measures to be represented in a study and 

should set up a well-defined sampling procedure for selecting variables from the 

domain." (1978, p.191); "We now see that if we possess a prior definition of a domain of 

variables as Guttman has said is necessary, then the assumption that the domain possesses 

a determinate factor space has the status of a strong falsifiable empirical hypothesis.  The 

hypothesis may be falsified in principle by observing that a reasonably large number of 

variables from the domain do not yield a correlation matrix whose inverse tends to a 

diagonal matrix [or]...if two overlapping sets of variables [η,v1] and [η,v2] chosen from 

the domain in such a way that each conforms to the g-factor law [is A-replaceable], 

jointly do not form a set [η,v1,v2] conforming to the g-factor law.  Such a falsification of 

the hypothesis could occur with a relatively small number of variables.  The hypothesis 

may also be falsified with as few as three variables from a domain if they form a 

Heywood case" (1978, p.188); "The hypothesis that an infinite domain has a determinate 

factor space may be falsified but not confirmed with less than all variables from the 

domain" (1978, p.190). 

 In fact,  there is no sign that the current practice of employing latent variate 

generators is founded on variate domain technology.  Those who have seen in the variate 

domain treatment a solution to the problems of indeterminacy seem to have taken the 

mere possibility of such a treatment, and the mere possibility that the required conditions 

hold, as being sufficient to rid practice equivalent to a general solution to the problems 

that they perceive as arising from non-unique replacements (indeterminacy).  If it were 

only this simple.  Steiger (1996, p.546) puts it well: "...Clearly, one can always assume 

there are more variables out there that fit the factors that fit the variables one has now.  

This is rather like an experimenter "solving" the problem of an overly wide confidence 

interval for the correlation between two variables by assuming that he/she has sampled 45 

observations from a larger domain with the same correlation as the present observations!  

Indeed, many very difficult problems in statistics could be "solved" with the aid of such 

an approach."   

 Lacking any support for the claim that the employments of latent variate 

generators are founded on variate domain technology, McDonald has turned to claiming 

that this technology is, nevertheless, "implicit" in applied work.  Thus he states that "I 

believe a well conceptualized domain is at least implicit in all well conducted 

applications of FA/IRT to the estimation (with S.E.s) of abilities, attitudes, beliefs 

etcetera." (1996a, p.599); "Guttman (1953) conjectured as a rule of thumb that in the 

common factor model about ten to fifteen variables approximate an infinity of them for 

empirical applications of behaviour domain concepts..." (1996a, p.598);  "Behaviour 

domain theory is not merely one way to create a correspondence between the factor 

equations and test data, but I claim that it is indeed the implicit theory governing the 

practice of factor analysis" (1996b, p.669).  But much more is needed than mere 
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allegations of "implicit belief" in the variate domain conception.  As McDonald (1996b) 

himself points out, given that all of the conditions required for uniqueness of replacement 

in a variate domain are, in fact, met, the issue then becomes the practical one of sampling 

enough input variates so as to make the replacement, at the least, virtually unique.  This 

practical problem is addressed by the taking of practical, non-controversial steps, by 

existing practitioners of latent variable modeling (e.g., the discussion of the problem in 

their published work).  The apparent inability of McDonald and others to acknowledge 

the difference between the actual taking of these steps, and their mere possibility, is what 

justifies Steiger's comment.
2
    

 The wishful thinking that inevitably attends the discussion of indeterminacy and 

variate domain technology is often accompanied by bouts of amnesia when it comes time 

to mention the requirements that must be satisfied in order to bring about uniqueness of 

replacement, or to present a sober assessment as to the ease with which these 

requirements can actually be satisfied.  There is a strong historical precedent for this 

amnesia.  As will be recalled, Piaggio (1933) recommended that to remedy the 

indeterminacy problem, one merely needs to "take the number of variates to be infinity." 

Irwin (1935), soon after, offered the same "solution".  McDonald and Mulaik state that 

"For finite p, the squared multiple correlation of the manifest variates with the common 

factor is strictly less than unity.  If one can conceivably find infinitely many variables 

with nonzero loadings on X, then in the limit as [the number of variates] approaches 

infinity...the squared multiple correlation approaches unity" (1979, p.299).  As their later 

analysis shows, determinacy in the limit is not quite so assured as these words would 

suggest.  In reminiscinces about his own career as a statistical consultant, McDonald 

(1996a, p.599) states "I have advised on dozens of such analyses, and my first task as a 

psychologist is to understand my client's implicit or explicit conceptual domain.  If they 

do not have an abstract concept capable of further extension with congeneric indicators, I 

recommend the use of composites."  This is a commendable sentiment, but why does 

McDonald mention the capability to create further congeneric indicators as the key to the 

wholly grail of latent variate generator use, when, on his own account, what must happen 

is that an existing domain of variates must actually satisfy all of the multitude of 

requirements necessary to bring about limiting determinacy?  In particular, the researcher 

must have already created enough variates to allow for a test in regard the hypothesis of 

limiting uniqueness of replacement.  And, finally, if the whole endeavour, according to 

McDonald, rests on the estimation of the unique, limiting replacement variate θD (which, 

as will be seen, turns out to be none other than the first principal component variate), then 

what does the latent variable modeller do when, inevitably, the requirements for the 

limiting uniqueness are not met?  One cannot know, because published latent variable 

analyses make no mention of limiting determinacy, and offer up no evidence to support 

claims of limiting determinacy.   

 Discussions of variate domain treatments have very often carried with them the 

strong implication that these treatments allow for work to progress in latent variable 

modeling undeterred by the supposed implications of the indeterminacy property.  This 

                                                 
2 McDonald is, of course, entitled to suggest that employers of latent variate replacement technology  

should carry out their work within a variate domain framework. 
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implication is nicely illustrated by McDonald (1996b, p.663) who deduces from the 

possibility of a variate domain founding for latent variable modeling that "...behavioral 

scientists- at ETS, ACT, and elsewhere, can go on doing what they wish to do."  But this 

is mere rhetorical ploy, for the requirements that must be satisfied in order to bring about 

a limiting determinacy are sufficiently difficult to realize that, if they were taken 

seriously in applied work, they would likely grind the latent variable industry to a halt.  

To quote Steiger, "Testing the infinite domain model would require gathering more 

variables, to somehow test the notion that one is in fact sampling from an infinite 

behaviour domain.  Of course factor analysts often have absolutely no intention of doing 

that, with good reason.  First, many have already exhausted their efforts gathering the 

variables for the first factor analysis.  Second, all the evidence seems to suggest that, 

generally, the number of factors required to obtain an adequate fit to the data tends to go 

up as a relatively constant function of the number of variables"  (1996, p.547). 

 Instead of an honest accounting of the implications of variate domain technology, 

what has been assembled is a list of  "ifs": 

 

"...if one worries about the relationship of factor-score estimates to the variables being 

estimated, it is because one is able, under certain conditions, to define the variables being 

estimated on the basis of a behaviour domain that fits the common factor model 

consistently with the given variables." (McDonald & Mulaik, 1979, p.305) 

 

"If a behaviour domain can be factored so that one of its common factors has the same 

loadings on a core set of variables as when the latter are factored separately, it is then 

meanigful to consider the relationship between the possible factors of the core and the 

possible factors of the behaviour domain.  In such a case, the loadings of the core set 

uniquely mark a factor variable in the domain, and the addition of further variables with 

nonzero loadings on the factor will determine it as precisely as one pleases, ultimately 

yielding an infinite sequence of variables that determine the factor exactly" (1979, p.304)   

 

But  such promissory notes are largely irredeamable.  Consider the phrase "one is able, 

under certain conditions, to define the variables being estimated on the basis of a 

behaviour domain that fits the common factor model consistently with the given 

variables".  How exactly can a variate be "defined" (presumably this is the mathematical 

sense of definition, for this variate is, after all, a  limit of an infinite sequence of variates) 

on the basis of a behaviour domain that fits the common factor model, when the 

consituents of the domain are not individually defined, and there is no way to know 

whether such imaginary variates do, in fact, "fit the common factor model"?  

 

2a. McDonald's abstractive property position  

 

 Some have talked of the "management of indeterminacy", meaning by this the 

computation of indeterminacy indices and the use of large numbers of input variates in 

order to avoid the difficulties that arise from the indeterminacy property of the ulcf 

replacement.  In considering the possibility of managing indeterminacy, Steiger (1996, 

p.620) states that "...I too do not think we necessarily have to discard factor analysis or 
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IRT theory, or ETS as a consequence of factor indeterminacy".   If the issue of behaviour 

domain theory were simply about the conditions under which a unique ulcf replacement 

could be achieved, then, indeed, attention could be turned to "managing indeterminacy" 

through the taking of various practical steps.  But, of course, variate domain treatments 

were seized upon by psychometricians during the indeterminacy debate and the 

indeterminacy debate did not occur as a result of concern over the cardinality of ulcf 

replacements, but, rather, of perceived threats to the Central Account.  Variate domain 

positions were championed in an attempt to protect the Central Account from threats 

posed by the indeterminacy property.  The indeterminacy property suggested that the 

Central Account was a mythology (which, indeed, it was).  It is not surprising, then, to 

find that McDonald takes the adoption of  a behaviour domain foundation for latent 

variable modeling as placing on firm logical footing his abstractive property position.  

For, as will be shown, McDonald's abstractive property position is nothing but a fancily 

clad version of the CAM, and, hence, suffers from the same defects documented in Part 

II.  In particular, it presumes the mistaken belief that latent variable models are 

detectors/discoverers of properties/attributes, and rests on the badly confused conceptions 

of concept meaning and signification that were documented in Chapters IX and XII.   

 For the unidimensional case, McDonald's abstractive property position can be 

paraphrased as follows: 

 

i.  There is a set of k variates, D:{X1,X2,...,Xp,X(p+1),X(p+2),...,X(k)}, comprising a "universe 

of content" or "behaviour domain".  This domain is divided into two subsets, A, of p 

variates, and B, of (k-p) variates. 

ii. Let subset A be ulcf representable, with vector of regression weights ΛA.   

iii. Consider the sequence of sets {S1,S2,...,S(k-p)} formed by augmenting subset A with, 

first, one variate sampled from B, then two, then three, etc. 

iv.  Imagine that each of the Si are ulcf representable.  That is, Xi=Λiθθθθi+Ψi
1/2δδδδi, i=1..(k-p), 

so that Σi=ΛiΛi'+Ψi, i=1..(k-p), in which V(θθθθi)=1, C(δδδδi)=I, C(θθθθi,δδδδi)=0, and Ψi is diagonal 

and positive definite. 

v.  Let it be the case that Λi= 







γ
ΛA , i=1..(k-p), in which γ is an i×1 vector.      

vi.  The concept latent variate to D signifies the variate θθθθD associated with the 

representation to which Yi=Λiθθθθi+Ψi
1/2δδδδi converges as (k-p)→∞: "...the loadings of the 

core set uniquely mark a factor variable in the domain, and the addition of further 

variables with nonzero loadings on the factor will determine it as precisely as one 

pleases, ultimately yielding an infinite sequence of variables that determines the factor 

exactly" (McDonald & Mulaik, 1979, p.304) 

 

vii.  The latent variate to D is the common property, say κ, of the items contained within 

D.     

 

"It is the generic character of the common property that implies the behavior domain 

idealization" (McDonald, 1996b, p.670) 
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"...I am describing the rule of correspondence which I both recommend as the normative 

rule of correspondence, and conjecture to be the rule as a matter of fact followed in most 

applications, namely: In an application, the common factor of a set of tests/items 

corresponds to their common property" (McDonald, 1996b, p.670).   

 

"The problem remains, however, of a range of ambiguity with respect to the ways in 

which the results may be extended by the use of further variables to measure the 

discovered attribute more precisely" (McDonald & Mulaik, 1979, p.305). 

 

"But in the absence of an agreed domain of variables based on prespecified common 

attributes, two investigators may seize upon distinct sets of common attributes and 

proceed to build distinct extended batteries of variables on the basis of the same core set, 

in terms of these distinct attributes.  Ultimately, in principle, they can create two distinct 

test batteries of infinite length, built on the same original test and corresponding to two 

distinct attributes and to two distinct random variables, either of which might have been 

the common factor of the original variables.  It is factor indeterminacy that supplies a 

mathematical latitude for such sets of alternative common attributes to be found." 

(McDonald & Mulaik, 1979, p.305) 

 

"Their hope is that when these variables are subjected to a factor analysis, the 

psychological attributes that determine the correlations among the variables will reveal 

themselves" (McDonald & Mulaik, 1979, p.305) 

 

viii.  The items that comprise domain D are "indicators" of κ. 

 

ix.  Because κ is "defined" on an infinity of variates, it is not observable.  The latent 

variable modeller cannot know that the common property of the items is, in fact, κ.  

Instead, the identity of the common property of the items must be inferred on the basis of 

ΛA.  This is the task engaged in by the researcher in a factor/latent variate interpretation. 

 

"..the widely accepted aim of factor analysis, namely, the interpretation of a common 

factor in terms of the common attribute of the tests that have high loadings on it..."; "what 

attribute of the individuals the factor variable represents" (McDonald & Mulaik, 1979, 

p.298). 

 

x.  The scores that comprise the distribution of the random variate θD are measurements 

of the individuals in population P with respect property κ.  These scores are signified by 

concept "κ".  Unfortunately, they are not observable (κ is not directly measurable) and, 

hence, must be estimated on the basis of a sample of items drawn from D.   

 

"If I estimate the attitude of one freshly drawn examinee by Bartlett's (1937) ML formula 

and attach an S.E., the S.E. will be large using 19 items, smaller with 40, and very small 

but nonzero with 95.  What is being estimated by any of these is the common property of 

the items in a test lengthened further, by drawing items from a clearly conceptualized 

domain" (McDonald, 1996a, p.599) 
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 Clearly, this is simply a jazzed-up version of the CAM.  The difference between 

the standard CAM and McDonald's abstractive property version is that, in the latter: i) 

The criterion for existence of a common property of the phenomena represented by X is 

that a domain of variates from which the variates X are drawn is either A-replaceable or 

partially A-replaceable; ii) the common property is taken to be a variate that either A-

replaces, or partially A-replaces, the domain of variates.  Hence, in all essential details 

the abstractive property position is just the CAM, and, thus, suffers from precisely the 

same defects.   

  

2b.  The ulcf and pc1 generators: A comparison 

 

 The comparison of linear factor analysis and principal component analysis is old 

sport.  Latent variable modelers have traditionally believed factor analysis to be superior 

to component analysis.  It has been argued, herein, that these beliefs have largely been the 

product of commitment to a mythology, the Central Account, and not reasoned argument.  

Both linear factor analysis and principal component analysis involve the application of 

replacement variate generators.  As is clear from the preceding sections, the replacement 

variates produced under these generators answer to different senses of optimality and 

entail different costs.  Two generators are properly compared by considering their 

optimality/cost profiles in regard the research tasks to which they will be put.  There is 

simply no point in talking about which is "better" in some absolute sense.  It will, 

therefore, be worthwhile to examine the principal component analysis versus linear factor 

analysis question afresh and without distraction from the mystical elements of the CA.   

 

The "special case" refrain.  When component and factor generators are discussed, it has 

been a common refrain that "the family of factor models contains the family of 

component models."  The basis for this refrain is that one may derive various component 

generators by placing restrictions on various factor generators.  For example, the 

covariance structure of the pc1 replacement is produced by setting to null the matrix Ψ in 

the ulcf covariance structure, Σ=ΛΛ'+Ψ.  This fact is taken as evidence of the precedence 

of the ulcf generator.  Gorsuch (1990, p.33), for example, states that "Common factor 

analysis is the general case of which component analysis is a special case."  Indeed.  

Employing the same style of argument, one should conclude that CO is inferior to CO2 on 

the grounds that it is "derivable" from CO2 through the dropping of an oxygen molecule.  

The fact that the covariance structure of the pc1 replacement is derivable from that of the 

ulcf replacement by the dropping of a term is of nothing more than notational interest.  

What is important is that the pc1 replacement has a profoundly different optimality/cost 

profile than the ulcf replacement.  The construction formulas according to which each 

type of replacement variate (ulcf and pc1 replacement variates) are constructed, answer to 

the optimality/cost profiles characteristic of the ulcf and pc1 generators.  Hence, these 

formulas produce replacement variates that possess precisely the properties that they 

were designed to possess.  Neither type of variate can be said to be, in general terms, 

superior or inferior to the other.  Moreover, in the same way that it would be a mistake to 

believe that all of the properties of CO can be deduced from CO2 because "CO can be 
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written as CO2 with one less O", so too is it foolish to believe that the fact that the pc1 

covariance structure is a special case of the ulcf covariance structure, provides a 

definitive account of the relationship between the ulcf and pc1 generators, and the 

variates produced under each.   

 

The "testability" and "model" refrains.  Another common refrain is that "the linear factor 

model is testable, while the principal component model is not."  Recall from chapter III, 

Bentler and Kano's (1990) assessement:  

 

This is one of its virtues, as compared to components analysis, because the 

ability to reject a model is a fundamental aspect of data analysis using 

structural models (Bentler, 1989; Joreskog & Sorbom, 1988).  In fact, the 

component model, or class of models as described by Velicer and Jackson, 

is not a model at all.  As noted by Dunteman (1989, p.56), "Principal 

components analysis is a procedure to decompose the correlation matrix 

without regard to an underlying model.  There is no hypothesis tested with 

the model.  It is a nonfalsifiable procedure for analyzing data that can 

always be applied with any data set.  Of course, there is a sampling theory 

for eigenvalues of a sample covariance matrix  that can be used to test 

hypotheses about population roots of a covariance matrix (e.g., Anderson, 

1963), but such hypotheses are typically hard to frame and not very 

informative about the structure of a correlation matrix...   

 

McDonald (e.g., 1975, p.143) also seems impressed by the fact that linear factor analysis 

yields a testable hypothesis: "That is, the fundamental theorem of factor analysis yields a 

testable hypothesis, while the fundamental theorem of image analysis is merely 

tautological." 

 This sort of commentary badly mishandles the related issues of "grounds for 

model-hood" and "testability".  The quote from Bentler and Kano implies that a necessary 

condition for model-hood is testability, but fails to make explicit the sense of model in 

play.  The result is the failure to grasp that neither the principal component, nor the linear 

factor, "model" are models in the classical sense of "representer of a state of affairs".  As 

discussed in Chapter X, the formulation of a classical representational model requires the 

antecedent laying down of rules of correspondence, which, in turn, presupposes the 

ability to antecedently identify the relata of the model/modelled relationship.  In carrying 

out a linear factor, or principal component, analysis, the researcher does not lay down 

rules of correspondence to link the replacement variate terms that appear in the equations 

of these generators, and particular features of natural reality for which they are to stand.  

The sense of the concept testability that Bentler and Kano (1990) wish to invoke is, 

similarly, left hanging.  What is certain is that statistical testability itself is not sufficient 

to establish a basis of distinction between the two types of generator.  Both principal 

component and factor analysis are frameworks within which endless statistical 

hypotheses can be generated and tested.  For  example, within the framework of principal 

components analysis, one could easily enough test the hypotheses Ho:(κ1-κ4)=.013 and 

Ho:κ1/2κ3=1, in which κi is the ith eigenvalue of the covariance matrix of some set of 
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variates.  At the risk of stating the obvious, what makes an hypothesis test of interest to 

science is that it is a test of an important empirical claim.   

 The reason that latent variable modellers harp on the "testability" of the factor 

analytic "model" is simply that they wrongly believe that the standard test of Ho: 

Σ=ΛΛ'+Ψ is a test of the picture described by the Central Account.  But the Central 

Account is mythology masquerading as empirical claim.  The point is that Bentler and 

Kano's belief in the superiority of linear factor analysis does not arise from mathematical 

analysis, but rather commitment to the Central Account, as is clear from their 

characterizing component based hypotheses as "..typically hard to frame".  What has, all 

along, made linear factor analytic hypotheses "easy to frame" is the fact that they are 

accompanied by a familiar story, the Central Account.  In reality, a latent variable model 

is a replacement variate generator, and, hence, allows for the testing of various 

hypotheses of replaceability.  It is CA fueled nonsense to suggest that component 

generators, and, notably, the pc1 generator, do not have precisely the same status.   

The status of the pc1 and ulcf generators with respect the issue of model-hood and 

testability can be summarized as follows: 

 

i. Neither linear factor, nor principal component, analysis involve the employment, or 

testing, of models, at least if the term model is employed in a classical sense to denote a 

representation of features of natural reality.
3
   Both are, rather, replacement variate 

generators, and the tests one can carry out in employing each are tests of replaceability.  

 

ii. In regard the issue of testability, consider the following chart. 

 

 

   ulcf generator       pc1 generator 

 

Hypothesis  Ho: Σ=ΛΛ'+Ψ, Ψ diagonal, positive definite  Ho: Σ=λ1v1v1' 
 

Paraphrase  (A)       (B) 

 

(A) Does there exist a variate, θ, that replaces the input variates, Xj, j=1..p, in the 

sense that the p parameters from the linear regressions of the Xj on θ reproduce the 

)1p(p
2

1
−  unique covariances contained in Σ. 

 

(B) Does there exist a variate, θ, that replaces the input variates, Xj, j=1..p, in the 

sense that the p parameters from the linear regressions of the Xj on θ reproduce the 

)1p(p
2

1
+  unique variances and covariances contained in Σ 

 

                                                 
3 They are both models when model is used in the currently popular, but trivial, sense to denote "a 

statement in regard the joint distribution of a set of random variates." 



 35 

 

 

 

It is hoped that Bentler would not disagree with the claim that principal component 

replaceability hypothesis (B) is no less trivial than ulcf replaceability hypothesis (A).  

Bentler might, of course, scoff at the hypothesis Ho: Σ=λ1v1v1' on the oft-cited grounds 

that "it never holds in any naturally occurring population P."  But, if he were inclined to 

do so, he should recall that the same can be said of the ulcf hypothesis of replaceability, 

Ho: Σ=ΛΛ'+Ψ versus H1:~Ho.  This is why, in practice, the factor analyst departs from a 

program of strict hypothesis testing, and turns to looking for a ulcf replacement variate, θ,  

for which the p residuals of the linear regressions of the input variates, Xj, j=1..p, on θ, 

have a covariance matrix that is as close as possible to being diagonal.  Thus, one must 

add a third level to this chart: 

 

Loss minimization min( ( )∑∑
−

= +=

−
1p

1i

p

1ij

2

jiij λλσ )  min( ( )∑∑
−

= =

−
1p

1i

p

ij

2

j1i11ij vvλσ ) 

Paraphrase  (C)     (D) 

 

(C) Find a variate, θ, that replaces the input variates, Xj, j=1..p, in the sense that the p 

parameters from the linear regressions of the Xj on θ reproduce the )1p(p
2

1
−  

covariances contained in Σ with as little mean-square loss as possible. 

 

(D) Find a variate, θ, that replaces the input variates, Xj, j=1..p, in the sense that the p 

parameters from the linear regressions of the Xj on θ reproduce the )1p(p
2

1
+  unique 

variances and covariances contained in Σ with as little mean-square loss as possible. 

 

 It is the inexplicable comparison of (A) (the fact that a linear factor analysis 

standardly begins with the testing of an hypothesis that is always incorrect) with (D) (the 

fact that principal component analysis usually foregoes an initial hypothesis test and 

proceeds immediately to the approximation of  X) that has, historically, been seized upon, 

along with the Central Account's misportrayal of latent variate generators as models in 

the classical sense of the term, to create the illusion that, in contrast to component 

generators, the employment of linear factor generators involve a special brand of 

testability.  This also suggests the dubious nature of the claim that "principal component 

analysis is variance oriented while linear factor analysis is covariance oriented".  In fact, 

principal component analysis is variance and covariance oriented while linear factor 

analysis is covariance oriented.  The testable hypotheses (A) and (B) each claim that a 

certain subset of the elements of Σ can be reproduced on the basis of knowledge of the 

parameters of the regression functions of the input variates on a (p+1)th constructed 

replacement variate.  In analogy to linear factor analysis, one could easily begin a 

principal component analysis by formally testing (B), before moving on to (D).  To test 

an hypothesis within the context of either ulcf or pc1 is to test an hypothesis of 

replaceability.   
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iii. Generalizability and variate domains.  McDonald and Mulaik (e.g., 1979, p.305) have 

harped on the theme that one of the most important characteristics of latent variable 

models is that, under certain conditions, they can be generalized to other variates not 

included in an original analysis.  Mulaik has suggested that indeterminacy is a virtue of 

latent variable models because it is this property which allows such "generalizability": 

"...trying to confine the basis for making a generalization from experience to specific, 

determinate phenomena already observed and defined, as some do by prescribing the use 

of operational definitions or by urging the use of specific linear combinations of a set of 

observed variables (component factors) to stand for what is common to them, may 

actually get in the way of formulating creative generalizations and syntheses that go 

beyond what is already known or observed but which nevertheless are eventually tied to 

experience by the efforts to test such generalizations empirically with extensions to new 

data" (Mulaik, 1996, p.54).  Mulaik is, here, guilty of conflating conceptual and empirical 

issues.  Ambiguity in regard the correct employment of the concept that is to signify the 

phenomena of interest is ambiguity in regard the phenomena of interest (i.e., what 

constituent of natural reality is to be studied).  No creative generalizations can arise from 

such conceptual confusion.   

 Mulaik is mistaken in believing that providing definitions for concept that signify 

phenomena constrains the generalizations that can be made in regard what is known 

about the phenomena itself.  Providing a definition of denotative concept "ψ" settles what 

"ψ" denotes, and, hence, what is to be studied (ψ-things).  The ability to make various 

empirical generalizations about ψ-things is an entirely different issue that presupposes 

clarity in the employment of concept "ψ".  There is, however, a grain of truth to what 

Mulaik claims, for indeterminacy is the property that Card(C)>1 and is a consequence of 

the latitude inherent to the construction formula θi=Λ'Σ-1
X+w

1/2
si.  The variate si must 

only satisfy the moment restrictions E(si)=0, V(si)=1, and E(Xsi)=0.   As was seen in the 

previous section on variate domains, if certain requirements are satisfied this very 

latitude in the choice of si can be used to choose an si in such a way that the resulting 

replacement variates θi=Λ'Σ-1
X+w

1/2
si now possess the required properties to replace not 

only X, but also additional variates.  The requirements that pc1 replacement variates must 

satisfy result in their being linear combinations of the set of variates they must replace.  

This effectively removes from a pc1 replacement the latitude possessed by a ulcf 

replacement.   The question that must be asked is "are the costs of the latitude inherent to 

the ulcf replacement worth the possibility of this particular brand of generalizability?"  

The answer perhaps turns on whether one believes that the object of science is to work 

with ambiguous notions of domains of variates or to describe and explain phenomena. 

 

iv.  Asymptotic equivalence of ulcf and pc1 replacements.  Supposing the variate domain 

formulation of the ulcf replacement, if the replacement of a domain of input variates is A-

replaceable, and the representation has a cardinality of unity, then the limiting variate θD 

that McDonald claims is a common property of the items turns out to be the pc1 

replacement variate of the variates.   Moreover, the vector of regression coefficients from 

the ulcf replacement is, in the limit, equivalent to the first eigenvector from the pc1 

replacement.  A number of different proofs of these asymptotic equivalences, based on 

various premises, have been given.  The simple proof of Schneeweiss (1989) and Bentler 
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and Kano (1990), in which asymptotic equivalence obtains under very mild assumptions 

is, herein, restated. 

 

Theorem (asymptotic equivalence of pc1 and ulcf replacements; Schneeweiss, 1989; 

Bentler & Kano, 1990).  Let there be a domain, D, of variates {X1,X2,...Xn}, a sequence 

of sets of variates {S3,S4,...,Sk}, each set formed by drawing Si variates from D, and let 

each set Si, i=3..k, be ulcf representable, Yi=Λiθθθθi+Ψi
1/2δδδδi, in which Ψi is diagonal and 

positive definite, V(θθθθi)=1, C(δδδδi)=I, and C(θθθθi,δδδδi)=0,  so that Σi=ΛiΛi'+Ψi, i=3..k.  That is, 

let the sets Si remain ulcf representable as k becomes progressively larger.  Consider also 

the sequence Σiv1i=κ1iv1i, v1i'v1i=1, in which v1i and κ1i are the first eigenvector and 

eigenvalue of Σi.  The variate c1i=v1i'Xi is the first principal component of the distribution 

of Si.  If, as k→∞, Λi'Λi→∞ and there exists a real number ζo>0 such that, for all j, ζo>ζij, 

in which ζij is the jth element of Ψi, then ρ(c1i,θθθθi)→1. 

 

Proof 

 

a) Because θθθθi=Λi'Σi
-1

Xi+wi
1/2

sij are the variates contained in set Ci that contains the 

common factors of set Si, ρ(c1i,θθθθi)=ρ(v1i'Xi,Λi'Σi
-1

Xi+wi
1/2

sij)=
1i

i1i

κ

)Λ'v(
.  Now, 

Σiv1i=(ΛiΛi'+Ψi)v1i, so that v1i'Σiv1i=(v1i'Λi)
2
+v1i'Ψiv1i.  Hence, κ1i-

v1i'Ψiv1=(v1i'Λi)
2
=κ1iρ(c1i,θθθθi)

2
.  If it is the case that there exists ζo>0 such that, for all j, 

ζo>ζij, then, because v1i'v1i=1, ρ(c1i,θθθθi)
2
>(1-

1i

o

κ

ζ
).  Finally, as k→∞, κ1i→∞, and 

ρ(c1i,θθθθi)
2→1□ 

 

Bentler and Kano (1990) also prove that, as k→∞, 0)Λvκ()'Λvκ( i1i1ii1i1i →−− , 

i.e. that the vector of regression weights from a ulcf representation are asymptotically 

equivalent to the scaled first eigenvector. 

 These results make it abundantly clear that both the so-called common factor and 

the first principal component are constructed random variates (replacement variates), the 

very same constructed random variate under the limiting conditions that bring about 

limiting uniqueness in the ulcf replacement.  Yet psychometricians continue to assert the 

Central Account, painting factor analysis, in distinction to principal component analysis, 

as the process of employing a detector/discoverer of unobservable properties/attributes.  

The truth about these matters is manifestly clear, and can be easily grasped by scholars of 

psychometrics if they are willing to dispense with the Central Account.  The idea is this:  

i. To paraphrase McDonald and Mulaik (1979), unidimensional linear factor analysis is 

concerned with the existence of a random variate X (an additional variable defined on the 

population, P, of objects under study) that has the property that, when a set of input 

variates Y1,...,Yn are linearly regressed on it, the resulting residuals are uncorrelated.   
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ii. The replacement variates of unidimensional linear factor analysis are asymptotically  

equivalent to the first principal component.  The primary sense, and a number of the 

secondary senses, of optimality of replacement delivered by the ulcf generator have 

already been reviewed.  Principal component analysis has, traditionally, been recognized 

as involving the construction of new or synthetic variates that stand in certain optimal 

relations to an original set of variates.  That is, principal component analysis has 

traditionally, and correctly, been characterized as a replacement variate generator.   

iii.  The ulcf and pc1 replacements are each optimal in their own defining senses, and 

come with their own specific costs.  If it is insisted that a replacement variate, θ, not only 

renders conditionally uncorrelated a set of input variates, {Y1,Y2,…,Yp}, but also that the 

residual covariance matrix be diagonal and positive definite, then θ cannot be a linear 

function of the input Yj.  If the {Y1,Y2,…,Yp} are ulcf-replaceable, it turns out that the set 

of ulcf replacements is of infinite cardinality (i.e., that Card(C)>1) and this means that the 

ulcf replacement is not unique.  In contrast, under very mild conditions, the pc1 

replacement is both unique and the pc1 replacement variate is a linear combination of the 

Yj.  Which brand of replacement should be preferred would depend, presumably, on the 

tasks to which it will be put.  Certainly, however, the Central Account, with its 

misportrayals and incoherences, cannot be legitimately employed to adjudicate the case.   

iv.  The diagonal and positive definite property of the residual covariance matrix of the 

ulcf has often been taken as the foundation of the CAM, in that the elements of this 

matrix are seen as "measurement error variances" or "unreliabilities".  But the presence of 

a diagonal and positive definite matrix in a set of equations does not magically transform 

the equations into a "measurement model."  As argued in Chapter IX, the interpretation of 

factor analysis as bearing on measurement issues springs from adherence to the Central 

Account mythology, and represents a blatant misportrayal of measurement and 

conceptual signification.   

v. For finite p, Card(Cpc1)=1 while Card(Culcf)>1.  But if, as more and more variates are 

added to the set of input variates, this set continues to remain ulcf-replaceable, then, in 

the limit, enough restrictions will be imposed to make Card(Culcf) equal to unity.  If this 

limiting uniqueness does obtain, the single variate contained in Culcf  is just the single 

replacement variate contained in Cpc1, and, certainly, is no more the common 

property/attribute of the phenomena represented by the variates than is the pc1 variate (or 

any other statistical function of the input variates). 

vi.  The difference between the finite p and variate domain foundations for ulcf and pc1 

generators is akin to that between the data analytic (finite N) and inferential (infinite 

population) cases of general statistics.  As with the latter distinction, the former member 

of the pair is akin to fact, while the latter is, at best, a useful abstraction.  Moreover, the 

fact that, if the limiting requirements do hold (and it can never be known whether they 

do, or even what precisely is meant by an infinite domain of variables), the ulcf and pc1-

replacements are equivalent, does not mean that the differences that exist at finite p are 

unimportant.  Limiting equivalence of the two generators is interesting and highlights the 

fact that they are both just replacement variate generators, but in the all-important cases 
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of finite p analyses, those analyses that are actually carried out by researchers, the ulcf 

and pc1 generators behave markedly differently. 

3.  A general class of  component generators 

 

Schonemann and Steiger (1976) have considered a class of replacement variate 

generators that they call regression component models (herein called regression 

component (rc) generators).  This family of generators contains, as a special case, the pc1 

replacement.  Let X contain a set of p input variates Xj, j=1..p, jointly distributed in a 

population P under study.  The scores that comprise the distributions of these variates are 

produced by following the rules {r1,r2,...,rp}.  Assume that E(X)=0 so that EXX'=Σ, and 

that rank(Σ)=p, so that Σ is nonsingular. 

 

Regression component(rc) replacement variates 

 

 A replacement variate c is sought such that   

 

ri) c=t'X  

 

rii) The p residuals l=X-σX,cσ
-2

cc of the linear regressions of the input variates Xj, 

j=1..p, on the replacement variate c have a covariance matrix Σl with certain prescribed 

properties, the properties chosen defining a particular generator.  

 

The term σX,cσ
-2

cc is the linear conditional expectation of X given the replacement variate 

c: E(X|c=co)=σX,cσ
-2

cco.  Particular rc generators are derived by imposing further 

requirements on the covariance matrix of the residuals.  For certain rc-generators, 

replacement only occurs given that the distribution of X satisfies certain requirements, 

and, for these generators, rc-replaceability is a testable hypothesis.  As Schonemann and 

Steiger (1976) emphasize, it is very easy indeed to generate testable hypotheses within 

the context of component analysis. 

 

Consequences of (ri)-(rii)  

 

The following are consequent properties of rc-replacements. 

 

Ci)  E(c)=E(t'X)=0   (from the fact that E(X)=0 and (ri)) 

 

Cii) V(c)=t'Σt   (from (ri)) 

 

Ciii) σX,cσ
-2

c=(t'Σt)
-1Σt 

 

Civ) l=X-σX,cσ
-2

cc=X-σX,cσ
-2

cc=(I-Σt(t'Σt)
-1

t')X=(I-at')X, in which a=Σt(t'Σt)
-1

 is the 

vector of linear regression weights for the regression of X on c. 

 

Cv) X=Σt(t'Σt)
-1

t'X+(I-Σt(t'Σt)
-1

t')X=ac+l.  
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Cvi) E(l)=E(I-at')X=0 

 

Cvii)  Σl=E(ll')=E((I-at')XX'(I-at')')=Σ-Σt(t'Σt)
-1

t'Σ 

 

Note that, because Σl=Σ-Σt(t'Σt)
-1

t'Σ=Σ1/2
(I-Σ1/2

t(t'Σt)
-1

t'Σ1/2
)Σ1/2

, and the middle term  

(I-Σ1/2
t(t'Σt)

-1
t'Σ1/2

) is idempotent, it follows that rank(Σl)=rank(I-Σ1/2
t(t'Σt)

-1
t'Σ1/2

)= 

tr(I-Σ1/2
t(t'Σt)

-1
t'Σ1/2

)=(p-1).  That is, the replacement represents one dimension of 

variability in the distribution of the input variates, (p-1) dimensions being consigned to 

residual. 

 

Cviii) E(cl')=E(t'XX'(I-at'))=t'Σ-t'Σt(t'Σ(t'Σt)
-1

)=0'  (from (Cii) and (Civ)) 

 

That is, the replacement variate and residual variates are uncorrelated.  

 

Cix) Σ=C(E(X|c))+E(C(X|c))=bb'+Σl 

 

in which b=a(t'Σt)
1/2

.  Hence, Σ has, under an rc-replacement, a decomposition of the 

same form as that brought about by the ulcf replacement (Schonemann & Steiger, 1976).   

The difference between the two lies in the fact that, in the ulcf representation, 

rank(E(C(X|c))=rank(Σl)=p, while in unidimensional rc-analysis, 

rank(E(C(X|c))=rank(Σl)=(p-1).  As Schonemann and Steiger note, and as was noted 

earlier in this chapter, the rank(E(C(X|c))=p requirement of the ulcf replacement is the 

source of its Card(C)=∞ (indeterminacy) property. 

 

Cx)  t=Σ-1
a(a'Σ-1

a)
-1

       (from (Civ)) 

 

Cxi)  at'=(t'Σt)
-1Σtt' is idempotent  

 

Cxii) t'a=t'(t'Σt)
-1Σt=1 

 

Cxiii) E(Xc)=E(XX't)=Σt=a(a'Σ-1
a)

-1
 

 

Cxiv)  E(Xl')=E(XX'(I-at')')=Σ-Σta'=Σ(I-t(t'Σt)
-1

t'Σ)   (from (Civ))  

 

Special cases and existence 

 

a. If c must be chosen so as to satisfy (ri), (rii), and (riii): (tr(Σl'Σl) a minimum), then 

t=v1=a, in which v1 is the first eigenvector of Σ, and the rc-generator is just the pc1-

generator.  As was seen earlier, this replacement always exists. 

 

b. If c must be chosen so as to satisfy (ri), (rii), and (riii): (tr(Σl'Σl)=0), then c only exists 

if rank(Σ)=1, in which case t is the first eigenvector of Σ. 
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c. If, for rescaled variates Ψ-1/2
X, in which Ψ is diagonal and positive definite, c must be 

chosen so as to satisfy (ri), (rii), and (riii): (Σl possesses (p-1) non-zero eigenvalues each 

equal to unity), then c does not necessarily exist.  In fact, as the following theorem 

shows,Ψ-1/2
X is rc-replaceable in this particular sense if and only if X is ulcf replaceable. 

 

 Theorem (equivalence of ulcf and case (c) rc-replaceability; Schonemann & Steiger, 

1976).  A set of input random variates X is ulcf replaceable with ulf representation 

X=Λθθθθ+Ψ1/2δδδδ if and only if Ψ-1/2
X is rc-replaceable with Σl possessing (p-1) non-zero 

eigenvalues equal to unity. 

 

Proof  

 

→ 

 

Let X be ulcf replaceable with ulcf representation X=Λθθθθ+Ψ1/2δδδδ, from which it follows 

that ΣX=ΛΛ'+Ψ.  Then, from (4.2vi), Ψ-1/2ΣΨ-1/2
 has a single eigenvalue λ1 of greater 

than unity and (p-1) eigenvalues of unity.  Hence, Ψ-1/2ΣΨ-1/2
=λ1v1v1+LL', in which the 

columns of (v1:L) contain the p unit normalized eigenvectors of Ψ-1/2ΣΨ-1/2
.  Define a in 

(Cv) to be 11 vλ , from which it follows from (Cx) that t= 1

1

v
λ

1
, and, from (Civ), that 

l=(I-at')Ψ-1/2
X.  Then 

 

C(l)=Ψ-1/2ΣΨ-1/2
-Ψ-1/2ΣΨ-1/2

1

1

v
λ

1
[ 1

1

v
λ

1
'Ψ-1/2ΣΨ-1/2

1

1

v
λ

1
]

-1
1

1

v
λ

1
Ψ-1/2ΣΨ-1/2

=LL'. 

Since C(l) is then symmetric and idempotent, rank(C(l))=tr(LL')=tr(L'L)=(p-1), and the 

(p-1) non-zero eigenvalues are equal to unity.   

 

← 

 

 Let Ψ-1/2
X be rc-replaceable with Σl possessing (p-1) non-zero eigenvalues equal to 

unity.  Then  

Ψ-1/2
X=at'Ψ-1/2

X+(I-at')Ψ-1/2
X=at'Ψ-1/2

X+l, from which it follows that  

Ψ-1/2ΣΨ-1/2
=a

*
a

*
'+Σl.  Because Σl possesses (p-1) non-zero eigenvalues of unity and is 

symmetric, Ψ-1/2ΣΨ-1/2
=a

*
a

*
'+L2L2', in which L2'L2=I(p-1).  Because it must be that 

a
*'Σl=a

*'
L2L2'=0', let a

*'
=φv, in which v'v=1 and v'L2=0' (v is the orthonormal complement 

of L2).  It follows then that Ψ-1/2ΣΨ-1/2
=a

*
a

*
'+Σl=φ

2
vv'+L2L2'=v(φ2

-1)v'+vv'+L2L2'=bb'+I.  

Thus, Σ=b
*
b

*
+Ψ, in which Ψ is diagonal and positive definite□ 

If c exists for the case (c) rc replacement, then a= 11 vλ  and t= 1

1

v
λ

1
, in which 

λ1 and v1 are the first eigenvalue and eigenvector, respectively, of the matrix Ψ-1/2ΣΨ-1/2
.  

The essence of this rc-generator centres on one sense of what might be called essential 

unidimensionality of replacement: While the residuals of the regression of the input 
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variates on the rc-replacement variate do not have a diagonal covariance matrix (unlike in  

the ulcf replacement), their distribution is spherical.  Hence, any further replacement 

variates that could be constructed following the first (to bring about better reproduction 

of the covariances of the Xj) are indistinguishable in regard the amount of variation that 

they would explain.  Schonemann and Steiger (1976) describe this as discarding 

replacement variates two to p as correlated "error". 

 

Cardinality of replacement 

 

 The cardinality of the replacement will depend upon the particulars of 

requirement (riii).  Certainly, for rc-generators (a), (b), and (c), if the replacement 

exists, then it is unique, and C contains but one variate. 

 

Construction formula 

 

 The construction formula is c=t'X. 

 

Optimality properties 

 

 The primary sense of optimality possessed by rc-replacements lies in the fact that 

they are variance-covariance reproducers.  They differ in terms of the stipulations they 

make with regard the residual covariance matrix Σl.  Generator (a), for example, insists 

that (tr(Σl'Σl) be a minimum.  That is, that knowledge of the parameters of the regressions 

of the Xj on c allows for the best possible reproduction of the parameters contained in Σ.  

Generator (b), on the other hand, insists that tr(Σl'Σl)=0, thereby calling for a replacement 

that perfectly reproduces the parameters of Σ.  Generator (c) calls for a best possible 

reproduction in which, additionally, the variance and covariance not reproduced is 

associated uniformly with a further (p-1) replacement variates.  

 

Characteristics of C 

 

 The rc-replacements considered herein each have a cardinality of unity.  Hence, 

the internal characteristics of set C need not be considered. With regard the relation of the 

single replacement variate contained in C and external variates, Y,   

 

 

(15.24)  (cY')=E(t'XY')=t'ΣXY,       

 

 

and 

 

(15.25)  ρ(c1,Y')=

( )
1

2

1

t'Σt

t'ΣXYDY
-1/2

,       
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in which DY
-1/2

 is the diagonal matrix containing the reciprocals of the standard 

deviations of the Yj. 

   

Testability 

 

 Certain rc-replacements always exist, e.g., rc-replacement (a), in which case there 

is no need for a test of replaceability.  Others, e.g., replacements (b) and (c), do not 

necessarily exist, and in these cases a test of rc-replaceability makes sense.   

  

4. The partial image replacement generator  

 

Let X contain a set of p input variates Xj, j=1..p, jointly distributed in a population 

P under study.  The scores that comprise the distributions of these variates are produced 

by following the rules {r1,r2,...,rp}.  Assume that E(X)=0 so that EXX'=Σ, and that 

rank(Σ)=p.  The partial image (pi) replacement generator yields a multidimensional 

replacement of X. 

 

Partial image (pi) replacement variates 

 

 A replacement p-vector p is sought such that   

 

ri) p=FX, so that X=p+(I-F)X=p+a  

 

rii) E(Xa') is diagonal 

 

riii) E(diag(pa'))=E(diag(FXX(I-F'))) is comprised of zeros  

 

Requirement (ri) states that the replacement vector p must be a linear transformation of 

the input variates X, (rii) that, for j=1..p, Xj must only have non-zero correlation with the 

jth element of a, and (riii) that, for j=1..p, E(pjaj)=0.  

 

Existence 

 

 E(Xa')=E(XX'(I-F)')=Σ(I-F)', which, from (rii), is a diagonal matrix D.  Because 

rank(Σ)=p, (I-F)=DΣ-1
.  From (riii), E(diag(FXX(I-F')))=E(diag((I-DΣ-1

)XXΣ-1
D))= 

diag(D-DΣ-1
D) must be comprised of zeros.  Thus, D=[diag(Σ-1

)]
-1

.  Let D be 

resymbolized as Σd.  It follows, then, that p=FX=(I-ΣdΣ
-1

)X and a=ΣdΣ
-1

X.  The jth 

element of p (called by Guttman (1953) the partial image of Xj) is the linear conditional 

expectation of Xj on the remaining (p-1) input variates, while the jth element of a (called 

by Guttman (1953) the partial anti-image of Xj) is the corresponding residual variate.  

Note also that setting the jth diagonal element of (I-ΣdΣ
-1

) equal to zero in the 

construction of p as (I-ΣdΣ
-1

)X, ensures that each variate plays no role in the replacement 

of itself. 

 

Consequences of (ri)-(riii) 
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 The following are consequences of the replacement: 

 

Ci)  E(p)=E(FX)=0    (from the fact that E(X)=0) 

 

Cii) E(pp')=(I-ΣdΣ
-1

)EXX'(I-ΣdΣ
-1

)'=(I-ΣdΣ
-1

)Σ(I-ΣdΣ
-1

)'=(Σ-Σd)Σ
-1

(Σ-Σd)  

 

Ciii) E(a)=E(I-F)X=0    (from the fact that E(X)=0) 

 

Civ)  E(aa')=E(ΣdΣ
-1

XX'Σ-1Σd)=ΣdΣ
-1Σd 

 

Cv) E(pa')=E((I-ΣdΣ
-1

)EXX'Σ-1Σd)=Σd-ΣdΣ
-1Σd   

 

That is, the replacement vector (containing the partial images) and the anti-image variates 

are not, in general, uncorrelated, but, from (riii), E(pjaj)=0, j=1..p.  That is, the diagonal 

of Σd-ΣdΣ
-1Σd is comprised of zeros. 

 

Cvi) Σ=Epp'+2Epa'+Eaa'=[(Σ-Σd)Σ
-1

(Σ-Σd)]+[Σd-ΣdΣ
-1Σd]+ΣdΣ

-1Σd 

 

This is a decomposition that differs from a linear factor decomposition by the non-

vanishing of the matrix Epa', and by the non-diagonality (for finite p) of the matrix  

ΣdΣ
-1Σd. 

 

Cvii) Letting X(-j) stand for the set of all input variates except the jth: 

 

0R
)j(j x.a

2 =
−

 for j=1..p (from (rii)) 

 

1R
)j(j x.p

2 =
−

 for j=1..p   

 

These properties follow from the construction formula for p, pj=t'x(-j), in which t is the (p-

1)-vector obtained by eliminating from the jth row of (I-ΣdΣ
-1

), the jth element. 

 

Cviii) The jth diagonal element of E(aa') is the variance of the jth residual variate, aj, 

i.e., σ2
ej=E(Xj-pj)

2
=(1-

)j(j x.X
2R

−
).  A necessary and sufficient condition that σ2

ej be a 

minimum is that aj be uncorrelated with all of the Xi except Xj (Guttman, 1956).  It 

follows, then, from requirement (rii), that σ2
ej, j=1..p, is a minimum.  

 

Optimality properties 

 

 The pi-replacement is optimal in the sense that it yields the p-dimensional 

replacement vector, p=FX, that minimizes Etr(X-p)(X-p)'=trEaa'=trΣdΣ
-1Σd=

j

p
2

e

j=1

σ∑ .  

This is truly a variance oriented replacement, in the sense that a separate replacement 
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variate is generated to reproduce the variance parameter of each input variate.  That is, a 

single replacement variate t'X is sought that minimizes  

Etr(X-(t'Σt)
-1Σtt'X)(X-(t'Σt)

-1Σtt'X)'.  In the rc-replacement, on the other hand, a single 

replacement variate must reproduce, as well as possible p variances and )1p(p
2

1
−  

covariances.  

 

 Asymptotic equivalence of pi and lf replacements.   

  

 Guttman (1953, 1955) recommended using Σd as a proxy for Ψ in the linear factor 

analytic representation X=Λθθθθ+Ψ1/2δδδδ, because, if X continues to be linear factor 

representable as p→∞, then Σ-1→Ψ-1
.  But because diag(Σ-1

)=Σd, with jth element (1-

)j(j x.X
2R

−
)
-1

, it follows that (1-
)j(j x.X

2R
−

)→ζj, the jth element of Ψ, and 
)j(j x.X

2R
−
→h

2
j, the 

"communality" of the jth input variate.  Furthermore, if, as p→∞, Σ-1→Ψ-1
, then, from 

(Cvi), Σ→[(Σ-Σd)Σ
-1

(Σ-Σd)]+Ψ=ΛΛ'+Ψ, in which Λ is a p×rank(E(pp')) matrix.  Thus, if 

X remains linear factor representable as p→∞, then, in the limit, image and common 

factor replacement variates are identical.    

 

5. The LISREL replacement generator 

 

 Consider now a second family of multidimensional replacement generators.  Let 

z'=[y',x'] contain a set of (p+q) input variates, jointly distributed in a population P under 

study.  The scores that comprise the distributions of these variates are produced by 

following the rules {r1,r2,...,rp+q}.  Assume that E(z)=0 so that Ezz'=Σz. 

 

LISREL replacement variates 

 

 LISREL is said to be a confirmatory technique.  But the view that it can be used 

to test theories about phenomena is, once again, the Central Account speaking.  The 

latent variate terms of LISREL models are not linked to phenomena under study through 

the antecedent laying down of rules of correspondence.  The confirmatory claim is 

properly interpreted to mean that a researcher must himself specify, in a given 

application, certain of the requirements inherent to the replacement brought about under 

the LISREL generator.  As will be seen, the control that the researcher exerts over the 

replacement manifests itself in particular requirements that a random variate must satisfy 

in order to qualify as a LISREL replacement variate.  Definitions of the matrices that 

appear in this section are as provided in Chapter 2, section 3b.  We will only consider one 

of the simpler LISREL replacements and will assume that the parameters of  any 

particular replacement are identified (see Bollen, 1989, for a review of this topic).   

 In the employment of the LISREL generator, an (n+m) element random vector 

ρρρρ'=[ξξξξ',ζζζζ']  is sought such that  

 

ri)  E(ρρρρ)=0 
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rii) C(ρρρρ) is block diagonal, i.e., E(ξξξξζζζζ') is a null matrix 

 

riii)   ηηηη=Βηηηη+Γξξξξ+ζζζζ=(I-B)
-1

(Γξξξξ+ζζζζ) 

 

and  

 

riv) The (p+q) residuals l of the linear regressions of the input variates z on the (m+n) 

replacement vector κ=[ηηηη',ξξξξ'] have a covariance matrix C(l)=Θ that is positive definite and 

of some particular form (not necessarily diagonal). 

 

Consequences 

 

Ci) The linear conditional expectation of z on κ, E(z|κ)lin, is equal to Σz,κΣκ
-1
κ.  Now, 

 

 

(15.26)  Σz,κ=E 







)'E()'E(

)'E()'E(

ξxηx

ξyηy
=ΛΣκ     

 

 

in which Λ= 








x

y

Λ
Λ
�

�
, and Σκ= 









−

−−+−
−

−−−

Φ'Β)(IΦΓ'

ΓΦΒ)(I'Β)Ψ)(IΦΓ'(Β)(I
1

111 Γ
 . 

 

Hence, E(z|κ)lin=Λκ.  

 

Cii) l=z-Λκ 

 

Ciii) Because C(E(z|κ))=C(Λκ)=ΛΣκΛ', and E(C(l))=Σz-ΛΣκΛ'=Θ,  

 

 

 Σz=ΛΣκΛ'+Θ 

 

 

That is, 

 

 

(15.27) 

 Σz= 








x

y

Λ
Λ
�

�









−

−−+−
−

−−−

Φ'Β)(IΦΓ'

ΓΦΒ)(I'Β)Ψ)(IΦΓ'(Β)(I
1

111 Γ
'

x

y

Λ
Λ









�

�
+ Θ,  

 

 

which is the well known LISREL covariance structure. 

 

Existence 
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 The LISREL replacement is just a special linear factor analytic replacement.  

Hence, the implication [(ri)-(riv)]→[Σz=ΛΣκΛ'+Θ, Θ positive definite and of some 

particular form] is true.  Therefore, ~[Σz=ΛΣκΛ'+Θ, Θ positive definite, of some 

particular form]→~[(ri)-(riv)] is also true. Hence, if Σz cannot be decomposed as 

ΛΣκΛ'+Θ, Θ a positive definite matrix of some particular form, then [(ri)-(riv)] cannot 

obtain.  Vittadini (1989) has proven that, if Σz has the LISREL covariance structure 

(7.30), then there exists at least one vector ρρρρ'=[ξξξξ',ζζζζ'] that satisfies (ri)-(riv).  Thus, under 

this condition, there will also exist at least one replacement vector κ=[ξξξξ',ηηηη'].  If a set of 

input variates z'=[y',x'] are replaceable under the LISREL generator, they will be said to 

be L-replaceable, and κ will be called an L-replacement to z. 

 

Cardinality of replacement 

 

 Given that particular z is L-replaceable, let C
*
 contain all vectors ρρρρ that satisfy 

(ri)-(riv).  Vittadini (1989) has proven that, for finite (p+q), Card(C
*
)=∞.  Hence, if C 

stands for the set of replacement vectors, i.e., the set containing the vectors κ that L-

replace the input variates, it follows that Card(C)=∞.  That is, the L-replacement of z is 

not unique, there being constructible an infinity of random vectors each of which satisfies 

(ri)-(riv) if, in fact, z is L-replaceable.   

 

Construction formula 

 

 The construction formula for the vectors contained in C
*
 is  

 

 

(15.28)  i

2/11

z

'

X

1

y

1

y

i

WΣ
Λ

ΓB)(IΛB)(IΛ
Φ

Ψ
sz

ξ

ζ
+







 −−






=







 −
−−

��

�
  

 

   =ΩΛ*
'Σz

-1
z+W

1/2
si, 

  

 

in which E(si)=0, C(si)=I, E(zsi')=0(p+q)×(m+n), W=(Ω-ΩΛ*
'Σz

-1Λ*Ω),  

 

 

Ω=C 





=








Φ

Ψ

i
�

�

ξ

ζ
, and Λ*

= .
Λ

ΓB)(IΛB)(IΛ

X

1

y

1

y








 −− −−

�
   

 

 

Because ηηηη=(I-B)
-1

(Γξξξξ+ζζζζ), it then follows that the construction formula for the vectors 

contained in C is  
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(15.29)

 












+







 −−















 −−
=








=

−

−−−−

i

1/21

z

'

X

1

y

1

y

11

i

i
sWzΣ

Λ

ΓB)(IΛB)(IΛ

Φ

Ψ

I

ΓB)(IB)(I

ξ

η
κ

��

�

�

 

 =FΩΛ*
'Σz

-1
z+FW

1/2
si, 

 

in which 






 −−
=

−−

I

ΓB)(IB)(I
F

11

�

. 

 

 

Characteristics of C 

 

 Vittadini (1989) derived Guttman's minimum correlation measure for the case of 

the L-replacement.  While one could consider the minimum correlation for any of the 

(2m+n+p+q) sets of constructed variates Cηi, i=1..m, Cξj, j=1..n, Cζk, k=1..m, Cδs, s=1..q, 

Cεt, t=1..p, attention will, herein, be focussed on the two vectors of replacement variates 

ηηηη and ξξξξ.  To begin, the matrix of covariances between construction {ζζζζi,ξξξξi} and distinct 

construction {ζζζζj,ξξξξj}is 

 

(15.30) 

 

ij{ζ,ξ}

'
1 1 1 1Λ (I B) Λ (I B) Γ Λ (I B) Λ (I B) ΓΨ Ψ1 1/2 1/2y y y yΣ W Σs , s Wi jzΦ ΦΛ ΛX X

Σ

− − − −
− − − −−

+

=

      
               

� �

� �� �

  

 

  =ΩΛ*
'Σz

-1Λ*Ω+W
1/2Σsi,sjW

1/2
       

 

 

in which Σsi,sj is the (m+n) by (m+n) correlation matrix E(sisj').  The covariance matrix 

between any replacement vector {ηi,ξξξξi} and distinct replacement vector {ηj,ξξξξj} is then  

 

 

(15.31)  
ij}ξ,η{Σ =

'
11

},{

11

I

ΓB)(IB)(IΣ
I

ΓB)(IB)(I
ij








 −−







 −− −−−−

��
ξζ    

 

  =FΩΛ*
'Σz

-1Λ*ΩF'+FW
1/2Σsi,sjW

1/2
F' 
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The diagonal elements of 
ij}ξ,η{Σ are minimized by taking sj to be -si, in which case  

Σsi,sj=-I, and  

 

  









−













 −−







 −−






=

−−
−

−−

Φ
Ψ

Φ
Ψ

Λ
ΓB)(IΛB)(IΛΣ

Λ
ΓB)(IΛB)(IΛ

Φ
Ψ

2Σ
X

1
y

1
y1

z

'

X

1
y

1
y

min
}ξ,ζ{ ij

�

�

�

�

���

�

  

 

=2ΩΛ*
'Σz

-1Λ*Ω-Ω. 

 

 

It then follows that  

 

 

(15.32) 

  
minij}ξ,η{R = 1/2

'
11

minij
}ξ,ζ{

11
1/2

D
I

ΓB)(IB)(IΣ
I

ΓB)(IB)(ID
−

−−−−
− 







 −−






 −−
��

  

 

  =D
-1/2

F2ΩΛ*
'Σz

-1Λ*ΩF'D
-1/2

-D
-1/2

FΩF'D
-1/2 

 

 

in which D=Diag(Σ{ηi,ξξξξi}).  The (m+n) diagonal elements of this matrix contain the 

minimum correlations for the sets Cηi, i=1..m, and Cξj, j=1..n.  

 In view of the fact that Σz
-1

=Θ-1
-Θ-1Λ*

(Ω+Λ*'Θ-1Λ*
)
-1Λ*'Θ-1

, it follows that  

 

 

(15.33)  
min

},{ ij
Σ ξζ =2Ω[B-B(Ω+B)

-1
B]Ω-

ij},{Σ ξζ ,     

 

 

in which B=Λ*
'Θ-1Λ*

, 

 

 

(15.34)  
min

},η{ ij
Σ ξ =2FBΩBF'-2FΩB(Ω+B)

-1
BΩF'-F

ij},{Σ ξζ F',    

 

 

and 

 

 

(15.39)  
minij}ξ,η{R =2D

-1/2
FBΩBF'D

-1/2
-2D

-1/2
FΩB(Ω+B)

-1
BΩF'D

-1/2
-

ij},{R ξζ   
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If only the replacement variates ηηηη and ξξξξ are considered, the average minimum correlation 

is equal to  

 

 

(15.40)  )tr(R
n)(m

1

minij}ξ,η{
+

.        

 

If all of the (m+n+p+q) constructed variates contained in the vectors ξξξξ, ζζζζ, δδδδ, εεεε, are 

considered, and are required to have variances of unity and be mutually uncorrelated, 

then the average minimum correlation is equal to (p+q-m-n)/(p+q+m+n).  Vittadini 

(1989) gave bounds for the average minimum correlation in the general case.   

 

 

 

Example 

 

Consider the case in which p=4, q=4, m=2, n=2, and, in the population,  

 

Σz= Θ
Λ

ΓB)(IΛB)(IΛ
Φ

Ψ
Λ

ΓB)(IΛB)(IΛ
'

X

1

y

1

y

X

1

y

1

y +






 −−














 −− −−−−

��

�

�
, 

 

with  

Λy

.72

.76

0

0

0

0

.5

.5













:= Λx

.95

.72

0

0

0

0

.39

.11













:=

 
Β

0

.18

0

0









:=
 

Γ
.45

0

0

.78









:=
 
Ψ

.26

0

0

.07









:=
 
Φ

1

.34

.34

1









:=
 

 

 

Θ

0.7602

0

0

0

0

0

0

0

0

0.7329

0

0

0

0

0

0

0

0

0.8159

0

0

0

0

0

0

0

0

0.8159

0

0

0

0

0

0

0

0

0.0975

0

0

0

0

0

0

0

0

0.4816

0

0

0

0

0

0

0

0

0.8479

0

0

0

0

0

0

0

0

0.9879

























=

 
 

 In this case, 
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+







 −−














 −−=
















 −−=








−
−−−−

−−

i

2/11

z

'

X

1

y

1

y
11

i

11

i

WΣ
Λ

ΓB)(IΛB)(IΛ
Φ

Ψ
I

ΓB)(IB)(I

I

ΓB)(IB)(I

sz

ξ

ζ

ξ

η

��

�

�

�

 

 

 

=

.186

.030

.026

.003−

.204

.033

.029

.003−

019

.250

.011

.275

.019

.250

.011

.275

.27

.180

.840

.179

.041

.028

.129

.028

.002−

.206

.008

.276

.000

.050

.002

.067













z+

.435

.078

0

0

.002−

.260

0

0

.106

.016

.294

0

.000

.525

.060

.768













si 

 

The matrix of minimum correlations for this replacement is equal to  

 

minij}ξ,η{R = 

  

.1504

.2394

.5803

.2347

.2394

.107−

.3603

.1029−

.5803

.3603

.8277

.3033

.2347

.1029−

.3033

.1993−











 

   

Hence, the minimum correlations for the sets Cη1, Cη2, Cξ1, and Cξ2 which contain, 

respectively, the replacement variates η1, η2, ξ1, and ξ2, range from a low of -.1993 for 

Cξ2, to a high of .8277 for Cξ1.  Evidently, there exists a great deal of latitude in the ξ2 

replacement (i.e., radically different random variates are contained within Cξ2), and much 

less so in regard the ξ1 replacement (the variates contained in Cξ1 are relatively similar: 

the most dissimilar pairs of ξ1 replacement variates have in common 100×.83
2
=69% of 

their variance).   

 

 

Optimality criteria 

 

 The L-replacement is just a special case of the usual linear factor analytic 

replacement, there being two chief differences: 

 

i. In the case of the L-replacement, the covariance matrix of the residuals, Θ, is allowed 

to be non-diagonal.  If it is insisted that Θ be diagonal and positive definite, and a 

particular set of input variates zo is L-replaceable, then the replacement vector κ replaces 

the zoj in the usual factor analytic sense that the )1qp)(qp(
2

1
−++  unique covariances 

contained in Σz can be reproduced via knowledge of the values of the parameters 
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contained in the matrices ΛX, ΛY, B, Γ, Ψ, and Φ.  If, on the other hand, it is insisted that 

Θ be of some specific non-diagonal form, and a particular set of input variates, zo, is L-

replaceable, then the replacement vector κ partially replaces the zoj in this sense.  That is, 

certain of the covariances in Σz are allowed to be imperfectly reproduced by the 

parameters of the p regressions of z on κ.   

 

ii. The discipline's immersion in the Central Account has fostered the view that, in 

employing LISREL, and covariance structure analytic techniques in general, the 

researcher is testing  hypotheses about the relationships amongst observable and 

unobservable entities, and, in particular, hypotheses as to the existence of the latter class 

of entity.  In many applications, versions of the CAC are invoked, the employment of the 

LISREL generator is mislabeled as "causal modeling", and such testing is viewed as the 

testing of "causal hypotheses."  In other applications, the CAM is invoked and LISREL 

based tests are portrayed as tests of measurement claims.  But this is fantasy.  The 

LISREL generator is confirmatory in the sense that, in contrast to the standard linear 

factor generators, the analyst must specify in a fair bit of detail the properties that variates 

must have in order that they can rightly be said to L-replace a set of input variates.  Some 

of these requirements are substantive in nature, while others are pragmatic restrictions 

imposed to identify the replacement being an example of the latter.   

Consider the oft-tested hypotheses that a set of p input variates is either parallel, 

tau-equivalent, or congeneric (as in, e.g., Joreskog & Sorbom, 1993, p.115).  On the 

mythology of the Central Account, these hypotheses are portrayed as measurement 

hypotheses.  In fact, they are simply hypotheses of L-replaceability.  First, consider the 

simple hypothesis that a set of input variates Xo is ulcf-replaceable, or in the parlance of 

psychometrics, that these variates constitute a set of congeneric measures.  To 

hypothesize ulcf-replaceability is to hypothesize that there exist a parameter Λo such that 

the residuals of the linear regressions of the Xoj on a replacement variate have a diagonal, 

positive definite covariance matrix Ψo.  Recall from Chapter IV that, if Xo is ulcf-

replaceable, the construction formula of the ulcf replacement variates can be expressed as  

 

 

(15.37)  θi=Λo'Σo
-1

Xo+wo
1/2

si=woΛo'Ψo
-1

X+wo
1/2

si=

j

p
oj 1/2

o oj o i2
j=1 oζ

λ
w + w

σ∑
X s    

 

Note that the contribution of each input variate Xoj to θi is governed by the ratio 

j

oj

2

oζ

λ

σ
.  

Thus, a variate whose regression weight is large, and residual variance small, will have 

relatively large input into the constructed replacement variate θi.   

 Now consider the hypothesis of parallelism, i.e., that λj=λ ∀ j, and 
j

2 2

oζ oζσ = σ ∀ j.  

If a set of input variates is ulcf replaceable with the added restrictions that that λj=λ ∀ j 

and 
j

2 2

oζ oζσ = σ ∀ j, then the resulting construction formula is  
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(15.38)   θi=
1/2

o i2 2

oζ

λ
+ w

(σ + pλ )
t s        

 

in which t=
p

oj

j=1

∑X .  Hence, to hypothesize parallelism is to hypothesize that there exist 

parameters λ and 2

oζσ  such that the residuals of the linear regressions of the Xoj on a 

replacement variate   θi=
1/2

o i2 2

oζ

λ
+ w

(σ + pλ )
t s  have a diagonal, positive definite 

covariance matrix.  For this hypothesis of replaceability to be true, each input variate 

must make an identical contribution to the replacement variate θi.  Hence, to hypothesize 

parallelism is to hypothesize the existence of a ulcf replacement variate to which the 

input variates make equal contributions. 

 Finally, consider the hypothesis of tau-equivalence  i.e., that λj=λ ∀ j.  If this 

hypothesis is correct, then the associated construction formula is  

 

(15.39)   θi=

j

p
1/2

oj o i2
j=1 oζ

1
λw + w

σ∑
X s .       

 

Hence, to hypothesize tau-equivalence is to hypothesize that there exists (p+1) 

parameters λ and 
j

2

oζσ , j=1..p, such that the residuals of the linear regressions of the Xoj 

on a replacement variate θi=

j

p
1/2

j o i2
j=1 oζ

1
λw + w

σ∑
X s  have a diagonal, positive definite 

covariance matrix.  Under this hypothesis of replaceability, the contribution of each input 

variate to the constructed replacement variate varies only through the residual variance of 

the variate. 

   

Testability 

       

 A great deal of attention has been given to the topic of testing the general 

hypothesis  

 

Ho: Σz= Θ
Λ

ΓB)(IΛB)(IΛ
Φ

Ψ
Λ

ΓB)(IΛB)(IΛ
'

X

1

y

1

y

X

1

y

1

y +






 −−














 −− −−−−

��

�

�
 

 

versus the alternative H1: [Σz is any gramian matrix] (see Bollen, 1989, for a review).  

Under the supposition that z has a multivariate normal distribution, a test may be derived 

according to either maximum likelihood or generalized least squares principles.  

Obviously, a test of Ho versus H1 is a test of whether or not z is L-replaceable. 
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6. Unidimensional quadratic factor (uqf) generator 

 

 Let X contain a set of p input variates, jointly distributed in a population P under 

study.  The scores that comprise the distributions of these variates are produced by 

following some particular set of rules {r1,r2,...,rp+q}.  Assume that E(X)=0 so that 

EXX'=Σ. 

 

uqf replacement variates 

 

 A replacement variate θ is sought with the properties that  

 

ri)  θθθθ∼N(0,1), 

 

and  

 

rii) The residuals l of the linear regressions of the input variates Xj, j=1..p, on 

f(θ)=













−

2

1)( 2θ
θ

  have a covariance matrix Ψ that is diagonal and positive definite.   

 

Comment:  This is a unidimensional replacement in the sense that but one variate θ is 

sought, but, if such a variate exists, the input variates have a quadratic regression on it.  

The requirement that C(l)=Σ-ΛΩΛ'=Ψ, in which Ψ is diagonal and positive definite, 

Ω=C(f(θ)) and Λ=E(Xf(θ)'), insists upon the usual linear factor analytic brand of 

reproducibility.  That is, knowledge of  a set of regression parameters (in this case those 

involving first and second degree polynomials in θ) allows one to reproduce the 

covariances contained in Σ.   

 

Consequences 

 

Ci) Ef(θ)= 0

2

1E
E

2

1)(E
2

=













−=














− 2θ

θ
θ
θ

 

 

Cii) Ω=Ef(θ)f(θ)'= 

 

 

2 3
2

2 2 2 3 4 2

( -1) Ε -Ε
Ε Ε 1

2 2
=

( -1) ( -1) ( -1) Ε -Ε E - 2E +1
Ε Ε

2 2 2 2 2

   
   
   
   
   
   

θ θ θ
θ θ

θ θ θ θ θ θ θ
θ

=






10
01

=I 
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since, from (ri), E(θ)=0, E(θ
2
)=1, E(θ

3
)=0, and E(θ

4
)=3. 

 

Ciii) From (rii) and (Cii), E(X|f(θ)=f(θo))=E(Xf(θ)')Ω-1
f(θo)=Λf(θo) is the linear 

conditional expectation of X given f(θ)=f(θo), and, hence, (l|f(θ)=f(θo))=((X-

Λf(θo))|f(θ)=f(θo)).  

 

Civ) E(l|f(θ)=f(θo))=E((X-Λf(θo))|f(θ)=f(θo))=E(X|f(θ)=f(θo))-Λf(θo)=0.  Thus,  

E(l)=EE(l|f(θ))=0 

 

Cv) E(Xl')=E(X(X-Λf(θ))')=Σ-ΛΛ'. 

 

Cvi) E(f(θ)l')=E(f(θ)(X-Λf(θ))')=00'(2×p) 

 

Cvii)  X=Λf(θ)+l 

 

Cviii) Σ=C(E(X|f(θ))+E(C((X|f(θ))=ΛΛ'+Ψ,  

 

in which Λ is a (p×2) matrix of real coefficients, and Ψ, diagonal and positive definite.  

Clearly, the uqf replacement has precisely the same covariance structure as the two-

dimensional linear factor replacement. 

 

Existence 

 

 Let Λ=[λ1,λ2].  Note that, if λ2=0, (rii) would call for the usual ulcf-replaceability, 

and θ would exist so long as Σ=λ1λ1'+Ψ, in which Ψ is diagonal and positive definite.    

The construction formula for θ in this case would simply be θi=λ1'Σ
-1

X+w
1/2

si, in which si 

is selected so that it is statistically independent of X and θi∼N(0,1).  Now, the second 

element of f(θ) can be obtained from the first by the formula 
2

1)(
2

i −θ
.  Thus, it follows 

that two conditions must be met in order for X to be uqf-replaceable: 

 

i.  Σ=Λ*Λ*
'+Ψ, in which Ψ is diagonal and positive definite, and Λ*

 is a (p×2) matrix 

of real coefficients.  

 

ii. From (rii) and (Ciii), it must be the case that E(Xf(θ)')=Λ*
.  If θi is constructed as  

λ1'Σ
-1

X+w
1/2

si, in which λ1 is the first column of Λ*
, and si is chosen so that it is 

statistically independent of X and λ1'Σ
-1

X+w
1/2

si∼N(0,1), then it will always be the case 

that   

 

 

(15.40)  EXθi=E(X(λ1'Σ
-1

X+w
1/2

si)=λ1. 

 

 

However, it must also be the case that  
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(15.41)  E(X
2

1)(
2

i −θ
)=E(X

2

1))wΣ'λ(( 2

i

1/21

1 −+− sX
)=λ2.    

 

 

Now, the left member of this equality, say λ2(λ1), is equal to  

 

 

(15.42)  E(X
2

1))wΣ'λ(( 2

i

1/21

1 −+− sX
)=     

  E(X
2

1))wΣ'λw2λΣ'Σ'λ((
2

ii

1

1

1/2

1

11

1 −++ −−−
ssXXX

). 

 

 

Because si is chosen to be statistically independent of X, the kth element of λ2(λ1) is equal 

to  

 

 

(15.43)  
2

tΣ't

2

)λΣ]'E[Σ'λ( k1

1

k

1

1 =
−− XXX

,  

 

in which t=λ1'Σ
-1

 and Σk=



















2

pk2pk1pk

p2k

2

2k12k

p1k21k

2

1k

XEX.XXEXXXEX

....

XXEX.XEXXXEX

XXEX.XXEXXEX

 

 

 

There are p such matrices Σk each containing product moments of the third order of the 

distribution of X.  Thus, it may be concluded that X is uqf-replaceable, with replacement 

variate θi=λ1'Σ
-1

X+w
1/2

si, only if there exists a p-vector of real coefficients λ1 such that 

Σ-ΛΛ'=Ψ, in which Ψ is diagonal, and positive definite, and Λ=[λ1:λ2(λ1)].  Put another 

way, X is uqf-replaceable only if Σ=Λ*Λ*
'+Ψ, in which Ψ is diagonal and positive 

definite, Λ*
 is a (p×2) matrix of real coefficients, and there exists an orthonormal matrix 

T, such that Λ*
T=Λ=[λ1:λ2(λ1)].   

 

Construction formula 

 

 The construction formula is θi=λ1'Σ
-1

X+w
1/2

si, in which si is chosen so that it is 

statistically independent of X and θi∼N(0,1). 

 

Cardinality of replacement 
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 As is clear from the construction formula, so long as p, the number of input 

variates, is finite, the set C of replacement variates θi=λ1'Σ
-1

X+w
1/2

si has a cardinality of 

infinity.   

 

Characteristics of C 

 

 The latitude inherent to the set C of replacement variates θi can be quantified, as 

per usual, by Guttman's minimum correlation, ρ*
=2λ1'Σ

-1λ1-1.  

 

Optimality criteria 

 

 If X is uqf replaceable, then each replacement variate θi replaces the input variates 

Xj in the sense that the 2p regression parameters contained in Λ=[λ1:λ2(λ1)] contain all of 

the information necessary to reproduce the )1p(p
2

1
−  unique covariances contained of Σ.  

That is, 

 

 

(15.44)  σij=λ1iλ1j+λ2i(λ1)λ2j(λ1)  i≠j 

 

 

Put another way, f(θ) contains all of the information about the pairwise linear 

dependencies among the Xj, in the sense that, following conditioning of X on f(θ), no 

linear dependencies among the Xj remain.  

 

Testability 

 

 If (ri)-(rii) hold, then, from (Cviii), Σ=ΛΛ'+Ψ in which Ψ is diagonal and positive 

definite, and Λ=[λ1:λ2(λ1)].  Consider any decomposition Σ=Λ*Λ*
'+Ψ, Ψ diagonal and 

positive definite (e.g., one derived from a two-dimensional linear factor analysis of X).  

Then Λ=Λ*
T, in which TT'=T'T=I2.  It thus follows that X=Λ*

w+δ=ΛT'w+δ=Λf(θ)+l, in 

which C(w)=I2, C(w,δ')=0, C(δ)=Ψ=C(l), and f(θ) is an orthonormal tranformation of w.  

Now,  

 

 

(15.45) 

 b=(Λ*
'Ψ-1Λ*

)
-1Λ*

'Ψ-1
X=(Λ*

'Ψ-1Λ*
)
-1Λ*

'Ψ-1Λ*
w+(Λ*

'Ψ-1Λ*
)
-1Λ*

'Ψ-1
δ=Tf(θ)+δ

*
,  

 

 

with the variates contained in vector b recognizable as Bartlett factor score predictors.  

Thus, the vector of Bartlett predictors is a perturbed orthornormal transformation of f(θ). 

The covariance matrix of these variates is 

 

 

(15.46)  C(b)=C(f(θ))+C(δ
*
)=I+(Λ*

'Ψ-1Λ*
)
-1

.       
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It follows, then, that if X is uqf-replaceable, so long as the diagonals of the matrix C(δ
*
) 

are "small", the joint distribution of the Bartlett predictors will be roughly the same as the 

joint distribution of Tf(θ).  Because E(
2

1)( 2 −θ
|θ=θ*

)=
2

1)(θ
2* −

, the distribution of f(θ) 

will have a curvilinear shape.  This fact has been used by McDonald (1962, 1967) as a 

means of distinguishing between the two cases of 2-dimensional linear factor, and uqf, 

replaceability of a given X: In the linear case, the joint distribution of the two 

replacement variates (θ1,θ2) will not have a curvilinear shape.  Hence, given that the 

hypothesis Ho: [Σ=Λ*Λ*
'+Ψ, Ψ diagonal and positive definite] has been retained, a low-

cost second step is to produce a bivariate plot of Bartlett factor score predictions.  The 

lack of any noticeable curvilinearity is evidence against the hypothesis of uqf-

replaceability.  McDonald (1962, 1967) has provided techniques for the testing of 

hypotheses of nonlinear (quadratic and higher-order) replaceability which involve the 

minimization of a loss function in terms of T, and involves estimates of the higher order 

joint moments of b and δ
*
, from which estimates of the higher-order joint moments of w 

are deducible.  

 From (Cviii), the implication [(ri)-(rii)]→[Σ=Λ2Λ2'+Ψ, Ψ diagonal, positive 

definite] is thus true, and, hence, so is the implication ~[Σ=Λ2Λ2'+Ψ, Ψ diagonal, positive 

definite]→~[(ri)-(rii)].  Hence, if Σ cannot be decomposed as Λ2Λ2'+Ψ, Ψ diagonal, 

positive definite, then [(ri)-(rii)] cannot obtain (X is not uqf replaceable).  But 

[Σ=Λ2Λ2'+Ψ, Ψ diagonal, positive definite] is not sufficient for uqf-replaceability.  As 

was shown in the section on existence, Λ2 must have the special form [λ1:λ2(λ1)].  Hence, 

the following sequential procedure could be employed: 

 

i. Test if there exists Λ*
 such that Σ-Λ*Λ*

'=Ψ, Ψ diagonal, positive definite. 

 

ii. If decision (i) is in the affirmative, estimate Σk, k=1..p, and Σ-1
. 

 

iii.  For arbitrary Λ*
 satisfying (i), test to see if there exists a rotation T, T'T=TT'=I, such 

that Λ*
T=[λ1:λ2(λ1)].  If so, then make decision that X is uqf-replaceable. 

 

On the other hand, uqf-replaceability could, in principle, be tested as a covariance 

structure hypothesis: Ho: [Σ=λ1λ1'+λ2(λ1)λ2(λ1)'+Ψ, Ψ diagonal, positive definite].  

 

This hypothesis can be unpacked as 

 

Ho: [Σ=λ1λ1'+ I)λ(Σ'λλ)Σ'λ(I
2

1
131131 ⊗⊗ +Ψ, Ψ diagonal and positive definite], 
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in which Σ3 is the (p
2
×p) matrix 



















−−

−−

−−

1

p

1

1

2

1

1

1

1

ΣΣΣ
.

ΣΣΣ
ΣΣΣ

.  The vector X cannot, of course, be 

reasonably asserted to be multivariate normal, which rules out employment of the usual 

likelihood-ratio approaches.  

 

7. Linear discriminant (ld) replacement generator 

 

 Let X contain a set of p continuous input variates Xj, j=1..p, jointly distributed in 

a population P under study.  The scores that comprise the distributions of these variates 

are produced in accord with rules {r1,r2,...,rp} of score production.  Let P be divisible into 

two sub-populations, P1 and P2, and let there exist, prior to analysis, a rule, rc, for the 

identification of those members of P that belong to each of P1 and P2.  The rule  will, in 

general, take the form:  

 

rc: A member of population P, pi, is a member of P1, i.e., pi∈P1, if and only if it 

has characterics{c1,c2,...ct}; 

  else, pi∈P2. 

 

Application of rc to the members of P will yield a Bernouilli variate Y, representing sub-

population membership, and taking on values of, say, 1 (representing membership in P1) 

with probability π1, and 2 (representing membership in P2) with probability π2=(1-π1).  

The joint moments of X conditional on specific values of Y can be considered and, in 

particular: 

 

 

(15.47)  E(X|Y=1)=µ1, E(X|Y=2)=µ2, and C(X|Y=1)=C(X|Y=2)=ΣW.    

 

 

The latter is a testable requirement for this particular version of the ld replacement variate 

generator.  It follows, then, that  

 

 

(15.48)  E(X)=π1µ1+π2µ2         

 

 

and  

 

 

(15.49)  )µ - µ( )µ - µ( * π π + Σ))|C(E())|E(C(  =  Σ)C(
212121W

′=+= YXYXX   

 

 

Linear discriminant (ld) replacement variates 
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 A replacement variate c is sought such that   

 

ri) c=t'X  

 

and 

 

rii) 2

21 ))|E()|E(( PP cc −  is a maximum over all c for which 

V(c|P1)=V(c|P2)=t'ΣWt=1. 

 

Existence 

 

 Note that 

 

 

(15.50) 

  2

21 ))|E()|E(( PP cc − = 2

21 ))|'tE()|'tE(( PP XX − =t'(µ1-µ2)(µ1-µ2)'t=t'ΣBt. 

  

 

Hence, a p-vector t must be found such that t'ΣBt is a maximum over all t for which 

t'ΣWt=a, in which a is a positive constant.  Because the choice of a does not affect the 

construction of c, a will be chosen to be unity.  Letting φ=t'ΣBt-γ(t'ΣWt-1), 

 

 

(15.51)  WBWB Σ't2γΣ't21)tΣ'tγ(tΣ't
t

φ
−=−−

∂

∂
     

 

(15.52)  1tΣ't1)tΣ'tγ(tΣ't
γ
φ

WWB −=−−
∂

∂
       

 

 

Hence, t is the first eigenvector w1 of ΣW
-1ΣB, and the maximum of 2

21 ))|E()|E(( PP cc −  

is equal to γ1, the first eigenvalue of ΣW
-1ΣB.  It can, therefore, be concluded that X is ld-

replaceable if: i) C(X|P1)=C(X|P2)=ΣW; ii) ΣW is nonsingular. 

 

Consequences 

 

The following are consequences of the ld replacement. 

 

Ci)  E(c)=E(w1'X)=π1w1
'µ1+π2w1

'µ2      (from (15.51)) 

 

Cii) V(c)=w1'Σw1=w1'ΣWw1+π1π2w1'(µ1-µ2)(µ1-µ2)'w1=1+π1π2γ1  (from (15.52)) 
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Ciii) E(cX')=E(w1'XX')=w1'Σ=w1'ΣW+π1π2w1'(µ1-µ2)(µ1-µ2)' (from (15.52) and 

(7.54)) 

    = B121

1

Σ'w)ππ
γ

1
( +  

 

Civ) E(X|c=co)=Σw1(w1'Σw1)
-1

co 

 

Cv) Σ=C(E(X|c))+E(C(X|c))=
1γ

1
Σw1w1'Σ+Σ1/2

(I-
1γ

1
Σ1/2

w1w1'Σ
1/2

)Σ1/2
 

Cardinality of replacement 

 

 If X is ld-replaceable, i.e., C(X|P1)=C(X|P2)=ΣW and ΣW is nonsingular, then the 

cardinality of set C that contains the replacement variates c is unity. 

 

Construction formula 

 

 The construction formula is c=w1'X, in which w1 is the first eigenvector of  

ΣW
-1ΣB. 

 

Optimality criteria 

 

 The replacement variate c is that variate that contains the most information about 

normalized mean differences between sub-populations P1 and P2.  In particular, of all 

one-dimensional projections of X, the projection of X onto w1 (the projection that 

produces c) yields the greatest separation of the two p-dimensional point clusters in R
p
 

defined by P1 and P2.  Hence, if one were forced to give up the p input variates Xj as a 

basis for distinguishing quantitatively between the sub-populations P1 and P2, replacing 

these variates with a single new variate that is a linear combination of them, then the 

variate to be chosen would be c as defined above.   

 

Characteristics of C 

 

 The cardinality of C is unity and the single variate it contains has properties 

 

 

(15.53)  E(cz')=E(t'Xz')=w1'ΣXz,       

 

 

and 

 

(15.54)  ρ(c,z')=
11 wΣ'w

1
w1'ΣXzDz

-1/2
=

)γππ(1

1

121+
w1'ΣXzDz

-1/2
,  
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in which z is an external set of variates and Dz
-1/2

 is the diagonal matrix containing the 

reciprocals of the standard deviations of the zj. 

   

Testability 

 

 The ld-replacement always exists and, hence, in its standard usage there is no 

need for an hypothesis test.  One could, of course, invent testable hypotheses within the 

ld framework.  One example is the hypothesis that the separation between the two 

populations P1 and P2 is greater than some hypothesized value. 

 

8. Latent profile (lp) replacement generator 

 

 Let X contain a set of p continuous input variates Xj, j=1..p, jointly distributed in 

a population P under study.  The scores that comprise the distributions of these variates 

are produced in accord with rules {r1,r2,...,rp} of score production.  As with the ld 

replacement generator, latent class analysis is concerned with two (or more) 

subpopulations of P.  In an application of the the ld generator, the analyst does possess a 

rule for the identification of those members of P that belong to each of subpopulations P1 

and P2, respectively.  Application of this rule to the members of P generates the Bernoulli 

random variate Y, and allows for the calculation of moments of X conditional on 

particular values of Y.  A projection of X, i.e., a single replacement variate, is sought that 

yields the greatest separation of the subpopulations.  In an application of the latent profile 

generator, on the other hand, the analyst does not possess, prior to analysis, a rule by 

which each member of population P can be assigned to one of the subpopulations 

referred to in the generator's equations.  That is, these sub-populations do not exist prior 

to analysis.  The aim is to create a rule rlc whose application to the members of P will 

result in a discrete random variate θ whose values represent sub-population membership, 

and with θ replacing the input variates Xj, j=1..p, in certain optimal ways.  As will be 

seen, the standard formulation of the lp replacement is essentially equivalent to that of the 

ulcf replacement, the sole difference being that θ must be discrete, rather than 

continuous.  The number of values that θ is allowed to assume is a defining feature of any 

lp replacement.  The current treatment considers only the special case in which θ must 

have a (two-valued) Bernoulli distribution.  

 Perhaps more than any other latent variable technology, the latent class and 

profile "models" have been infected with the metaphysics of the Central Account.  They 

have frequently been portrayed as detectors of existing "latent classes", "natural kinds", 

or "true types" (see, e.g., Meehl, 1965, 1973, 1992; Meehl & Golden, 1982; Waller & 

Meehl, 1998).  Correlatively, tests of the conformity of Xs to latent class and profile 

models have routinely been portrayed as tests of whether there exist "latent classes" or 

"natural kinds" which "underlie the Xj".  Meehl, for example, developed his taxometric 

latent variable technology, which overlaps with latent class and profile analysis, in the 

hopes that it could be used by applied researchers to detect "latent taxa" (i.e., discrete 

types which are said to underlie, perhaps causally, responding to a set of indicator 

variables) when, in fact, they do exist.     
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 (2-valued) latent profile (lp) replacement variates 

 

 A replacement variate θ is sought such that   

 

ri) θ∼Bernoulli(π1), taking on values θ1 and θ2 with probabilities π1 and π2=(1-π1), 

respectively, 

 

rii) E(θ)=0 and E(θ
2
)=1, 

 

and 

 

riii) The vector of residuals l of the linear regressions of the input variates Xj, j=1..p, 

on θ has a covariance matrix Ψ that is diagonal and positive definite. 

  

Consequences 

 

The following are consequences of the requirements of replacement specified under the 

lp generator ((ri)-(riii)). 

 

Ci)  From (ri) and (rii), E(θ)= π1θ1+π2θ2=0 and E(θ
2
)=π1θ1

2
+π2θ2

2
=1.  Hence, 

 

 θ1=
1

21

π

)θπ(1−−
 and 1θπ

π

)π(1π 2

222

1

2

2

2

11 =+
− θ

,  

 

from which it follows that  

 

 .
π

π

π

ππ)π(1π
θ

2

1

1

2

1

2

12

2

112

2 =








 +−
=

−

 

 

 

Thus, it can be concluded that the two values assumed by θ must be θ2=
2

1

π

π
 and  

θ1=-
1

2

π

π
. 

 

Cii) The conditional expectations of X given each of the two values of θ are  

 

 E(X|θ=-
1

2

π

π
)= µ1 and E(X|θ=

2

1

π

π
)= µ2, 

 

and, hence, the two conditional residuals are  
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 (l|θ=-
1

2

π

π
)=(X- µ1|θ=-

1

2

π

π
) and (l|θ=

2

1

π

π
)=(X- µ2|θ=

2

1

π

π
) 

 

Ciii) Let E((X- µ1)(X- µ1)'|θ=-
1

2

π

π
)=Ψ1 and E((X- µ2)(X- µ2)'|θ=

2

1

π

π
)=Ψ2 be the 

conditional covariance matrices of X at each of the two values assumed by θ.  Because, 

from (riii),  

 

C(l)=π1(E(X-µ1)(X-µ1)'|θ=-
1

2

π

π
)+π2(E(X-µ2)(X-µ2)'|θ=

2

1

π

π
)=π1Ψ1+π2Ψ2,  

 

is diagonal and positive definite, both of the conditional covariance matrices Ψ1 and Ψ2 

must also be diagonal and positive definite. 

 

Civ) Because, from (Ciii), C(l)=E(C(X|θ))=π1Ψ1+π2Ψ2, it follows that 

 

 Σ=E(C(X|θ))+C(E(X|θ))=[π1Ψ1+π2Ψ2]+π1π2(µ1-µ2)(µ1-µ2)
' 

 

Cv) σij = π1π2(µ1i-µ2i)(µ1j-µ2j)  (from (Civ) and (riii)) 

 

Cvi) From (Civ), the covariance matrix of the input variates has the ulcf decomposition 

 Σ=ΛΛ'+Φ,  

in which  , )µ - µ(  π π Λ
2121= and  Ψπ + Ψ π  = Φ 2211 is a diagonal, positive definite 

matrix (McDonald, 1967; Bartholomew & Knott, 1999; Molenaar & von Eye, 1994).   

Cvii) From (Cvi), it follows that X is representable as X=Λθ+e, in which E(θ)=0, 

E(θ
2
)=1, E(X|θ=t)=Λt, E(e)=0, and C(e)=Φ.  The variate θ has, of course, a Bernoulli 

distribution, and, from (Ci), assumes the values θ2=
2

1

π

π
, and θ1=-

1

2

π

π
 with 

probabilities π2 and π1, respectively.  It follows from (Cii) and the fact that E(X|θ=t)=Λt, 

that µ1=-Λ
1

2

π

π
 and µ2=Λ

2

1

π

π
.  The matrix Σ-Φ is of rank one, and, hence, can be 

represented as Σ-Φ=mm'ω=ΛΛ', in which m'm=1, m and ω are, respectively, the single 

eigenvector and eigenvalue of Σ-Φ, and in which Λ= mω .  Hence,  

 



 65 

 

 

 

 v = 
ω

1
m'(X-µ) = 

ω

1
m'Λθ+

ω

1
m'e = 

ω

1
Λ'Λθ+

ω

1
Λ'e = w+d, 

 

in which v is called by McDonald (1967, pp.31-32) a component variate.  The variate w 

has the same distribution as θ, but has variance 
2

1

ω
(Λ'Λ)

2
.  If σ2

d is small, w will have 

roughly the same distribution as v, and, hence,  v will have roughly the same distribution 

as θ. 

 

Existence 

 

 Consider the usual case, in which (riii) is further refined to insist that 

(X|θθθθ=i)~Np(µi,Ψi) (call this (riiiN)).  In this case, the lp replacement is, save for the 

requirement that θθθθ has a bernoulli distribution, identical to the linear factor replacement 

(2.14)-(2.15).  It might, then, be thought that because of the close ties between the lp and 

ulcf generators, and, in particular, result (Cvi), that the bernoulli variate θθθθ satisfying (ri)-

(riiiN) can be constructed by dichotomizing, in some particular way, a ulcf replacement 

variate θθθθi=Λi'Σi
-1

Xi+wi
1/2

si.  The idea would be that, since C(X|θθθθi=θo)=Ψ, Ψ diagonal and 

positive definite, it might be possible to find a real number, τ, such that  

 

 if θθθθi<τ then θ=0; 

 

 if θθθθi≥τ then θ=1; 

 

 C(X|θ=0)=Ψo, Ψo diagonal and positive definite; 

 

 C(X|θ=1)=Ψ1, Ψ1 diagonal and positive definite. 

 

Unfortunately, this cannot work.  It can be shown that, for any real number τ*
, 

C(X|θi<τ
*
)=aΛΛ'+Ψ, and C(X|θi≥τ

*
)=bΛΛ'+Ψ, in which a=V(θi|θi<τ

*
), and b=V(θi|θi≥τ

*
).  

Clearly, these conditional covariance matrices are not diagonal.  Hence, no real number τ*
 

can be found such that dichotomization of a ulcf replacement variate θi by τ*
 will yield a 

bernoulli variate with properties (ri)-(riiiN).   

In fact, it is unknown, at present, the conditions under which a random variate 

satisfying (ri)-(riii) (or (ri)-(riiiN)) is constructable, if, in fact, it is at all constructable.  

This state of affairs may seem puzzling, given that applied researchers have, for some 

time, been carrying out latent class and profile analyses.  If it is unclear as to the 

conditions under which a dichotomous variate with the properties required by the lp 

replacement exists, then what is taking place in these analyses?  A rough sketch of 

practice is as follows: 

 



 66 

 

 

 

i. Given (ri)-(riiiN), the unconditional distribution of X is mixture normal.  That is, 

fX=π1fX|1+ π2fX|2, in which fX|i=

1
-
2

i

ip i i

2

Ψ 1
exp(- ( -µ )'Ψ ( -µ ))

2
(2π)

X X . 

 

For a sample of size n drawn from a given population under study, the log-likelihood 

under the null hypothesis, Ho:fX=π1fX|1+ π2fX|2 is then 

 

 ln(LHo) = 
j j j

n n

X 1 X |1 2 X |2

j=1j=1

ln( f ) ln(π f +π f )=∑∏ . 

 

The log-likelihood under the alternative hypothesis that the sample was drawn from a 

general multivariate normal may be symbolized as ln(LH1).   Using an approximation 

from Wolfe(1971), when Ho is true, 2ln(LH1)-2ln(LHo) has an approximate χ2
d 

distribution, with d=3p
2
+9p.   

 

ii. If Ho is accepted, then a rule rlp is created to "allocate sample members to classes", and 

this rule is standardly based on the posterior distribution fθ|X. 

 

iii.  Following allocation, the classes are named, this being the latent class/profile 

equivalent of latent variate interpretation.  As Bartholomew and Knott (1999, p.142) put 

it, "Having fitted the model we will normally wish to consider what can be learned from 

the classification at which we have arrived.  In the case of Macready and Dayton's 

mastery model we would expect to find two classes, with one having the characteristics 

of 'masters' and the other of 'non-masters'...For many response patterns, for example 

1111, 1011 and 0110, we would be extremely confident in allocating individuals to the 

'master' category.  Similarly, we would have little hesitation in classifying someone 

responding 0000 as a non-master, and scarcely more if it was 1000."   

 

 The question is, what exactly does the researcher who employs this strategy have 

the right to claim.  Not surprisingly, latent class and profile analyses are seen through the 

lenses of the Central Account.  Thus, when there is evidence in favour of Ho, this 

evidence is taken as support for the claim that two distinct types of object have been 

detected in population P.  The task is then viewed as being to correctly infer what types 

these, in fact, are.  But this portrayal is mythology.  As argued in Part 2, to construct a 

tool of detection the researcher would need to antecedently possess a concept whose rule 

of employment warranted ascription of the concept to the members of some particular 

sub-class, C, of population P.  Population P could, then, rightly be said to be comprised 

of those who are in C, and those who are in C .  The researcher would then have a type of 

individual, those in sub-class C, whose detection was of interest.  If it could then be 

shown that the distributions of a particular set of variates X in each of C and C , were as 

described by (ri)-(riiiN), then (ri)-(riiiN) could, indeed, be employed in the development 

of a tool for the detection of those in C (and C ).  But in this case, the researcher would 
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no longer be conducting a latent profile/class analysis, but, rather, a discriminant analysis 

of some sort.  

The quote from Bartholomew and Knott gives the wrong impression that they 

were antecedently in possession of a concept master, and, hence, that they employed a 

latent class generator as a detector, the data providing evidence that the population under 

study was truly comprised of masters and non-masters.  The antecedent possession of a 

concept master (the possession of a rule that fixed the ascription of  this concept to 

individuals), would have been required for there to have been a sense to Barthlomew and 

Knott's expression of "extreme confidence in allocating individuals."  For if one cannot 

know which individuals are and are not masters, if there does not exist a clear sense as to 

what it is to be a master, then there can be no sense to the notion that one is confident that 

one has made a correct decision in calling a given individual a master.  Similarly, unless 

one has studied masters and non-masters, one could not come to know their 

characteristics, and, in particular, the response patterns that they were likely to yield.  

However, to study masters presupposes the capacity to identify such individuals, which, 

in turn, presupposes the capacity to reliably ascribe the concept master.  Once again, if 

Bartholomew and Knott had possessed a technical sense of master (had possessed a rule 

that fixed the grounds of ascription of a technical sense of the term to individuals) there 

would have been no need for the employment of a statistical procedure whose 

foundations are a mythology.  Their talk about what one should expect from masters 

arises from the shadow cast by various ordinary language senses of the term master, 

senses that any competent language user has mastered (senses, unfortunately, that 

Bartholomew and Knott did not bother to tie into the formulation of the technique that 

they employed). 

 In fact, the modus operandi of Bartholomew and Knott's analysis in particular, 

and latent profile and class analysis in general, is not detection, but rather construction.  

The aim inherent to the employment of these generators is the construction of a 

classification rule that yields a random variate that satisfies (ri)-(riiiN), the very 

requirements insisted upon by the lp replacement.  Now, the truth of Ho does imply that 

the unconditional density of X can be factored as π1fX|1+ π2fX|2.  But whereas the truth of 

the linear factor analytic representation Σ=ΛΛ+Ψ implies the constructability of variates 

that satisfy the requirements for factor variate-hood, it is unclear whether the 

constructability of a variate satisfying (ri)-(riiiN) follows from the truth of the 

factorization π1fX|1+ π2fX|2.  That is, allocation rule rlp does induce a random variate with a 

bernoulli distribution, but it is unclear whether this induced random variate satisfies (rii)-

(riii) (or (rii)-(riiiN)), the very requirements the lp generator stipulates that it must satisfy. 

   

9. Item response (ir) replacement generators 

 

 Let X contain a set of p dichotomous input variates Xj, j=1..p, jointly distributed 

in a population P under study.  The scores that comprise the distributions of these variates 

are produced in accord with some set of rules {r1,r2,...,rp}.  

 

ir replacement variates 
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 While the family of ir generators is a large one, the basic requirements imposed 

by ir generators are roughly as follows: 

 A replacement variate θ is sought such that   

 

ri) θ∼fθ, in which fθ is a continuous density, 

 

rii) E(θ)=t and E(θ
2
)=s, s>0, 

 

and 

 

riii) Conditional on any value θ0 of θ, the input variates, Xj, j=1..p, are statistically 

independent.  That is,  

 

 P(X=x|θθθθ=θo) = 
p

j j o

j 1

P( x | θ )
=

= =∏ X θ       

 = j j

p
x 1-x

j o j o

j 1

P( 1| θ ) (1 P( 1| θ ))
=

= = − = =∏ X θ X θ  

 

Clearly, this recipe is not well enough specified to allow for a solution.  The current 

treatment will focus on that version of the ir replacement in which fθ is left unspecified, 

(rii) is further restricted so that E(θ)=0 and E(θ
2
)=1, and (riii) is further elaborated by 

requiring that P(Xj=1|θθθθ=θ)= ))b(a( jj −θΦ , in which Φ(ּ) is the cumulative probability 

function of a standard normal variate.  This particular ir generator will be called the "two-

parameter normal ogive" (2pno) generator.  A number of special cases will also be 

considered.    

 

Existence 

 

 From (2.29) and (2.30), the generator equations are as follows: 

 

 

(15.55)  P(X=x) = j j

p
x 1-x

j j j j

j=1-

Φ(a (θ - b )) (1-Φ(a (θ - b ))) dF(θ)

∞

∞

∏∫    

 

Reparametrize as  

 

(15.56)  
2

j

j

j

a1

a
λ

+
= , 

2

j

2

j
a1

1
σ

+
= , and 

2

j

jj

j

a1

ba
γ

+
= ,    

 

so that   
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(15.57)  ( )
j j

2

j j o 2

j 0 j j j o j j2 1/2 2

j jγ γ

(Y λ θ )1
Φ(a (θ b )) exp dY φ λ θ ,σ dY

(2πσ ) 2σ

∞ ∞ −
− = − =  

 
∫ ∫   

 

 

in which φ(µ,σ2
) is the normal density function with mean µ and variance σ2

.  It follows 

then that the generator equations can be restated as 

 

(15.58) 

 P(X=x) = ( ) ( )
j j

j j

x 1-x
p

2 2

j j j j j j

j=1- γ γ

φ λ θ, (1- λ ) dY 1- φ λ θ, (1- λ ) dY dF(θ)

∞ ∞ ∞

∞

   
   
   
   

∏∫ ∫ ∫   

 

 = Y|θ

- γ

f (Λθ,Ψ)dYdF(θ)

∞

∞

∫ ∫ = Y

γ(x)

f (0,ΛΛ' +Ψ)dY∫  

 

in which the consitional density fY|θ(Λθ,Ψ) is multivariate normal, with mean vector Λθ 

and covariance matrix Ψ, diagonal and positive definite.  The elements of Ψ are the σj
2
, 

j=1..p, and, from (15.58), are equal to (1-λj
2
).  The unconditional density fY(0,ΛΛ'+Ψ) is 

not necessarily multivariate normal.  The parameter γ(x)
 
is the multidimensional 

rectangle of integration defined by the p parameters γj, j=1..p, and particular response 

pattern x.  The final expression shows that the 2pno replaceability of the p variates Xj is 

equivalent to the ulcf replaceability of a set of p continuous counterparts, Yj, j=1..p, that, 

when dichotomized by the parameters γj, j=1..p, yield the Xj.  It follows then that the 

replacement variate θ called for in (ri)-(riii) is produced in the usual ulcf manner as   

 

 

(15.59)  θi=Λ'ΣY
-1

Y+w
1/2

si        

 

 

in which E(si)=0, V(si)=1, and C(Y,si)=0.  An X described by the (2pno) generator will be 

called  2pno-replaceable.  However, to date no construction formula has been derived for 

Y.  Hence, the account, as it stands, remains incomplete.  That is, there currently does not 

exist a construction formula that links the θi to the input variates.  

 If a given X is 2pno-replaceable, then it is also ir-replaceable in the following 

senses. 

 

a.  [fθ unspecified, E(θ
*
)=t≠0, V(θ

*
)=s≠1, s>0, and P(Xj=1|θθθθ*

=θ*
)= *

j jΦ(a ( - b ))θ ]. 

 

This is the 2pno generator modified by the added restrictions that θθθθ have a mean of t≠0 

and variance of s≠1.  This brand of ir-replaceability of a given set of input variates 

follows from the 2pno-replaceability of these variates by noting that the variate one seeks 
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under the requirements of (a) can be expressed as θ
*
=s

1/2
θ+t, in which θ is a 2pno 

replacement variate.  Hence, P(Xj=1|θθθθ=θ)=Φ(aj(θ-bj))=Φ(aj
*
(θ*

-bj
*
))=P(Xj=1|θθθθ*

=θ*
), in 

which aj
*
=

j

1/2

a

s
 and bj

*
=s

1/2
bj+t.  Thus, from (15.56) and (15.58), this brand of ir 

replaceability is equivalent to the ulcf replaceability of a set of continuous counterparts, 

Yj, j=1..p, in which  

 

(15.60)  
j

j
2

j

a
λ =

s + a
, 2

j 2

j

s
σ =

s + a
, and 

1/2

j j

j
2

j

a (s b + t)
γ =

s + a
    

 

b. [fθ unspecified, E(θ)=0, E(θ
2
)=1, and P(Xj=1|θθθθ=θ)=

j j

j j

exp(a (θ - b ))

1+ exp(a (θ - b ))
=L(aj(θ-bj))] 

 

This is the two-parameter logistic (2pl) ir-generator.  Haley (1952) showed that, for all 

real numbers c, |Φ(c)-L(1.7c)|<.01.  Hence, the 2pl generator with parameters aj, j=1..p, 

and bj, j=1..p, is essentially equivalent to the 2pno generator with parameters aj
*
=1.7aj, 

j=1..p, and bj
*
=bj, j=1..p.  It follows then that this brand of ir replaceability is, from 

(15.56) and (15.58), equivalent to ulcf replaceability in which 

 

 

(15.61)  
j

j
2 2

j

a
λ

1.72 a
=

+
, 

2
2

j 2 2

j

1.7
σ =

1.7 + a
, and 

j j

j
2 2

j

a b
γ =

1.7 + a
.   

  

 

Cardinality of replacement 

 

 Once again, since the choice of si in (15.59) is arbitrary save for the usual moment 

constraints, the set C containing the replacement variates to X is of infinite cardinality.  

 

Construction formulas 

 

The construction formula is θi=Λ'ΣY
-1

Y+w
1/2

si, in which E(si)=0, V(si)=1, and 

C(Y,si)=0. 

 

Characteristics of C 

 

 To quantify the latitude inherent to a given ir-replacement Guttman's ρ*
 can be 

employed.  This measure is, herein, tailored to a number of particular ir-generators. 

 

i. 2pno generator 

 

 To begin, note that, from (15.58), 
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(15.62)  RY=ΛΛ'
+Ψ    

 

 

which, from (15.56), can be re-expressed as 

 

(15.63)  RY=Da
1/2

aa
'
Da

1/2
+Da,       

 

 

in which Da is a diagonal matrix whose jjth element is 
2

j

1

(1+ a )
.  Recall that, from (4.48),  

ρ*
=

)1t(

)1t(

+

−
, in which t=Λ'Ψ-1Λ.  It then follows from (15.63) and the parameter 

correspondences of (15.56) that 

 

(15.64)  ρ*
=

p
2

j

j=1

p
2

j

j=1

( a -1)

( a +1)

∑

∑
.        

 

As would be expected, the degree of latitude in a 2pno-replacement is governed by the 

magnitudes of the discrimination parameters. 

 

ii. 2pl generator   

 

 It follows from (15.61) that 

 

 

(15.65)  RY=D
1/2

aa
'
D

1/2
+1.72

2
D=cc'+D

*
,       

 

 

in which D is a diagonal matrix whose elements are 
2 2

j

1

(1.7 + a )
, c=D

1/2
a, and 

D
*
=1.72

2
D.  Hence, t=c'D

*-1
c=

2

1

1.7
a'a, from which it follows that 
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(15.66)   ρ*
=

p
2

j2
j=1

p
2

j2
j=1

1
( a -1)
1.7

1
( a +1)
1.7

∑

∑
.       

 

 

iii. [fθ unspecified, E(θ)=t, V(θ)=s, s>0, and P(Xj=xj|θθθθ=θ)= ))b(a( jj −θΦ ]  

 

 From (15.60), RY=D
1/2

aa
'
D

1/2
+sD=cc'+D

*
, in which D is a diagonal matrix whose 

elements are 
2

j

1

(s + a )
, c=D

1/2
a, and D

*
=sD.  It follows then that t=c'D

*-1
c=

1

s
a'a, from 

which it follows that 

 

 

(15.66)   ρ*
=

p
2

j

j=1

p
2

j

j=1

1
( a -1)
s

1
( a +1)
s

∑

∑
.       

 

The one-parameter normal ogive (1pno) replacement 

 

 This is simply the 2pno generator with the additional requirements that aj=1, 

j=1..p, so that  P(Xj=1|θθθθ=θ)=Φ(θ-bj).  In the case of the 1pno generator, λj=
1

2
, j=1..p, 

γj= 
jb

2
, j=1..p, and σj

2
=(1-λj

2
)=

1

2
, j=1..p.  It follows, then, that   

 

(15.67)  RY=
1

2
11

'
+

1

2
I,        

 

 

and  

 

 

(15.68)  ρ*
=

(p -1)

(p +1)
.      

 

 

Note, then, that the p parameters, bj, j=1..p, of the 1pno generator play no role in 

governing the degree of latitude inherent to the replacement.  Should a given set of input 
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dichotomous variates be 1pno-replaceable, the minimum correlation of the replacement is 

a function of only the number of variates replaced.   

 

The Guttman and independence replacements 

 

 Consider the case of the ir generator that requires that: 

 

riG) θ∼fθ, in which fθ is continuous but unspecified, 

 

and 

riiG) P(X=x|θθθθ=θo) =
j j

p
x 1-x

j o j o

j 1

P( 1| θ ) (1 P( 1| θ ))
=

= = − = =∏ X θ X θ  

 

in which   

 

 

(15.69)  P(Xj=1|θθθθ=θo)=1 if θo≥tj 

   =0 if θo<tj, for tj∈R 

     

 

Requirement (riiG) states that the form of the regression of each input variate on the 

replacement variate θ must be a "step-function."  Requirements (riG)-(riiG) will be called 

the Guttman ir (Gir) generator, for reasons that will shortly become clear.   

 If the set of input variates, Xj, j=1..p, are Gir-replaceable in a population P of 

objects under study, then it follows from (15.69) that the proportion of objects in P who 

score unity on input variate Xj is equal to    

 

 

(15.70)  P(Xj=1)

j

j j

- t

= P(X = 1| θ)dF(θ) = dF(θ) = 1- F(t )

∞ ∞

∞

∫ ∫     

 

in which F(s)=P(θ≤s).  Let  tj(k) indicate that tj is the kth largest in the ordering of the tj 

from the largest to the smallest, and rename each of the Xj by its associated tj(k).  For 

example, 
j(2)tX indicates that Xj has the 2nd largest value of tj.  It then follows from 

(15.70) that 

 

 

(15.71)  P(Xtj(1)=1)≤P(Xtk(2)=1)≤...≤P(Xtl(p)=1)      

 

 

That is, the numerical order of the magnitudes of the p marginal proportions P(Xj=1) is 

the reverse of that of the tj.  Moreover, only the following (p+1) response patterns P(X=x) 

have non-zero probabilities of occurence in population P: 
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(15.72)  P(
j(p)tX =0,

k(p-1)tX =0,...,
m(2)tX =0,

n(1)tX =0)     

  =
j(k)

p

t

j=1-

(1- P(X = 1| θ))dF(θ)

∞

∞

∏∫  

  =

j(p)

j(p)

t

j(p)

- t

1dF(θ) + 0dF(θ) = F(t )

∞

∞

∫ ∫  

 

  P(
j(p)tX =1,

k(p-1)tX =0,...,
m(2)tX =0,

n(1)tX =0) 

  =
j(p) j(k)

j(k) j(p)

t t

-

P(X = 1| θ) (1- P(X = 1| θ))dF(θ)
≠

∞

∞

∏∫  

  =

j(p) j(p-1) j( )

j(p) j(p-1)

t t t

j(p-1) j(p)

- t t

0dF(θ) + 1dF(θ) + 0dF(θ) = F(t ) - F(t )

∞

∞

∫ ∫ ∫  

  

  P(
j(p)tX =1,

k(p-1)tX =1,...,
m(2)tX =0,

n(1)tX =0) 

  =
j(p) j(p-1) j(k)

j(k) j(p), j(p-1)

t t t

-

P(X = 1| θ)P(X = 1| θ) (1- P(X = 1| θ))dF(θ)
≠

∞

∞

∏∫  

  =

j(p-1) j(p-2) j( )

j(p-1) j(p-2)

t t t

j(p-2) j(p-1)

- t t

0dF(θ) + 1dF(θ) + 0dF(θ) = F(t ) - F(t )

∞

∞

∫ ∫ ∫  

  ..... 

  ..... 

  =P(
j(p)tX =1,

k(p-1)tX =1,...,
m(2)tX =1,

n(1)tX =1) 

  =
j(k)

j(k)

t

-

P(X = 1| θ)dF(θ)

∞

∞

∏∫  

  =

j(1)

j(1)

t

j(1)

- t

0dF(θ) + 1dF(θ) = 1- F(t )

∞

∞

∫ ∫  

 

 

That is, any response pattern for which 
j(r)tX =0 and

k(s)tX =1, r>s, j≠k, has a probability of 

occurrence equal to zero in P.  The set of (p+1) response patterns with non-zero 

probabilities of occurrence (i.e., those of (15.72)) comprises the well known 

parallelogram pattern investigated by Guttman (1950).  Input variates conforming to 

(riG)-(riiiG) are said to form a "perfect scale".     

 If the only response patterns with non-zero probabilities of occurrence in P are the 

(p+1) response patterns that form the perfect scale, then the p dichotomous input variates 
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are Gir-replaceable.  If (riG) is particularized to require that θ has a standard normal 

distribution, then the replacement variate has the construction formula 

 

 

(15.73)  θ=
p p

i j i

i=0 j=1

δ ( )∑ ∑X Z        

 

 

in which  

 

 
p

i j

j=1

δ ( )∑X =1 if 
p

j

j=1

∑X = i,  

      =0 otherwise, 

 

and 

 

 Z0~

j(p)

2

t

exp -
2

(1- P( = 1)) 2π

 
 
 

q

X
 q≤tj(p), 

 

 Zi~

j(p-i+1) j(p-i)

2

t t

exp -
2

(P( = 1) - P( = 1)) 2π

 
 
 

q

X X
  tj(p-i+1)≤q≤tj(p-i), i=1..(p-1),  

 

 

 Zp~

j(1)

2

t

exp -
2

(P( = 1)) 2π

 
 
 

q

X
  tj(1)≤q. 

 

Random variates Zi, i=0..p, have truncated standard normal densities, and the numerical 

values of the tj(k) are determined by (15.70).   

 

Example 

 

Let there be p=3 variates, and let these variates be Gir replaceable in a population P.  In 

particular, let it be the case that: 

 

P(X3=0,X1=0,X2=0)=.07 

P(X3=1,X1=0,X2=0)=.24 

P(X3=1,X1=1,X2=0)=.30 
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P(X3=1,X1=1,X2=1)=.39 

 

These proportions imply the marginals P(X3=1)=.93, P(X1=1)=.69, P(X2=1)=.39, and 

parameter values t3(3) = -1.476, t1(2) = -.496, t2(1)=.279.  The construction formula for the 

standard normal replacement variate is as per (15.73), with  

 

 Z0~

2

exp -
2

.07 2π

 
 
 

q

 q≤-1.476, 

 

 Z1~

2

exp -
2

.24 2π

 
 
 

q

  -1.476≤q≤-.496,  

 

 Z2~

2

exp -
2

.3 2π

 
 
 

q

  -.496≤q≤.279,  

 Z3~

2

exp -
2

.39 2π

 
 
 

q

  .279≤q  

 

  

 The replaceability brought about by (riG)-(riiiG) can be stated in the standard 

fashion by noting that knowledge of the marginal proportions P(Xj=1) allows for the 

recovery of the higher order proportions P(
j(p)tX =a,

k(p-1)tX =b,...,
m(2)tX =c,

n(1)tX =m), and, 

hence, all association parameters of the joint distribution of the input variates.  But (riG)-

(riiG) also imply that knowledge of the θ-score of any object drawn from population P 

allows for the reproduction of the object's response pattern: Any object, k, has scores of 

unity on those variates, j, for which θk>tj(i), and zeros on all other variates.  Similarly, 

knowledge that the jth variate is kth in the ordering of the tj allows one to deduce those 

objects in P who scored unity on it (those for which θk>tj(k)) and those who scored zero 

on it (every other object).  It follows that the full object by variate response matrix in 

population P can be reproduced through knowledge of only the θ-scores of the objects 

and the tj parameters of the variates.  

 Consider, on the other hand, the ir generator that requires that: 

 

riI) θ∼fθ, in which fθ is continuous but unspecified, 

 

and 

riiI) P(X=x|θθθθ=θo) =
j j

p
x 1-x

j o j o

j 1

P( 1| θ ) (1 P( 1| θ ))
=

= = − = =∏ X θ X θ  
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in which   

 

 P(Xj=1|θθθθ=θo)=P(Xj=1) ∀ θo and j=1..p 

 

Requirement (riiI) states that the regression of each input variate on the replacement 

variate θ must be a flat-line.  That is, each input variate must be unrelated to the 

replacement variate.  Requirements (riI)-(riiI) will be called the independence (Iir) 

generator (see Holland, 1990, for related discussion of the Guttman and Independence 

generators). 

 Consider, once again, the 2pno generator.  Now,  

 

 

(15.74)  as aj→∞, 

 

  ))b(a( jj −θΦ =P(Xj=1|θθθθ=θ)→1 when θ≥bj    

       →0 when θ<bj. 

 

Hence, as the aj parameters become indefinitely large, the regression functions of the 

2pno replacement become step-functions, and the 2pno and Gir replacements converge to 

equivalent replacements.  But it is also the case that if aj→∞, j=1..p, then, from (15.64), 

ρ*→1.  Hence, the Gir replacement is a 2pno replacement in which, additionally, it is 

insisted that all replacement variates be linearly related.  If (Gir) is refined by insisting 

that θ have the standard normal distribution, then all latitude inherent to set C is removed. 

That is, the replacement can be made unique.  In fact, the Gir replacement is the only 

finite p ir replacement in which Card(C)=1.     

 On the other hand, in the Iir replacement, the requirement that 

P(Xj=1|θθθθ=θo)=P(Xj=1) ∀ θo, j=1..p, can be re-stated as the requirement that  

j o

d
P( = 1| = θ ) = 0

d
X θ

θ
∀ θo, j=1..p.  Because, when aj=0, 

d

dθ
))b(a( jj −θΦ =0 for all 

∀ θo, the Iir can be represented as a 2pno replacement in which the regression functions 

must have the form P(Xj=1|θθθθ=θo)=cj+ j o jΦ(a (θ - b )) , with aj=0, j=1..p, and cj=P(Xj=1)-

Φ(0).  But if aj=0, j=1..p, then, from (15.64), ρ*
=-1.  That is, the latitude inherent to the Iir 

replacement is at a maximum.  It can then be summarized that the Gir and Iir 

replacements are at opposite extremes in regard the latitude they allow with regard the set 

of replacement variates constructed under each.  When the latent variable modeller tests 

an hypothesis of Gir replaceability of some particular set of input variates, he is testing 

whether the input variates are 2pno-replaceable by a single replacement variate.  When he 

tests an hypothesis of ir-replaceability of a particular set of input variates against the 

standard alternative that the variates "are described by the independence model", he is 

then, in fact, testing an hypothesis that the latitude inherent to the replacement of these 

variates is less than the maximum allowed under the Iir replacement.  
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