## 5 Directed Graphs

## What is a directed graph?

Directed Graph: A directed graph, or digraph, $D$, consists of a set of vertices $V(D)$, a set of edges $E(D)$, and a function which assigns each edge $e$ an ordered pair of vertices $(u, v)$. We call $u$ the tail of $e, v$ the head of $e$, and $u, v$ the ends of $e$. If there is an edge with tail $u$ and head $v$, then we let $(u, v)$ denote such an edge, and we say that this edge is directed from $u$ to $v$.

Loops, Parallel Edges, and Simple Digraphs: An edge $e=(u, v)$ in a digraph $D$ is a loop if $u=v$. Two edges $e, f$ are parallel if they have the same tails and the same heads. If $D$ has no loops or parallel edges, then we say that $D$ is simple.

Drawing: As with undirected graphs, it is helpful to represent them with drawings so that each vertex corresponds to a distinct point, and each edge from $u$ to $v$ is represented by a curve directed from the point corresponding to $u$ to the point corresponding to $v$ (usually we indicate this direction with an arrowhead).

Orientations: If $D$ is a directed graph, then there is an ordinary (undirected) graph $G$ with the same vertex and edge sets as $D$ which is obtained from $D$ by associating each edge $(u, v)$ with the ends $u, v$ (in other words, we just ignore the directions of the edges). We call $G$ the underlying (undirected) graph, and we call $D$ an orientation of $G$.

## Standard Diraphs

| Null digraph | the (unique) digraph with no vertices or edges. |
| :--- | :--- |
| Directed Path | a graph whose vertex set may be numbered $\left\{v_{1}, \ldots, v_{n}\right\}$ and <br> edges may be numbered $\left\{e_{1}, \ldots, e_{n-1}\right\}$ so that $e_{i}=\left(v_{i}, v_{i+1}\right)$ <br> for every $1 \leq i \leq n-1$. |
| Directed Cycle | a graph whose vertex set may be numbered $\left\{v_{1}, \ldots, v_{n}\right\}$ and <br> edges may be numbered $\left\{e_{1}, \ldots, e_{n}\right\}$ so that $e_{i}=\left(v_{i}, v_{i+1}\right)$ <br> (modulo $n$ ) for every $1 \leq i \leq n$ |
| Tournament | A digraph whose underlying graph is a complete graph. |

Subgraphs and Isomorphism: These concepts are precisely analogous to those for undirected graphs.

Degrees: The outdegree of a vertex $v$, denoted $\operatorname{deg}^{+}(v)$ is the number of edges with tail $v$, and the indegree of $v$, denoted $\operatorname{deg}^{-}(v)$ is the number of edges with head $v$.

Theorem 5.1 For every digraph $D$

$$
\sum_{v \in V(D)} d e g^{+}(v)=|E(D)|=\sum_{v \in V(D)} d e g^{-}(v)
$$

Proof: Each edge contributes exactly 1 to the terms on the left and right.

## Connectivity

Directed Walks \& Paths: A directed walk in a digraph $D$ is a sequence $v_{0}, e_{1}, v_{1}, \ldots, e_{n} v_{n}$ so that $v_{i} \in V(D)$ for every $0 \leq i \leq n$, and so that $e_{i}$ is an edge from $v_{i-1}$ to $v_{i}$ for every $1 \leq i \leq n$. We say that this is a walk from $v_{0}$ to $v_{n}$. If $v_{0}=v_{n}$ we say the walk is closed and if $v_{0}, v_{1}, \ldots, v_{n}$ are distinct we call it a directed path.

Proposition 5.2 If there is a directed walk from $u$ to $v$, then there is a directed path from $u$ to $v$.

Proof: Every directed walk from $u$ to $v$ of minimum length is a directed path.
$\delta^{+}$and $\delta^{-}$: If $X \subseteq V(D)$, we let $\delta^{+}(X)$ denote the set of edges with tail in $X$ and head in $V(G) \backslash X$, and we let $\delta^{-}(X)=\delta^{+}(V(G) \backslash X)$.

Proposition 5.3 Let $D$ be a digraph and let $u, v \in V(D)$. Then exactly one of the following holds.
(i) There is a directed walk from $u$ to $v$.
(ii) There exists $X \subseteq V(D)$ with $u \in X$ and $v \notin X$ so that $\delta^{+}(X)=\emptyset$.

Proof: It is immediate that (i) and (ii) are mutually exclusive, so it suffices to show that at least one holds. Let $X=\{w \in V(D)$ : there is a directed walk from $u$ to $w\}$. If $v \in X$ then (i) holds. Otherwise, $\delta^{+}(X)=\emptyset$, so (ii) holds.

Strongly Connected: We say that a digraph $D$ is strongly connected if for every $u, v \in$ $V(D)$ there is a directed walk from $u$ to $v$.

Proposition 5.4 Let $D$ be a digraph and let $H_{1}, H_{2} \subseteq D$ be strongly connected. If $V\left(H_{1}\right) \cap$ $V\left(H_{2}\right) \neq \emptyset$, then $H_{1} \cup H_{2}$ is strongly connected.

Proof: If $v \in V\left(H_{1}\right) \cap V\left(H_{2}\right)$, then every vertex has a directed walk both to $v$ and from $v$, so it follows that $H_{1} \cup H_{2}$ is strongly connected.

Strong Component: A strong component of a digraph $D$ is a maximal strongly connected subgraph of $D$.

Theorem 5.5 Every vertex is in a unique strong component of $D$.
Proof: This follows immediately from the previous proposition, and the observation that a one-vertex digraph is strongly connected.

Observation 5.6 Let $D$ be a digraph in which every vertex has outdegree $\geq 1$. Then $D$ contains a directed cycle.

Proof: Construct a walk greedily by starting at an arbitrary vertex $v_{0}$, and at each step continue from the vertex $v_{i}$ along an arbitrary edge with tail $v_{i}$ (possible since each vertex has outdegree $\geq 1$ ) until a vertex is repeated. At this point, we have a directed cycle.

Acyclic: A digraph $D$ is acyclic if it has no directed cycle.
Proposition 5.7 The digraph $D$ is acyclic if and only if there is an ordering $v_{1}, v_{2}, \ldots, v_{n}$ of $V(D)$ so that every edge $\left(v_{i}, v_{j}\right)$ satisfies $i<j$.

Proof: The "if" direction is immediate. We prove the "only if" direction by induction on $|V(D)|$. As a base, observe that this is trivial when $|V(D)|=1$. For the inductive step, we may assume that $D$ is acyclic, $|V(D)|=n \geq 2$, and that the proposition holds for all digraphs with fewer vertices. Now, apply the Observation 5.6 to choose a vertex $v_{n}$ with $d e g^{+}\left(v_{n}\right)=0$. The digraph $D-v_{n}$ is acyclic, so by induction we may choose an ordering $v_{1}, v_{2}, \ldots, v_{n-1}$ of $V\left(D-v_{n}\right)$ so that every edge $\left(v_{i}, v_{j}\right)$ satisfies $i<j$. But then $v_{1}, \ldots, v_{n}$ is such an ordering of $V(D)$.

Proposition 5.8 Let $D$ be a digraph, and let $D^{\prime}$ be the digraph obtained from $D$ by taking each strong component $H \subseteq D$, identifying $V(H)$ to a single new vertex, and then deleting any loops. Then $D^{\prime}$ is acyclic.

Proof: If $D^{\prime}$ had a directed cycle, then there would exist a directed cycle in $D$ not contained in any strong component, but this contradicts Theorem 5.5.

Theorem 5.9 If $G$ is a 2-connected graph, then there is an orientation $D$ of $G$ so that $D$ is strongly connected.

Proof: Let $C, P_{1}, \ldots, P_{k}$ be an ear decomposition of $G$. Now, orient the edges of $C$ to form a directed cycle, and orient the edges of each path $P_{i}$ to form a directed path. It now follows from the obvious inductive argument (on $k$ ) that the resulting digraph $D$ is strongly connected.

## Eulerian, Hamiltonian, \& path partitions

Proposition 5.10 Let $D$ be a digraph and assume that $\operatorname{deg}^{+}(v)=\operatorname{deg}^{-}(v)$ for every vertex $v$. Then there exists a list of directed cycles $C_{1}, C_{2}, \ldots, C_{k}$ so that every edge appears in exactly one.

Proof: Choose a maximal list of cycles $C_{1}, C_{2}, \ldots, C_{k}$ so that every edge appears in at most one. Suppose (for a contradiction) that there is an edge not included in any cycle $C_{i}$ and let $H$ be a component of $D \backslash \cup_{i=1}^{k} E\left(C_{i}\right)$ which contains an edge. Now, every vertex $v \in V(H)$ satisfies $\operatorname{deg}_{H}^{+}(v)=\operatorname{deg} g_{H}^{-}(v) \neq 0$, so by Observation 17.5 there is a directed cycle $C \subseteq H$. But then $C$ may be appended to the list of cycles $C_{1}, \ldots, C_{k}$. This contradiction completes the proof.

Eulerian: A closed directed walk in a digraph $D$ is called Eulerian if it uses every edge exactly once. We say that $D$ is Eulerian if it has such a walk.

Theorem 5.11 Let $D$ be a digraph $D$ whose underlying graph is connected. Then $D$ is Eulerian if and only if $\operatorname{deg}^{+}(v)=\operatorname{deg}^{-}(v)$ for every $v \in V(D)$.

Proof: The "only if" direction is immediate. For the "if" direction, choose a closed walk $v_{0}, e_{1}, \ldots, v_{n}$ which uses each edge at most once and is maximum in length (subject to this constraint). Suppose (for a contradiction) that this walk is not Eulerian. Then, as in the undirected case, it follows from the fact that the underlying graph is connected that there exists an edge $e \in E(D)$ which does not appear in the walk so that $e$ is incident with some
vertex in the walk, say $v_{i}$. Let $H=D-\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$. Then every vertex of $H$ has indegree equal to its outdegree, so by the previous proposition, there is a list of directed cycles in $H$ containing every edge exactly once. In particular, there is a directed cycle $C \subseteq H$ with $e \in C$. But then, the walk obtained by following $v_{0}, e_{1}, \ldots, v_{i}$, then following the directed cycle $C$ from $v_{i}$ back to itself, and then following $e_{i+1}, v_{i}, \ldots, v_{n}$ is a longer closed walk which contradicts our choice. This completes the proof.
Hamiltonian: Let $D$ be a directed graph. A cycle $C \subseteq D$ is Hamiltonian if $V(C)=V(D)$. Similarly, a path $P \subseteq D$ is Hamiltonian if $V(P)=V(D)$.

In \& Out Neighbors: If $X \subseteq V(D)$, we define

$$
\begin{aligned}
& N^{+}(X)=\{y \in V(D) \backslash X:(x, y) \in E(D) \text { for some } x \in X\} \\
& N^{-}(X)=\{y \in V(D) \backslash X:(y, x) \in E(D) \text { for some } x \in X\}
\end{aligned}
$$

We call $N^{+}(X)$ the out-neighbors of $X$ and $N^{-}(X)$ the in-neighbors of $X$. If $x \in X$ we let $N^{+}(x)=N^{+}\left(\{x\}\right.$ and $N^{-}(x)=N^{-}(\{x\})$.

Theorem 5.12 (Rédei) Every tournament has a Hamiltonian path.
Proof: Let $T$ be a tournament. We prove the result by induction on $|V(T)|$. As a base, if $|V(T)|=1$, then the one vertex path suffices. For the inductive step, we may assume that $|V(T)| \geq 2$. Choose a vertex $v \in V(T)$ and let $T^{-}$(resp. $T^{+}$) be the subgraph of $T$ consisting of all vertices in $N^{-}(v)$ (resp. $\left.N^{+}(v)\right)$ and all edges with both ends in this set. If both $T^{-}$and $T^{+}$are not null, then each has a Hamiltonian path, say $P^{-}$and $P^{+}$and we may form a Hamiltonian path in $T$ by following $P^{-}$then going to the vertex $v$, then following $P^{+}$. A similar argument works if either $T^{-}$or $T^{+}$is null.

Theorem 5.13 (Camion) Every strongly connected tournament has a Hamiltonian cycle.
Proof: Let $T$ be a strongly connected tournament, and choose a cycle $C \subseteq T$ with $|V(C)|$ maximum. Suppose (for a contradiction) that $V(C) \neq V(T)$. If there is a vertex $v \in$ $V(T) \backslash V(C)$ so that $N^{+}(v) \cap V(C) \neq \emptyset$ and $N^{-}(v) \cap V(C) \neq \emptyset$, then there must exist an edge $(w, x) \in E(C)$ so that $(w, v),(v, x) \in E(T)$. However, then we may use these edges to find a longer cycle. It follows that the vertices in $V(T) \backslash V(C)$ may be partitioned into $\{A, B\}$ so that every $x \in A$ has $V(C) \subseteq N^{+}(v)$ and every $y \in B$ has $V(C) \subseteq N^{-}(y)$. It
follows from the strong connectivity of $T$ that $A, B \neq \emptyset$ and that there exists an edge $(y, z)$ with $y \in B$ and $z \in A$. However, then we may replace an edge $(w, x) \in E(C)$ with the path containing the edges $(w, y),(y, z),(z, x)$ to get a longer cycle. This contradiction completes the proof.

Path Partition: A path partition of a digraph $D$ is a collection $\mathcal{P}=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ so that $P_{i}$ is a directed path for $1 \leq i \leq k$ and $\left\{V\left(P_{1}\right), V\left(P_{2}\right), \ldots, V\left(P_{k}\right)\right\}$ is a partition of $V(D)$. We let heads $(\mathcal{P})(\operatorname{tails}(\mathcal{P}))$ denote the set of vertices which are the initial (terminal) vertex in some $P_{i}$.

Lemma 5.14 (Bondy) Let $\mathcal{P}$ be a path partition of the digraph $D$, and assume $|\mathcal{P}|>\alpha(D)$. Then there is a path partition $\mathcal{P}^{\prime}$ of $D$ so that $\left|\mathcal{P}^{\prime}\right|=|\mathcal{P}|-1$, and $\operatorname{tails}\left(\mathcal{P}^{\prime}\right) \subseteq \operatorname{tails}(\mathcal{P})$.

Proof: We proceed by induction on $|V(D)|$. As a base, observe that the result is trivial when $|V(D)|=1$. For the inductive step, note that since $\alpha(D)<|\operatorname{tails}(\mathcal{P})|$ there must exist an edge $(x, y)$ with $x, y \in \operatorname{tails}(\mathcal{P})$. Choose $i$ so that $y \in V\left(P_{i}\right)$. If $\left|V\left(P_{i}\right)\right|=1$, then we may remove $P_{i}$ from $\mathcal{P}$ and then append the edge $(x, y)$ to the path containing $x$ to get a suitable path partition. Thus, we may assume that $\left|V\left(P_{i}\right)\right|>1$, and choose $w \in V(D)$ so that $(w, y) \in E\left(P_{i}\right)$. Now, $\mathcal{P}^{\prime}=\left\{P_{1}, \ldots, P_{i-1}, P_{i}-y, P_{i+1}, \ldots, P_{k}\right\}$ is a path partition of $D-y$ and $\alpha(D-y) \leq \alpha(D)<\left|\mathcal{P}^{\prime}\right|$, so by induction, there is a path partition $\mathcal{P}^{\prime \prime}$ of $D-y$ with $\left|\mathcal{P}^{\prime \prime}\right|=\left|\mathcal{P}^{\prime}\right|-1$ and $\operatorname{tails}\left(\mathcal{P}^{\prime \prime}\right) \subseteq \operatorname{tails}\left(\mathcal{P}^{\prime}\right)$. Since $x, w \in \operatorname{tails}\left(\mathcal{P}^{\prime}\right)$, at least one of $x, w$ is in $x, w \in \operatorname{tails}\left(\mathcal{P}^{\prime \prime}\right)$. Since $(x, y),(w, y) \in E(D)$, we may extend $\mathcal{P}^{\prime \prime}$ to a suitable path partition of $D$ by using one of these edges.

Theorem 5.15 (Gallai-Milgram) Every digraph $D$ has a path partition $\mathcal{P}$ with $|\mathcal{P}|=$ $\alpha(D)$.

Proof: This follows immediately from the observation that every digraph has a path partition (for instance, take each vertex as a one vertex path), and (repeated applications of) the above lemma.

Note: This is a generalization of Theorem 5.12.

Partially Ordered Set: A partially ordered set (or poset) consists of a set $X$ and a binary relation $\prec$ which is reflexive ( $x \prec x$ for every $x \in X$ ), antisymmetric ( $x \prec y$ and $y \prec x$ imply
$x=y$ ), and transitive ( $x \prec y$ and $y \prec z$ imply $x \prec z$ ). We say that two points $x, y \in X$ are comparable if either $x \prec y$ or $y \prec x$.

Chains and Antichains: In a poset, a chain is a subset $A \subseteq X$ so that any two points in $A$ are comparable. An antichain is a subset $B \subseteq X$ so that no two points in $B$ are comparable.

Theorem 5.16 (Dilworth) Let $(X, \prec)$ be a poset and let $k$ be the size of the largest antichain. Then there is a partition of $X$ into $k$ chains.

Proof: Form a digraph $D$ with vertex set $X$ by adding an edge from $x$ to $y$ whenever $x \neq y$ and $x \prec y$. Now $\alpha(D)=k$, so the Gallai-Milgram Theorem gives us a path partition of $D$ of size $k$. However, the vertex set of a directed path is a chain in the poset, so this yields a partition of $X$ into $k$ chains.

## The Ford-Fulkerson Theorem

Flows: If $D$ is a digraph and $s, t \in V(D)$, then an $(s, t)$-flow is a map $\phi: E(D) \rightarrow \mathbb{R}$ with the property that for every $v \in V(D) \backslash\{s, t\}$ the following holds.

$$
\sum_{e \in \delta^{+}(v)} \phi(e)=\sum_{e \in \delta^{-}(v)} \phi(e) .
$$

The value of $\phi$ is $\sum_{e \in \delta^{+}(s)} \phi(e)-\sum_{e \in \delta^{-}(s)} \phi(e)$.
Proposition 5.17 If $\phi$ is an ( $s, t$ )-flow of value $q$, then every $X \subseteq V(D)$ with $s \in X$ and $t \notin X$ satisfies

$$
\sum_{e \in \delta^{+}(X)} \phi(e)-\sum_{e \in \delta^{-}(X)} \phi(e)=q .
$$

Proof:

$$
\begin{aligned}
q & =\sum_{e \in \delta^{+}(s)} \phi(e)-\sum_{e \in \delta^{-}(s)} \phi(e) \\
& =\sum_{x \in X}\left(\sum_{e \in \delta^{+}(x)} \phi(e)-\sum_{e \in \delta^{-}(x)} \phi(e)\right) \\
& =\sum_{e \in \delta^{+}(X)} \phi(e)-\sum_{e \in \delta^{-}(X)} \phi(e)
\end{aligned}
$$

Capacities: We shall call a weight function $c: E(D) \rightarrow \mathbb{R}^{+} \cup\{\infty\}$ a capacity function. If $X \subseteq V(D)$, we say that $\delta^{+}(X)$ has capacity $\sum_{e \in \delta^{+}(X)} \phi(e)$.

Admissible Flows: An $(s, t)$-flow $\phi$ is admissible if $0 \leq \phi(e) \leq c(e)$ for every edge $e$.
Augmenting Paths: Let $c$ be a capacity function and $\phi: E(D) \rightarrow \mathbb{R}$ an admissible $(s, t)$ flow. A path $P$ from $u$ to $v$ is called augmenting if for every edge $e \in E(P)$, either $e$ is traversed in the forward direction and $\phi(e)<c(e)$ or $e$ is traversed in the backward direction and $\phi(e)>0$.

Theorem 5.18 (Ford-Fulkerson) Let $D$ be a digraph, let $s, t \in V(D)$, and let $c$ be $a$ capacity function. Then the maximum value of an $(s, t)$-flow is equal to the minimum capacity of a cut $\delta^{+}(X)$ with $s \in X$ and $t \notin X$. Furthermore, if $c$ is integer valued, then there exists a flow of maximum value $\phi$ which is also integer valued.

Proof: It follows immediately from Proposition 19.1 that every admissible ( $s, t$ ) -flow has value less than or equal to the capacity of any cut $\delta^{+}(X)$ with $s \in X$ and $t \notin X$.

We shall prove the other direction of this result only for capacity functions $c: E(D) \rightarrow \mathbb{Q}^{+}$ (although it holds in general). For every edge $e$, let $\frac{p_{e}}{q_{e}}$ be a reduced fraction equal to $c(e)$, and let $n$ be the least common multiple of $\left\{q_{e}: e \in E(D)\right\}$. We shall prove that there exists a flow $\phi: E(D) \rightarrow \mathbb{Q}^{+}$so that $\phi(e)$ can be expressed as a fraction with denominator $n$ for every edge $e$. To do this, choose a flow $\phi$ with this property of maximum value. Define the set $X$ as follows.

$$
X=\{v \in V(D): \text { there is an augmenting path from } s \text { to } v\}
$$

If $t \in X$, then there exists an augmenting path $P$ from $s$ to $t$. However, then we may modify the flow $\phi$ to produce a new admissible flow of greater value by increasing the flow by $\frac{1}{n}$ on every forward edge of $P$ and decreasing the flow by $\frac{1}{n}$ on every backward edge of $P$. Since this new flow would contradict the choice of $\phi$, it follows that $t \notin X$.

It follows from the definition of $X$ that every edge $e \in \delta^{+}(X)$ satisfies $\phi(e)=c(e)$ and every edge $f \in \delta^{-}(X)$ satisfies $\phi(f)=0$. Thus, our flow $\phi$ has value equal to the capacity of the cut $\delta^{+}(X)$ and the proof is complete.

Note: The above proof for rational valued flows combined with a simple convergence argument yields the proof in general. However, the algorithm inherent in the above proof does not yield a finite algorithm for finding a flow of maximum value for arbitrary capacity functions.

Corollary 5.19 (edge-digraph version of Menger) Let $D$ be a digraph and let $s, t \in$ $V(D)$. Then exactly one of the following holds:
(i) There exist $k$ pairwise edge disjoint directed paths $P_{1}, \ldots, P_{k}$ from s to $t$.
(ii) There exists $X \subseteq V(D)$ with $s \in X$ and $t \notin X$ so that $\left|\delta^{+}(X)\right|<k$

Proof: It is immediate that (i) and (ii) are mutually exclusive, so it suffices to show that at least one holds. Define a capacity function $c: E(D) \rightarrow \mathbb{R}$ by the rule that $c(e)=1$ for every edge $e$. Apply the Ford-Fulkerson Theorem to choose an admissible integer valued ( $s, t$ )-flow $\phi: E(D) \rightarrow \mathbb{Z}$ and a cut $\delta^{+}(X)$ with $s \in X$ and $t \notin X$ so that the value of $\phi$ and the capacity of $\delta^{+}(X)$ are both equal to the integer $q$. Now, let $H=D-\{e \in E(D): \phi(e)=0\}$. Then $H$ is a digraph with the property that $\delta_{H}^{+}(s)-\delta_{H}^{-}(s)=q=\delta_{H}^{-}(t)-\delta_{H}^{+}(t)$ and $\delta_{H}^{+}(v)=\delta_{H}^{-}(v)$ for every $v \in V(H) \backslash\{s, t\}$. By Problem 3 of Homework 10, we find that $H$ contains $q$ edge disjoint directed paths from $s$ to $t$. So, if $q \leq k$, then (i) holds, and if $q>k$ (ii) holds.

