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between the nickel probe and the background material is 
calculated by: 
 

0 p-bm
eff

p-bm2

P h
k

A T



                                                             (1) 

 
As per ISO22007-2 [6], the procedure for measuring the 

thermal conductivity of a thin film is: 
 
1. A reference test with the thin film sensor alone 

between two slabs of the background material to 
determine the effective thermal conductivity of the 
Kapton layer together with the adhesive, 

2. An experiment with the sensor sandwiched 
between two identical pieces of the sample, 
supported by the slabs, to determine the effective 
thermal conductivity of the series combination of 
the adhesive layer, the Kapton layer, and the 
sample. 
 

Then, according to ISO22007-2 [6], the effective 
thermal conductivity of the thin film, ks, of thickness, hs, 
should be found from [6,11]: 

 

tot b,s b,Kap&adhR R R                                                     (2) 

 
or, equivalently, the following relation [6,10]: 
 

Kap&adh s Kap&adhs

eff s Kap&adh

h h hh

k A k A k A


                                  (3) 

 
However, the ISO22007-2 standard notes that tests on 

samples of different thicknesses or with different clamping 
pressures may be necessary to eliminate mathematically the 
influence of thermal contact resistances [6].  Also, at 
relatively low contact pressures, TCR between contacting 
surfaces can be much higher than the bulk resistance of a 
sample [12,13]. Therefore, the following method for 
deconvoluting the effects of TCR from TPS thin film 
thermal conductivity measurements is developed and 
validated.  
 
Improved TPS thin film method 

Deconvoluting the effects of the TCR in the TPS test 
column is of vital importance for obtaining accurate values 
of bulk thermal conductivity for thin films. The thermal 
resistance network of the TPS test column is shown in Fig. 
2. Therefore, the total the thermal resistance in the TPS test 
column is: 

 

tot c,bm-s b,s c,s-Kap b,Kap&adh c,adh-pR R R R R R                                      

 

Kap&adhs

s Kap&adh

hh
TCR

k A k A
                                       (4) 

 

where TCR = Rc,bm-s + Rc,s-Kap + Rc,adh-p is defined as the total 
contact resistance of the test column. In Eq. (4), the term 
Rb,Kap&adh takes the effect of Rc,Kap-adh into account. By 
comparing Eqs. (2) and (4), it is clear that the effective 
thermal conductivity found for the sample by Eq. (2) is not 
the true bulk thermal conductivity of the sample and 
includes the effects of the TCRs of the TPS test column. In 
fact, it also includes the effect of TCR between the Kapton 
layer and the background material due to the performed 
reference tests, which may induce additional error in the 
measurements by the standard method because such a TCR 
does not exist in the measurement of the sample. 
 

 
Fig. 2. Thermal resistance network of the TPS test column 

 
For convenience, Eq. (4) is rewritten as follows: 
 

s
tot

s

h
R R

k A
                                                                (5) 

 
where R' = hKap&adh / (kKap&adh A) + TCR. The total thermal 
resistance in Eq. (5) should be back-calculated by 
substituting the values of hs, ks, hKap&adh, and kKap&adh into Eq. 
(3). For more clarification, Eq. (3) is rewritten as follows: 
 

 
 

s entered into the software
tot

s reported by the software

h
R

k A
  

       
 
 

Kap&adh entered into the software

Kap&adh entered into the software

h

k A
                            (6) 

 
After performing measurements for at least two 

thicknesses of a sample, the bulk thermal conductivity of 
the sample can be obtained by performing a linear 
regression between the obtained data of total resistance 
versus thickness. As shown in Eq. (5), the slope and 
intercept of such a line will yield the bulk thermal 
conductivity of the sample and the resistance, R', 
respectively. The developed method has the following 
advantages: 

 
1. Accurate measurement of the bulk thermal 

conductivity of thin films,  
2. Elimination of the previously needed reference 

tests and the possibility of entering any values for 
hs, hKap&adh, and kKap&adh into the software due to 
the usage of the same values in back-calculation of 
the total resistance, and 

3. Elimination of the unwanted noise of the TCR 
between the Kapton layer and the background 
material induced by the standard reference tests. 

 

Rc,bm-s Rb,s Rc,s-Kap Rb,Kap Rc,Kap-adh Rb,adh Rc,adh-p

TI TII

Rb,Kap&adh
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The downside of the proposed method is the need for 
performing tests for at least two thicknesses of the same 
sample, which may not be available.  
 
GHF method 

The details of the GHF method and the device can be 
found elsewhere, see for example [4,7]. The total resistance 
of a sample measured by the GHF testbed is the summation 
of the sample bulk thermal resistance and the TCRs 
between the sample and the fluxmeters, as follows: 

 

s
tot

s

h
R TCR

k A
                                                            (7) 

 
Therefore, similar to the modified TPS method, the 

thermal conductivity of the sample and the TCR of the test 
column should be obtained from a linear regression through 
the data of total resistance versus thickness of the sample. 
 
RESULTS AND DISCUSSION 

The bulk thermal conductivities of three thin film 
materials, ETFE, GDL and Nafion membrane, were 
measured by TPS and GHF methods.  Multiple thicknesses 
of each sample type were tested, and the data was processed 
to eliminate the effects of contact resistances from the 
results.  

Thickness measurements by the TUC_RUC device 
showed no change in the thickness of ETFE and Nafion 
films under pressure. However, as shown by the TUC_RUC 
measurements at 10 bar pressure, the thicknesses of GDL 
24BA and GDL 34BA can decrease up to 18 % and 14 %, 
respectively. Accordingly, the expected thicknesses under 
pressure were used in calculations of the GDL samples. 
 
ETFE results 

The measured thermal conductivities at different 
pressures are shown in Fig. 3 next to the results of the 
conventional TPS thin film theory. Figure 3 shows a 
consistent measurement of thermal conductivity of ETFE 
by the modified TPS method and the GHF method. In 
addition, comparing the obtained consistent thermal 
conductivity values from the modified TPS method with the 
values from the conventional TPS method further uncovers 
the significant effects of TCR in the results of the 
conventional method, up to 67% relative difference for the 
11 μm ETFE film. As shown in Fig. 3, the TCR effects 
decrease as the thickness of ETFE increases, the reason of 
which is decrease in the share of the TCRs in the total 
resistance with an increase in the thickness of ETFE. The 
maximum uncertainties (confidence intervals) in Fig. 3 are 
6.7% for the proposed modified TPS method and 7.5% for 
the GHF method. The average value of thermal 
conductivity of ETFE is 0.174 ± 0.002 W·m-1·K-1 from the 
modified TPS method and 0.177 ± 0.002 W·m-1·K-1 from 
the GHF method. 

 
Nafion results 

The measured bulk thermal conductivity of Nafion at 
different pressures is shown in Fig. 4. The relative 

difference between the thermal conductivity results of the 
two methods, shown in Fig. 4, is about 13.5%. The average 
thermal conductivity of Nafion measured by the modified 
TPS method is 0.243 ± 0.007 W·m-1·K-1, whereas the 
average value measured by the GHF method is 0.214 ± 
0.003 W·m-1·K-1. 

 

 
Fig. 3. Thermal conductivity of ETFE versus pressure 

 
 

 

 
Fig. 4. Thermal conductivity of Nafion versus pressure 

 
GDL results 

For GDL, two samples, namely GDL 24BA and GDL 
34BA, are measured. The measured bulk thermal 
conductivity of GDL at different pressures is shown in Fig. 
5. As shown in Fig. 5, thermal conductivity of GDL 
increases with an increase in pressure. The reason for this 
behavior is given in several studies in literature [4,14,15] 
and can briefly be restated as increase in the area of point 
contacts between the carbon fibers in GDL by increasing 
pressure. The thermal conductivity values of GDL 
measured by the two methods are about 16% different from 
each other which could mainly be attributed to hysteresis 
behavior of GDL materials under compressive load due to 
their fibrous porous structure as explained in details in Ref. 
[14]. In the GHF testbed, the fluxmeters undergo a series of 
thermal expansions and contractions until the device 
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reaches the steady state, whereas in the TPS testbed, these 
effects are not present, as it is a transient and fast test. 
Accordingly, GDL experiences some hysteresis effects in 
the GHF testbed at each pressure increment, whereas the 
TPS results for GDL are free of such effects. The maximum 
uncertainties (confidence intervals) in the obtained values 
of GDL thermal conductivity are 3.4% for the results of the 
modified TPS method and 6.6% for the results of the GHF 
method. 
 

 
Fig. 5. Thermal conductivity of GDL versus pressure 

 
CONCLUSIONS 

In this study, the conventional TPS thin film theory was 
modified by deconvoluting the effects of TCRs in the TPS 
test column. The proposed modification can also eliminate 
the need for conducting any reference tests required by the 
conventional method. Instead, one should conduct 
measurements on at least two thicknesses of the same 
sample. To validate the developed method, ETFE sheets, 
Nafion films, and GDL samples were tested by both the 
developed method and the GHF method. Overall, when 
selecting a measurement method for measuring thermal 
conductivity of a thin film or coating, the mechanical 
behavior of the sample should be taken into consideration. 
However, considering the much longer time required for 
GHF measurements compared to modified TPS tests, one 
can conclude that the proposed method is a valuable and 
efficient tool for accurate measurement of thermal 
conductivity of thin films and coatings. 
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NOMENCLATURE 
A              Cross sectional area, m2 
h               Thickness, m 

k               Thermal conductivity, W·m-1·K-1 
P0             Constant output power of the sensor, W 
R               Thermal resistance, K/W 
R'              A combination of bulk and the thermal contact 

resistances in the TPS test column, K/W 
T               Temperature, K 
TI              Temperature of the surface of the background 

material facing the sensor, K 
TII             Temperature of the nickel probe, K 
Greek letters 
Δ               Difference operator 
Subscripts 
I                Surface of the background material facing the 

sensor 
II               Surface of the nickel probe 
adh            Adhesive sticking the Kapton layer to the 

nickel probe 
b                Bulk property 
bm             Background material 
c                Contact 
eff             Effective property 
Kap           Kapton insulating layer 
p                Probe 
s                Sample 
tot             Total 
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