
4 Connectivity

2-connectivity

Separation: A separation of G of order k is a pair of subgraphs (H,K) with H ∪K = G

and E(H ∩K) = ∅ and |V (H) ∩ V (K)| = k. Such a separation is proper if V (H) \ V (K)

and V (K) \ V (H) are nonempty.

Observation 4.1 G has a proper separation of order 0 if and only if G is disconnected.

Cut-vertex: A vertex v is a cut-vertex if comp(G− v) > comp(G).

Observation 4.2 If G is connected, then v is a cut-vertex of G if and only if there exists a

proper 1-separation (H, K) of G with V (H) ∩ V (K) = {v}.

Proposition 4.3 Let e, f be distinct non-loop edges of the graph G. Then exactly one of

the following holds:

(i) There exists a cycle C with e, f ∈ E(C)

(ii) There is a separation (H, K) of order ≤ 1 with e ∈ E(H) and f ∈ E(K).

Proof: It is clear that (i) and (ii) are mutually exclusive, so it suffices to show that (i) or

(ii) holds. For this, we may assume that G is connected, and set k to be the length of the

shortest walk containing e, f . We proceed by induction k. For the base case, if k = 2, then

we may assume e = uv and f = vw. If u,w are in the same component of the graph G− v,

then (i) holds. Otherwise, v is a cut-vertex and (ii) holds.

For the inductive step, we may assume k ≥ 3. Let f = uv and choose an edge f ′ = vw

so that there is a walk containing e, f ′ of length k − 1. First suppose that there is a cycle

C containing e, f ′. If C − v and u are in distinct components of G − v, then v is a cut-

vertex and (ii) holds. Otherwise, we may choose a path P ⊆ G − v from u to a vertex of

V (C) \ {v}. Now P ∪C + f has a cycle which contains e, f , so (i) holds. If there is no cycle

containing e, f ′, then it follows from our inductive hypothesis that there is a 1-separation

(H, K) with e ∈ E(H) and f ′ ∈ E(K). Suppose (for a contradiction) that f ∈ E(H). Then

V (H) ∩ V (K) = {v}, the shortest walk containing e, f has length k and the shortest walk
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containing e, f ′ has length < k which is contradictory. Thus, f ∈ E(K) and (H, K) satisfy

(ii). This completes the proof. ¤

2-connected: A graph G is 2-connected if it is connected, |V (G)| ≥ 3, and G has no

cut-vertex.

Theorem 4.4 Let G be a graph with at least three vertices. Then the following are equiva-

lent:

(i) G is 2-connected

(ii) For all x, y ∈ V (G) there exists a cycle C with x, y ∈ V (C).

(iii) G has no vertex of degree 0, and for all e, f ∈ E(G) there exists a cycle C with

e, f ∈ E(C).

Proof: It is easy to see that (iii) implies (ii): to find a cycle C with x, y ∈ V (C) just choose

an edge e incident with x and an edge f incident with y and apply (iii) to e, f . Trivially, (ii)

implies (i). So, to complete the argument, we need only show that (i) implies (iii), but this

is an immediate consequence of the previous proposition. ¤

Block: A block of G is a maximal connected subgraph H ⊆ G so that H does not have a

cut-vertex. Note that if H is a block, then either H is 2-connected, or |V (H)| ≤ 2.

Proposition 4.5 If H1, H2 are distinct blocks in G, then |V (H1) ∩ V (H2)| ≤ 1.

Proof: Suppose (for a contradiction) that |V (H1) ∩ V (H2)| ≥ 2. Let H ′ = H1 ∪ H2, let

x ∈ H ′ and consider H ′ − x. By assumption, H1 − x is connected, and H2 − x is connected.

Since these graphs share a vertex, H ′− x = (H1− x)∪ (H2− x) is connected. Thus, H ′ has

no cut-vertex. This contradicts the maximality of H1, thus completing the proof. ¤

Block-Cutpoint graph: If G is a graph, the block-cutpoint graph of G, denoted BC(G)

is the simple bipartite graph with bipartition (A,B) where A is the set of cut-vertices of G,

and B is the set of blocks of G, and a ∈ A and b ∈ B adjacent if the block b contains the

cut-vertex a.

Observation 4.6 If G is connected, then BC(G) is a tree.
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Proof: Let (A,B) be the bipartition of BC(G) as above. It follows from the connectivity of

G that BC(G) is connected. If there is a cycle C ⊆ BC(G), then set H to be the union of

all blocks in B ∩ V (C). It follows that H is a 2-connected subgraph of G (as in the proof

of the previous proposition). This contradicts the maximality of the blocks in B ∩ V (C).

¤

Ears: An ear of a graph G is a path P ⊆ G which is maximal subject to the constraint that

all interior vertices of P have degree 2 in G. An ear decomposition of G is a decomposition

of G into C, P1, . . . , Pk so that C is a cycle of length ≥ 3, and for every 1 ≤ i ≤ k, the

subgraph Pi is an ear of C ∪ P1 ∪ . . . Pi.

Theorem 4.7 A graph G is 2-connected if and only if it has an ear decomposition.

Proof: For the ”if” direction, let C,P1, . . . , Pk be an ear decomposition of G. We shall prove

that G is 2-connected by induction on k. As a base, if k = 0, then G = C is 2-connected.

For the inductive step, we may assume that k ≥ 1 and that C ∪P1 ∪ . . . Pk−1 is 2-connected.

It then follows easily that G = C ∪ P1 ∪ . . . Pk is also 2-connected.

We prove the ”only if” direction by a simple process. First, choose a cycle C ⊆ G of length

≥ 3 (this is possible by Theorem 4.4). Next we choose a sequence of paths P1, . . . , Pk as

follows. If G′ = C ∪P1∪ . . . Pi−1 6= G, then choose an edge e ∈ E(G′) and f ∈ E(G)\E(G′),

and then choose a cycle D ⊆ G containing e, f (again using 4.4). Finally, let Pi be the

maximal path in D which contains the edge f but does not contain any edge in E(G′).

Then Pi is an ear of C ∪ P1 ∪ . . . Pi, and when this process terminates, we have an ear

decomposition. ¤

Menger’s Theorem

Theorem 4.8 Let G be a graph, let A,B ⊆ V (G) and let k ≥ 0 be an integer. Then exactly

one of the following holds:

(i) There exist k pairwise (vertex) disjoint paths P1, . . . , Pk from A to B.

(ii) There is a separation (H, K) of G of order < k with A ⊆ V (H) and B ⊆ V (K).

Proof: It is clear that (i) and (ii) are mutually exclusive, so it suffices to show that (i) or

(ii) holds. We prove this by induction on |E(G)|. As a base, observe that the theorem holds
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trivially when |E(G)| ≤ 1. For the inductive step, we may then assume |E(G)| ≥ 2. Choose

an edge e and consider the graph G′ = G− e. If G′ contains k disjoint paths from A to B,

then so does G, and (i) holds. Otherwise, by induction, there is a separation (H,K) of G′

of order < k with A ⊆ V (H) and B ⊆ V (K).

Now consider the separations (H + e, K) and (H, K + e) of G. If one of these separations

has order < k, then (ii) holds. Thus, we may assume that e has one end in V (H) \ V (K),

the other end in V (K) \ V (H), and both (H + e,K) and (H, K + e) have order k. Choose

(H ′, K ′) to be one of these two separations with E(H ′), E(K ′) 6= ∅ (this is possible since

|E(G)| ≥ 2) and set X = V (H ′) ∩ V (K ′) (note that |X| = k). Now, we apply the theorem

inductively to the graph H ′ for the sets A, X and to K ′ for the sets X, B. If there are k

disjoint paths from A to X in H ′ and k disjoint paths from X to B in K ′, then (i) holds.

Otherwise, by induction there is a separation of H ′ or K ′ in accordance with (ii), and it

follows that (ii) is satsified. ¤

Note: The above theorem implies Theorem 11.2 (König Egerváry). Simply apply the above

theorem to the bipartite graph G with bipartition (A,B). Then (i) holds if and only if

α′(G) ≥ k, and (ii) holds if and only if β(G) < k (here V (H) ∩ V (K) is a vertex cover).

Internally Disjoint: The paths P1, . . . , Pk are internally disjoint if they are pairwise vertex

disjoint except for their ends.

Theorem 4.9 (Menger’s Theorem) Let u, v be distinct non-adjacent vertices of G, and

let k ≥ 0 be an integer. Then exactly one of the following holds:

(i) There exist k internally disjoint paths P1, . . . , Pk from u to v.

(ii) There is a separation (H, K) of G of order < k with u ∈ V (H) \ V (K) and v ∈
V (K) \ V (H).

Proof: Let A = N(u) and B = N(v) and apply the above theorem to G− {u, v}. ¤

k-Connected: A graph G is k-connected if |V (G)| ≥ k + 1 and G − X is connected for

every X ⊆ V (G) with |X| < k. Note that this generalizes the notion of 2-connected from

Section 13. Also note that 1-connected is equivalent to connected.
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Corollary 4.10 A simple graph G with |V (G)| ≥ k + 1 is k-connected if and only if for

every u, v ∈ V (G) there exist k internally disjoint paths from u to v.

Line Graph: If G is a graph, the line graph of G, denoted L(G), is the simple graph with

vertex set E(G), and two vertices e, f ∈ E(G) adjacent if e, f share an endpoint in G.

Edge cut: If X ⊆ V (G), we let δ(X) = {xy ∈ E(G) : x ∈ X and y 6∈ X}, and we call any

set of this form an edge cut. If v ∈ V (G) we let δ(v) = δ({v}).

Theorem 4.11 (Menger’s Theorem - edge version) Let u, v be distinct vertices of G

and let k ≥ 0 be an integer. Then exactly one of the following holds:

(i) There exist k edge disjoint paths P1, . . . , Pk from u to v.

(ii) There exists X ⊆ V (G) with u ∈ X and v 6∈ X so that |δ(X)| < k.

Proof: Apply Theorem 4.8 to the graph L(G) for δ(u) and δ(v) and k. ¤

k-edge-connected: A graph G is k-edge-connected if G−S is connected for every S ⊆ E(G)

with |S| < k.

Corollary 4.12 A graph G is k-edge-connected if and only if for every u, v ∈ V (G) there

exist k pairwise edge disjoint paths from u to v.

Fans and Cycles

Subdivision: If e = uv is an edge of the graph G, then we subdivide e by removing the

edge e, adding a new vertex w, and two new edges uw and wv.

Observation 4.13

1. Subdividing an edge of a 2-connected graph yields a 2-connected graph.

2. Adding an edge to a k-connected graph results in a k-connected graph.

3. If G is k-connected and A ⊆ V (G) satisfies |A| ≥ k, then adding a new vertex to G

and an edge from this vertex to each point in A results in a k-connected graph.
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Fan: Let v ∈ V (G) and let A ⊆ V (G) \ {v}. A (v, A)-fan of size k is a collection of k

paths {P1, . . . , Pk} so that each Pi is a path from v to a point in A, and any two such paths

intersect only in the vertex v.

Lemma 4.14 If G is k-connected, v ∈ V (G) and A ⊆ V (G) \ {v} satisfies |A| ≥ k, then G

contains a (v,A)-fan of size k.

Proof: Construct a new graph G′ from G by adding a new vertex u and then adding a new

edge between u and each point of A. By the above observation, G′ is k-connected, and

u, v ∈ V (G′) are nonadjacent, so by Menger’s theorem there exist k internally disjoint paths

from u to v. Removing the vertex u from each of these paths yields a (v, A)-fan of size k in

G. ¤

Theorem 4.15 Let G be a k-connected graph with k ≥ 2 and let X ⊆ V (G) satisfy |X| = k.

Then there exists a cycle C ⊆ G with X ⊆ V (C).

Proof: Choose a cycle C ⊆ G so that |V (C) ∩ X| is maximum, and suppose (for a con-

tradiction) that X 6⊆ V (C). Choose a vertex v ∈ X \ V (C) and set k′ = min{k, |V (C)|}.
It follows from the above lemma that G has a (v, V (C))-fan of size k′, say {P1, . . . , Pk′}.
Since |X ∩ V (C)| < k, it follows that there exists a cycle C ′ ⊆ C ∪ P1 ∪ . . . ∪ Pk′ so that

{v} ∪ (X ∩ V (C)) ⊆ V (C ′). This contradiction completes the proof. ¤


