
1 Graph Basics

What is a graph?

Graph: a graph G consists of a set of vertices, denoted V (G), a set of edges, denoted E(G),

and a relation called incidence so that each edge is incident with either one or two vertices

- its ends. We assume that V (G) and E(G) are finite.

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this

case we let uv denote such an edge.

Loops, Parallel Edges, and Simple Graphs: An edge with only one endpoint is called a

loop. Two (or more) distinct edges with the same ends are called parallel. A graph is simple

if it has no loops or parallel edges.

Drawing: It is helpful to represent graphs by drawing them so that each vertex corresponds

to a distinct point, and each edge with ends u, v is realized as a curve which has endpoints

corresponding to u and v (a loop with end u is realized as a curve with both endpoints

corresponding to u). Below is a drawing of a famous graph.

Figure 1: the Petersen Graph
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Standard Graphs

Null graph the (unique) graph with no vertices or edges.

Complete graph Kn a simple graph on n vertices every two of which are adjacent.

Path Pn a graph whose vertex set may be numbered {v1, . . . , vn} and

edges may be numbered {e1, . . . , en−1} so that every ei has

endpoints vi and vi+1. The ends of the path are v1, vn.

Cycle Cn a graph whose vertex set may be numbered {v1, . . . , vn} and

edges may be numbered {e1, . . . , en} so that every ei has

endpoints vi and vi+1 (modulo n)

Subgraph: If G is a graph and H is another graph with V (H) ⊆ V (G) and E(H) ⊆ E(G)

with the same incidence relation on these sets, we say that H is a subgraph of G and we write

H ⊆ G. If H1, H2 ⊆ G we let H1∪H2 denote the subgraph of G with vertices V (H1)∪V (H2)

and edges E(H1)∪E(H2). We define H1∩H2 analogously. A path (cycle) of G is a subgraph

of G which is a path (cycle).

Degree: The degree of a vertex v, denoted deg(v) is the number of edges incident with v

where loops are counted twice.

Theorem 1.1 For every graph G

∑

v∈V (G)

deg(v) = 2|E(G)|

Proof: Each edge contributes exactly 2 to the sum of the degrees. ¤

Corollary 1.2 Every graph has an even number of vertices of odd degree.

Isomorphic: We say that two graphs G and H are isomorphic if there exist bijections

between V (G) and V (H) and between E(G) and E(H) which preserve the incidence relation.

Informally, we may think of G and H as isomorphic if one can be turned into the other by

renaming vertices and edges.

Connectivity

Walk: A walk W in a graph G is a sequence v0, e1, v1, . . . , envn so that v0, . . . , vn ∈ V (G),

e1, . . . , en ∈ E(G), and every ei has ends vi−1 and vi. We say that W is a walk from v0 to vn
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with length n. If v0 = vn we say the W is closed, and if v0, . . . , vn are distinct, then (abusing

notation) we call this walk a path.

Connected: A graph G is connected if for every u, v ∈ V (G) there is a walk from u to v.

Proposition 1.3 If there is a walk from u to v, then there is a path from u to v.

Proof: Choose a walk W from u to v, say u = v0, e1, v1, . . . , en, vn = v of minimum length.

Then v0, v1, . . . , vn are distinct, so W is a path. ¤

Proposition 1.4 If G is not connected, there is a partition {X, Y } of V (G) so that no edge

has an end in X and an end in Y .

Proof: Choose u and v so that there is no walk from u to v. Now, let X ⊆ V (G) be the set

of all vertices w so that there exists a walk from u to w and let Y = V (G) \X. Then u ∈ X

and v ∈ Y so X,Y 6= ∅. Furthermore, there cannot be an edge with an end in X and an end

in Y (why?). ¤

Proposition 1.5 If H1, H2 ⊆ G are connected and H1∩H2 6= ∅, then H1∪H2 is connected.

Proof: Let u, v ∈ V (H1 ∪H2) and choose p ∈ V (H1) ∩ V (H2). Now, there exists a walk W1

from u to p in H1 ∪H2 (in H1 if u ∈ V (H1) and otherwise in H2). Similarly, there is a walk

W2 from p to v. By concatenating W1 and W2, we obtain a walk from u to v. Since u, v

were arbitrary vertices, it follows that G is connected. ¤

Component: A component of G is a maximal nonempty connected subgraph of G. We let

comp(G) denote the number of components of G.

Theorem 1.6 Every vertex is in a unique component of G.

Proof: Every vertex v is in a connected subgraph (consisting of only that vertex with no

edges), so v must be contained in at least one component. However, by the previous propo-

sition, no two components can share a vertex. It follows that every vertex is in exactly one,

as required. ¤

Cut-edge: An edge e is called a cut-edge if there is no cycle containing e.
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Theorem 1.7 Let G be a graph, let e ∈ E(G) be an edge with ends u, v and let G′ be the

graph obtained from G by deleting e. Then one of the following holds:

1. e is a cut-edge of G and u, v are in different components of G′.

2. e is not a cut-edge of G and u, v are in the same component of G′.

Further, comp(G′) = comp(G) + 1 in the first case and comp(G′) = comp(G) in the second.

Proof: To see that 1 or 2 holds, observe that e is in a cycle of G ⇔ there is a path in

G′ from u to v ⇔ u and v are in the same component of G′. To see how comp(G) and

comp(G′) are related, let H1, . . . , Hm be the components of G′ and assume that u ∈ V (Hi)

and v ∈ V (Hj). If i 6= j, then Hi ∪ Hj together with the edge e is a component of G and

comp(G′) = comp(G)+1. If i = j, the vertex set of every component of G is also the vertex

set of a component of G′, so we have comp(G′) = comp(G). ¤

Bipartite, Eulerian, and Hamiltonian

Bipartite: A bipartition of a graph G is a pair (A,B) of disjoint subsets of V (G) with

A ∪ B = V (G) so that every edge has one end in A and one end in B. We say that G is

bipartite if it has a bipartition.

Complete Bipartite: The complete bipartite graph Km,n is a simple bipartite graph with

bipartition (A,B) where |A| = m, |B| = n, and every vertex in A is adjacent to every vertex

in B.

Theorem 1.8 For every graph G, the following are equivalent (the length of a cycle is its

number of edges).

(i) G is bipartite

(ii) G has no cycle of odd length

(iii) G has no closed walk of odd length
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Proof: First we show that (ii) and (iii) are equivalent. If G has a cycle of odd size, then it

has a closed walk of odd length, so (ii) implies (iii) On the other hand, if G has a closed

walk of odd length, then choose such a walk v0, e1, . . . , en, vn of minimum length. We claim

that {v0, . . . , vn} and {e1, . . . , en} form a cycle of odd length - or equivalently v1, . . . , vn are

distinct. Suppose (for a contradiction) that vi = vj for some 1 ≤ i < j ≤ n. If j − i is odd,

then vi, ei, . . . , vj is a shorter closed walk of odd length - a contradiction. If j − i is even,

then v0, e1, v1, . . . , vi, vj+1, . . . , vn is a shorter closed walk of odd length - again contradicting

our assumption. Thus (iii) implies (ii).

It is immediate that (i) implies (iii), so to complete the proof, it suffices to show that

(iii) implies (i) To do this, let G be a graph which satisfies (iii), and assume (without loss)

that G is connected. Now choose a vertex u ∈ V (G), let A ⊆ V (G) (B ⊆ V (G)) be the set

of all vertices v so that there is a path of odd length (even length) from u to v. Suppose

(for a contradiction) that there exists a vertex w ∈ A ∩ B. Then there is a walk W1 from u

to w of odd length, and a walk W2 from u to w of even length. By concatenating W1 with

the reverse of W2 we obtain a closed walk of odd length - a contradiction. It follows that

A ∩ B = ∅. Since G is connected, we have A ∪ B = V (G). Now, (A,B) is a bipartition of

G, so G satisfies (i) - as required. ¤

Deletion: If G is a graph and S ⊆ E(G), we let G−S denote the graph obtained from G by

deleting every edge in S. Similarly, if X ⊆ V (G), we let G−X denote the graph obtained

from G by deleting every vertex in X and any edge incident with such a vertex.

Induced Subgraph: A subgraph H ⊆ G is induced if E(H) contains every edge with

both ends in V (H). Equivalently, H is an induced subgraph of G if and only if H =

G− (V (G) \ V (H)).

Theorem 1.9 If G is a simple graph, then G is bipartite if and only if every induced cycle

of G has even length.

Proof: In light of the above result, to prove this theorem, we need only show that every

graph with a cycle of odd length has an induced cycle of odd length. To see this G be a

simple graph which is not bipartite, and choose an odd cycle C ⊆ G of shortest length. If

C is not induced, say e ∈ E(G) \ E(C) has both ends in V (C), then there is a smaller odd

cycle using edges in E(C)∪{e} - a contradiction. Thus, C is an induced cycle of odd length

- as required. ¤
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Theorem 1.10 Every loopless graph G has a bipartite subgraph H with |E(H)| ≥ 1
2
|E(G)|.

Proof: Choose disjoint sets A,B ⊆ V (G) with A∪B = V (G) so that the number of edges of

G with one end in A and one end in B is maximum. Let H be the subgraph of G with vertex

set V (G) and all edges with one end in A and one end in B. Let H ′ be the subgraph of G

with vertex set V (G) and all edges with either both ends in A or both ends in B. Let v ∈ A

and assume that v has s edges with other endpoint in A and t edges with other endpoint in

B. If s > t, then moving v to B increases the number of edges with one end in A and one in

B - a contradiction. Thus, the degree of v in H is at least the degree of v in H ′. Since this

holds for every vertex, it follows from Theorem 1.1 that |E(H)| ≥ |E(H ′)| and this implies

|E(H)| ≥ 1
2
|E(G)| as required. ¤

Proposition 1.11 If G is a connected graph in which every vertex has degree ≥ 2, then G

contains a cycle.

Proof: If G has a loop edge, then this edge with its endpoint forms a cycle. Thus, we may

assume (without loss) that G has no loop. Now, construct a walk v0, e1, v2, . . . in a greedy

manner by beginning at a vertex v0, following an edge e1 to a new vertex v1, then following

a new edge e2 6= e1 to a vertex v2, and so on (maintaining the property that ei+1 6= ei),

stopping when we first revisit a vertex. Since each vertex has degree ≥ 2 (and no loops)

it is always possible to choose ei+1 with ei+1 6= ei. Since V (G) is finite, at some point we

have vi = vj for some i < j and our procedure terminates. Now vi, ei+1, . . . , vj forms a cycle.

¤

Proposition 1.12 If G is a graph in which every vertex has even degree, then there exists

a list of cycles C1, . . . , Cm of G so that every edge appears in exactly one of these cycles.

Proof: Choose a maximal list of cycles C1, . . . , Cm which are pairwise edge-disjoint (i.e.

they have disjoint edge sets). Suppose (for a contradiction) that some component H of

G − (∪m
i=1E(Ci)) has at least one edge. Since every vertex of G has even degree, it follows

that every vertex in H has even degree. Since H is connected with E(H) 6= ∅, it then follows

that every vertex of H has degree ≥ 2. But then, the previous proposition shows that H

contains a cycle, contradicting our choice of C1, . . . , Cm. Thus ∪m
i=1E(Ci) = E(G), and every

edge occurs exactly once in C1, . . . , Cm as required. ¤
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Eulerian: A closed walk of a graph G is called Eulerian if it uses every edge exactly once.

A graph is Eulerian if it has an Eulerian walk.

Theorem 1.13 A connected graph G is Eulerian if and only if every vertex of G has even

degree.

Proof: The ”only if” direction is immediate. For the ”if” direction, assume that every

vertex of G has even degree, and choose a closed walk v0, e1, . . . , vn of maximum length

subject to the constraint that each edge is used at most once. Let S = {e1, . . . , en}, and let

X = {v0, . . . , vn}. Suppose (for a contradiction) that S 6= E(G). We claim that there must

exist an edge e ∈ E(G) \ S with at least one end in X. This is certainly true if X = V (G).

If X ⊂ V (G), then since G is connected, there must be an edge e with one end in X and one

in V (G)\X, so e ∈ E(G)\S has one end in X. Now, let vi ∈ X be an end of e and consider

the component H of G − S which contains e and vi. It follows from our assumptions that

every vertex of H has even degree, so by the previous proposition, we may choose a cycle C

of H which contains the edge e (and thus the vertex vi). Now we may extend the walk W

by taking the initial part of this walk from v0 to vi, then traversing the cycle C once from vi

back to itself, and then taking the final part of W from vi to vn. This new walk contradicts

our original choice. Thus S = E(G), and W is an Eulerian walk. ¤

Hamiltonian: A cycle C of a graph G is Hamiltonian if V (C) = V (G). A graph is

Hamiltonian if it has a Hamiltonian cycle.

Observation 1.14 Let G be a graph and X ⊆ V (G). If |X| < comp(G−X), then G is not

Hamiltonian.

Proof: Suppose (for a contradiction) that G has a Hamiltonian cycle C ⊆ G. Then for every

X ⊆ V (G) we must have |X| ≥ comp(C −X) ≥ comp(G−X), a contradiction. ¤

Theorem 1.15 Let G be a simple graph with n ≥ 3 vertices. If deg(u) + deg(v) ≥ n for

every two non-adjacent vertices u, v, then G is Hamiltonian.

Proof: We proceed by induction on t =
(

n
2

) − |E(G)|. If t = 0, then G is complete, so it

has a Hamiltonian cycle. Thus we may assume that t > 0 and we may choose two distinct

non-adjacent vertices u, v. Now, add a new edge with e with ends u, v to form the graph
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G′. By induction, G′ has a Hamiltonian cycle. If this cycle does not use e, then it is also

a Hamiltonian cycle of G, so we are done. Thus, we may assume that this cycle uses e.

Therefore, we may number V (G) as v = v1, v2, . . . , vn = u so that vi is adjacent to vi+1 for

1 ≤ i ≤ n− 1. Set

P = {vi : i ≥ 2 and vi is adjacent to v1}
Q = {vi : i ≥ 2 and vi−1 is adjacent to vn}

Then |P |+ |Q| = deg(v) + deg(u) ≥ n and since P ∪Q ⊆ {v2, . . . , vn}, it follows that there

exists 2 ≤ i ≤ n with vi ∈ P ∩ Q, so there is an edge e with ends v1 and vi and an edge

e′ with ends vn and vi−1. Using these two edges, we may form a Hamiltonian cycle in G as

desired. ¤


