
2 Trees

What is a tree?

Forests and Trees: A forest is a graph with no cycles, a tree is a connected forest.

Theorem 2.1 If G is a forest, then comp(G) = |V (G)| − |E(G)|.

Proof: We proceed by induction on |E(G)|. As a base, if |E(G)| = 0, then every component

is an isolated vertex, so comp(G) = |V (G)| as required. For the inductive step, we may

assume |E(G)| > 0 and choose an edge e ∈ E(G). Now, by Theorem 2.5 and induction on

G− e, we have

comp(G) = comp(G− e)− 1

= |V (G− e)| − |E(G− e)| − 1

= |V (G)| − |E(G)|.

¤

Corollary 2.2 If G is a tree, then |V (T)| = |E(T)|+ 1.

Leaf: A leaf is a vertex of degree 1.

Proposition 2.3 Let T be a tree with |V (T)| ≥ 2. Then T has ≥ 2 leaf vertices. Further,

if T has exactly 2 leaf vertices, then T is a path.

Proof: By the above corollary and Theorem 1.1, we have

2 = 2|V (T)| − 2|E(T)|
= 2|V (T)| −

∑

v∈V (T)

deg(v)

=
∑

v∈V (T)

(2− deg(v)).

Since |V (T)| ≥ 2, every vertex has degree > 0. It follows immediately from this and the

above equation that T has ≥ 2 leaf vertices. Further, if T has exactly two leaf vertices, then

every other vertex of T has degree 2, and it follows that T is a path. ¤

2

Lemma 2.4 If T is a tree and v is a leaf of T , then T − v is a tree.

Proof: It is immediate that T − v has no cycle. If u,w ∈ V (T − v), then there is a path P

from u to w in T and this path cannot contain v, so P is also a path in T − v. Thus T − v

is connected. ¤

Note: The above lemma gives us a powerful inductive tool for proving properties of trees.

Proposition 2.5 If T is a tree and u, v ∈ V (T), then there is a unique path from u to v.

Proof: We proceed by induction on V (T). If there is a leaf w 6= u, v, then the result follows

by applying induction to T − w. Otherwise, the result follows from Proposition 4.3. ¤

Spanning Tree: If T ⊆ G is a tree and V (T) = V (G), we call T is a spanning tree of G.

If G is a graph, H ⊆ G and e ∈ E(G), we let H + e be the subgraph of G obtained from H

by adding the edge e and the endpoints of e.

Theorem 2.6 Let G be a connected graph with |V (G)| > 1. If H is a subgraph of G chosen

according to one of the following conditions, then H is a spanning tree.

(i) H ⊆ G is minimal so that H is connected and V (H) = V (G).

(ii) H ⊆ G is maximal so that H has no cycles.

Proof: For (i), note that if H has a cycle C and e ∈ E(C), then H − e is connected (by

Theorem 2.5), which contradicts the minimality of H. Thus H has no cycle, and it is a

spanning tree.

For (ii), note first that V (H) = V (G) by the maximality of H. If X is the vertex set of a

component of H and X 6= V (G), then it follows from the connectivity of G that there exists

an edge e of G with one end in X and one end in V (G) \X. Now, e is a cut-edge of H + e

(by Theorem 2.5) so H + e has no cycle, contradicting the maximality of H. Thus, H has

only one component, and it is a spanning tree. ¤

Proposition 2.7 Let G be a graph with |E(G)| = |V (G)| − 1.

(i) If G has no cycle, then it is a tree.

3

(ii) If G is connected, it is a tree.

Proof: Part (i) follows immediately from Theorem 4.1. For (ii), we have a connected graph

G, so we may choose a spanning tree T ⊆ G. But then |E(G)| = |V (G)| − 1 = |V (T)| − 1 =

|E(T)| so T = G and G is a tree. ¤

Kruskal’s Algorithm

Fundamental Cycles: Let T be a spanning tree of G and let f ∈ E(G) \ E(T). A cycle

C ⊆ G with f ∈ E(C) and C − f a path of T is called a fundamental cycle of f with respect

to T .

Proposition 2.8 If T is a spanning tree of G and f ∈ E(G) \ E(T), then there is exactly

one fundamental cycle of f with respect to T .

Proof: This follows immediately from Proposition 4.5. ¤

Proposition 2.9 Let T be a spanning tree of G, let e ∈ E(T) and f ∈ E(G) \ E(T).

(i) if e is in the fundamental cycle of f , then T − e + f is a tree

(ii) if f has one end in each component of T − e, then T − e + f is a tree.

Proof: For (i), note that if e is in the fundamental cycle of f , then T + f − e is a connected

graph with one fewer edge than vertex, so it is a tree by Proposition 4.7.

For (ii), observe that if f has one end in each component of T − e, then T − e + f is a

forest (since f is a cut-edge of T − e + f and T − e is a forest) with one fewer edge than

vertex, so it is a tree by Proposition 4.7. ¤

Weighted graphs and min-cost trees: A weighted graph is a graph G together with

a weight function on the edges w : E(G) → R. If T ⊆ G is a spanning tree for which∑
e∈E(T) w(e) is minimum, we call T a min-cost tree.

Kruskal’s Algorithm:

4

input: A weighted graph G

output: A subgraph T ⊆ G

procedure: Choose a sequence of edges e1, e2, . . . , em according to the rule that ei is

an edge of minimum weight in E(G) \ {e1, . . . , ei−1} so that {e1, . . . , ei}
does not contain the edge set of a cycle. When no such edge exists, stop

and return the subgraph T consisting of all the vertices, and all chosen

edges {e1, . . . , em}.

Theorem 2.10 Let G be a connected weighted graph with weight function w. If w is one-

to-one, then Kruskal’s algorithm returns the unique min-cost tree for G.

Proof: Let e1, . . . , em be the sequence of edges chosen by Kruskal’s Algorithm, and let T be

the subgraph returned by it. It follows from the connectivity of G and Theorem 4.6 that T

is a spanning tree. Suppose (for a contradiction) that there is a min-cost tree T ′ 6= T and let

f be the edge of minimum weight in the set E(T ′)\E(T). Let C be the fundamental cycle of

f with respect to T and let ei ∈ E(C). Now, part (i) of Proposition 5.2 shows that T −ei +f

is a tree, so, in particular, there is no cycle with edge set included in {e1, . . . , ei−1, f}, and

by Kruskal’s Algorithm, we must have w(f) > w(ei). It follows that every edge in C− f has

smaller weight than f . However, C − f is a path with the same ends as f , so there must

exist an edge in C − f with one end in each component of T ′ − f . But then, part (ii) of

Proposition 5.2 gives us a contradiction to the assumption that T ′ is a min-cost tree. This

contradiction proves that T is the unique min-cost tree of G, as required. ¤

Distance and Dijkstra’s Algorithm

Distance: If u, v ∈ V (G), the distance from u to v is the length of the shortest path from

u to v, or ∞ if no such path exists. If G is a weighted graph, then the distance from u to v

is the minimum of
∑

e∈E(P) w(e) over all paths from u to v, or ∞ if no such path exists. In

either case, we denote this by d istG(u, v), or just d ist(u, v) if G is clear from context.

Observation 2.11 The distance function obeys the triangle inequality. So, for all u, v, w ∈
V (G) we have:

d ist(u, v) + d ist(v, w) ≥ d ist(u,w).

5

Shortest Path Tree: If G is a weighted graph and r ∈ V (G), a tree T ⊆ G (not nec.

spanning) is a shortest path tree for r if d istT (r, v) = d istG(r, v) for every v ∈ V (T).

Dijkstra’s Algorithm:

input: A connected weighted graph G with w : E(G) → R+ and a vertex r.

output: A tree T ⊆ G.

procedure: Start with T1 the tree consisting of the vertex r. At step i, we have

Ti ⊆ G. If V (Ti) = V (G) stop and return T = Ti. Otherwise, choose an

edge uv with u ∈ V (Ti) and v ∈ V (G) \V (Ti) so that w(uv)+ d istT (r, u)

is minimum and set Ti+1 = Ti + uv.

Theorem 2.12 Dijkstra’s algorithm returns a shortest path tree for r.

Proof: We prove by induction on i that each Ti in the algorithm is a shortest path tree for r.

As a base, note that this is true for T1 (since all weights are nonnegative). For the inductive

step, we shall show that Ti+1 is a shortest path tree for r assuming this holds for Ti. Assume

that Ti+1 = Ti + uv. Let P be the path of minimum distance in G from r to v, let y be the

first vertex of P which is not in the tree T , and let the previous edge be xy. Then we have

d istG(r, v) =
∑

e∈E(P)

w(e)

≥ d istTi
(r, x) + w(xy)

≥ d istTi
(r, u) + w(uv)

= d istTi+1
(r, v).

It follows that Ti+1 is a shortest path tree for r, as required. ¤

Prüfer codes

In this section, we consider two graphs with the same vertex set to be the same if they have

the same adjacencies.

Prüfer Encoding

input: A tree T with vertex set S ⊆ Z where |S| = n ≥ 2.

output: A sequence a = (a1, . . . , an−2) with elements in S.

procedure: At step i, we delete from T the smallest leaf vertex v, and we set ai to

be the vertex adjacent to v.

6

Observation 2.13 If a is the Prüfer Encoding of the tree T , then the set of vertices which

appear in a is exactly the set of non-leaf nodes of T .

Prüfer Decoding

input: A sequence a = (a1, . . . , an−2) with elements in S ⊆ Z where |S| = n ≥ 2.

output: An tree T with vertex set S.

procedure: Start with the graph T where V (T) = S and E(T) = ∅, and with all

vertices unmarked. At step i, add an edge from the smallest unmarked

vertex v which does not appear in (ai, . . . , an−2) to ai and mark v. After

step n−2 is complete, add an edge between the two remaining unmarked

vertices and stop.

Theorem 2.14 Let S ⊆ Z with |S| = n ≥ 2. Prüfer Encoding and Decoding are inverse

bijections between the set of trees with vertex set S and the set of sequences of length n− 2

with elements in S.

Proof: We proceed by induction on n. As a base, observe that when n = 2, there is a

single sequence of length 0 and a single tree with vertex set S, and the encoding/decoding

operations exchange these.

For the inductive step, we may assume n ≥ 3. Let T be a tree with vertex set S, let

a = (a1, . . . , an−2) be the encoding of T , and let T ′ be the decoding of a. Let v be the

smallest leaf of T . Then, by the encoding process, v is adjacent to a1, and v is smaller

than any other vertex which does not appear in a, since (by the above observation) all such

vertices are leaves. It follows from the decoding rules that in the tree T ′, the vertex v is

a leaf adjacent to a1. Now, T − v encodes to (a2, . . . , an) which decodes to T ′ − v, so by

induction T − v and T ′ − v are the same, and it follows that T and T ′ are the same.

To complete the inductive step, we still need to show that every sequence a = (a1, . . . , an−2)

is the encoding of some tree. To see this, let v ∈ S be the smallest element which does not

appear in a. Then, by induction (a2, . . . , an−2) is the encoding of some tree T with vertex

set S \ {v}, and we find that a is an encoding of the tree obtained from T by adding the

vertex v and the edge va1. This completes the proof. ¤

Corollary 2.15 For every n ≥ 2, there are exactly nn−2 trees with vertex set {1, 2, . . . , n}.

7

Matrices

Incidence and Adjacency Matrices: If G is a graph, the incidence matrix of G is the

matrix {Mv,e}v∈V (G),e∈E(G) given by the following rule:

Mv,e =

0 if e is not incident with v

1 if e is a non-loop incident with v

2 if e is a loop incident with v

(so each row of the incidence matrix corresponds to a vertex, and each column corresponds

to an edge). The adjacency matrix of G is the matrix {Au,v}u,v∈V (G) given by the rule that

Au,v is the number of edges with ends u, v (so, for this matrix, both the rows and columns

are indexed by vertices).

Theorem 2.16 If A is the adjacency matrix of the graph G, and k is a positive integer,

then the u, v entry of Ak is the number of walks from u to v of length k

Proof: For every u, v ∈ V (G) and integer i, we let wi
u,v denote the number of walks from u

to v of length i. We prove the theorem by induction on k. As a base, note that this is true

for k = 1 by our definitions. For the inductive step, we may assume k ≥ 2. Now, for every

u, v ∈ V (G) we have:

Ak
u,v =

∑

w∈V (G)

Ak−1
u,w Aw,v

=
∑

w∈V (G)

wk−1
u,v Aw,v

= wk
u,v

as required. ¤.

Laplacian and Oriented Incidence Matrices: If G is a simple graph, the Laplacian

matrix of G is the matrix {Lu,v}u,v∈V (G) given by the following rule:

Lu,v =

deg(u) if u = v

−1 if u, v are adjacent

0 otherwise

8

Note that (since G is loopless), every column of the incidence matrix has two entries which

are 1 and all the other entries are 0. An oriented incidence matrix of G is obtained from the

incidence matrix by changing one of the 1 entries in each column to a −1 (arbitrarily).

Observation 2.17 If L is the Laplacian matrix of G and M is an oriented incidence matrix

of G, then MM> = L.

Proof: For every v ∈ V (G) we let xv denote the row of M indexed v. Then the u, v entry of

MM> is the dot product of xu and xv, and this will be deg(u) if u = v, −1 if u is adjacent

to v, and 0 otherwise. ¤

Submatrices: Let R be a matrix indexed by I × J . If I ′ ⊆ I and J ′ ⊆ J , we let R|I′

denote the submatrix of R consisting of rows in I ′ and we let R|J ′ denote the submatrix of

R consisting of columns in J ′. Let G be a graph and let r ∈ V (G). If M is an oriented

incidence matrix of G, the r-truncation of M is M |V (G)\{r}. Similarly, if L is the Laplacian

matrix of G, the r-truncation of L is defined to be L|V (G)\{r}
V (G)\{r}.

Proposition 2.18 Let G be a simple connected graph on n vertices, let r ∈ V (G), and let

M∗ be the r-truncation of an oriented incidence matrix of G. Then for every S ⊆ E(G) with

|S| = n− 1 we have

det(M∗|S) =

{
±1 if S is the edge set of a spanning tree

0 otherwise

Proof: For every edge e ∈ E(G), let ye be the column vector of M∗ corresponding to e. So,

if e = vr, then ye has ±1 in the position corresponding to v and 0 everywhere else, and if

e = uv with u, v 6= r, then ye has ±1 in the position corresponding to v, the opposite value

in the position corresponding to u, and 0 everywhere else.

First suppose that the subgraph with vertex set V (G) and edge set S is not connected,

let H be a component of this graph which does not contain r, and let U = V (H). Now

consider the (column) vector χU indexed by V (G) \ {r} and given by the rule that for every

v ∈ V (G) \ {r}, the vector χU has a 1 in the coordinate corresponding to v if v ∈ U and

otherwise has a 0 in this position. Since r 6∈ U and no edge in S has one end in U and one

in V (G) \ U , it follows that χU is orthogonal to ye for every e ∈ S. Thus, the columns in S

do not span χU and we find that det(M∗|S) = 0.

9

If the subgraph with vertex set V (G) and edge set S is connected, then it must be the

edge set of a spanning tree since |S| = n − 1 = |V (G)| − 1 (Prop. 4.7). In this case, we

prove by induction on n that det(M∗|S) = ±1. As a base, note that when n = 1 the matrix

M∗ is empty, and if S = ∅ we have det(M∗|S) = det([]) = 1. For the inductive step, we may

then assume that n ≥ 2, so S is the edge set of a spanning tree on ≥ 2 vertices. Choose a

leaf vertex v of this spanning tree, and let e ∈ S be the edge incident with v. Now, the only

column of M∗|S with a nonzero entry in the coordinate corresponding to v is ye, and the

entry of yv in this coordinate is ±1. It follows that det(M∗|S) is equal to ± the determinant

of the matrix obtained from M∗|S by removing the row v and the column e. By induction,

this smaller matrix has determinant ±1, and this completes the proof. ¤

Theorem 2.19 (Binet-Cauchy Formula) Let A be an n×m matrix with columns indexed

by J and B be an m× n matrix with rows indexed by J , then

det(AB) =
∑

S⊆J :|S|=n

det(A|S B|S)

Proof: Then this theorem follows from (computing determinants) in the equation below (here

we let I denote an identity matrix and 0 denote a zero matrix of the appropriate size).
[

I 0

A I

] [
−I B

A 0

]
=

[
−I B

0 AB

]

¤

Theorem 2.20 (The Matrix Tree Theorem) If G is a connected graph on n vertices,

r ∈ V (G), and L∗ is the r-truncated Laplacian matrix for G, then det(L∗) is the number of

spanning trees of G.

Proof: Let M∗ be the r-truncation of an oriented incidence matrix for G. Then, by the

argument in Observation 8.2 and the Binet-Cauchy formula, we find

det(L∗) = det(M∗(M∗)>)

=
∑

S⊆E(G):|S|=n−1

det(M∗|S)det((M∗)>|S)

= |{T ⊆ G : T is a spanning tree}|

thus completing the proof. ¤

10

3 Matchings

Hall’s Theorem

Matching: A matching in G is a subset M ⊆ E(G) so that no edge in M is a loop, and no

two edges in M are incident with a common vertex. A matching M is maximal if there is

no matching M ′ with M ⊂ M ′ and maximum if there is no matching M ′′ with |M | < |M ′′|.

Alternating & Augmenting Paths: If M is a matching in G, a path P ⊆ G is M -

alternating if the edges of P belong alternately to M and to E(G) \M (in other words, for

every v ∈ V (P) with degree 2 in P , some edge of P incident with v is in M). The path

P is M -augmenting if it is M -alternating, has distinct ends, say u, v, and no edge of M is

incident with u or v in G (not just in P).

Theorem 3.1 (Berge) A matching M in G is maximum if and only if there is no M-

augmenting path.

Proof: For the ”only if” direction we prove the contrapositive. Assuming G contains an M -

augmenting path P , the set (M \E(P)) ∪ (E(P) \M) is a matching with larger cardinality

than M , so M is not maximum.

For the ”if” direction, we also prove the contrapositive, so we shall assume that M is not

maximum, and show there is an augmenting path. Since M is not maximum, there exists

a matching M ′ with |M ′| > |M |. Consider the subgraph H ⊆ G with V (H) = V (G) and

E(H) = M ∪M ′. Every component of this graph is either a cycle of even length with edges

alternately in M and M ′, a path with edges alternately in M and M ′, or a path consisting

of one edge e with e ∈ M ∩M ′. Since |M ′| > |M |, there is a component of H which is a

path with more edges in M ′ than M . Then P is an M -augmenting path. ¤

Neighbors: If X ⊆ V (G), the neighbors of X, is the set

N(X) = {v ∈ V (G) \X : v is adjacent to some point in X}.

For x ∈ X, we define N(x) = N({x}).

Cover: We say that a set of edges S ⊆ E(G) covers a set of vertices X if every x ∈ X is

incident with some edge in S. Similarly, a set of vertices X ⊆ V (G) covers a set of edges

S ⊆ E(G) if every edge in S is incident with some point in X.

11

Theorem 3.2 (Hall’s Marriage Theorem) Let G be a bipartite graph with bipartition

(A,B). Then, there is a matching M ⊆ G which covers A if and only if |N(X)| ≥ |X| for

every X ⊆ A.

Proof: The ”only if” condition is obvious: if there exists X ⊆ A with |N(X)| < |X|, then

no matching can cover A.

For the ”if” direction, let M be a maximum matching, and suppose that M does not

cover A. Choose a vertex u ∈ A not covered by M , and define the sets X, Y as follows:

X = {x ∈ A : there is an M -alternating path from u to x}
Y = {y ∈ B : there is an M -alternating path from u to y}

Let M ′ ⊆ M be the set of edges in M which are incident with a point in X ∪ Y . By parity,

every M -alternating path which begins at u and ends at a point in X \{u} must have its last

edge in M , so every point in X \{u} is incident with an edge in M ′. If there is a point y ∈ Y

not incident with an edge in M ′, then there is an M -alternating path from u to y which is

M -augmenting, contradicting the previous theorem. Thus, every point in Y is incident with

some edge in M ′. It follows from this that |X \ {u}| = |M ′| = |Y |.
Let x ∈ X and let y ∈ N(x). Since x ∈ A, we may choose an M -alternating path from

u to x. Note (as before) that the last edge of this path is in M ′. If y appears in this path,

then y ∈ Y . Otherwise, we may extend this path by the edge xy to a new M -alternating

path. Thus, in either case, we find that y ∈ Y . It follows from this that N(X) ⊆ Y . But

then, |N(X)| ≤ |Y | = |M ′| < |X|. This completes the proof. ¤

Regular A graph G is k-regular if every vertex of G has degree k. We say that G is regular

if it is k-regular for some k.

Perfect Matchings: A matching M is perfect if it covers every vertex.

Corollary 3.3 Every regular bipartite graph has a perfect matching.

Proof: Let G be a k-regular bipartite graph with bipartition (A,B). Let X ⊆ A and let t be

the number of edges with one end in X. Since every vertex in X has degree k, it follows that

k|X| = t. Similarly, every vertex in N(X) has degree k, so t is less than or equal to k|N(X)|.
It follows that |X| is at most |N(X)|. Thus, by Hall’s Theorem, there is a matching covering

A, or equivalently, every maximum matching covers A. By a similar argument, we find that

every maximum matching covers B, and this completes the proof. ¤

12

Stable Marriages

System of Preferences: If G is a graph, a system of preferences for G is a family {>v}v∈V (G)

so that each >v is a linear ordering of N(v). If u, u′ ∈ N(v) and u >v u′, we say that v

prefers u to u′.

Marriage Systems and Stable Marriages: A Marriage System consists of a complete

bipartite graph Kn,n with bipartition (men,women) which is equipped with a system of

preferences. We say that a matching M is stable if there do not exist edges mw, m′w′ ∈ M

with m,m′ ∈ men and w, w′ ∈ women so that m prefers w′ to w and w′ prefers m to m′. A

matching which covers every vertex and is stable is called a stable marriage.

Gale-Shapley Algorithm:

input: A marriage system.

output: A stable marriage.

procedure: At each step, every man proposes to the woman he prefers most among

those who have not yet rejected him. If every woman receives at most

one proposal, stop and output the corresponding matching. Otherwise,

every woman who receives more than one proposal says ”maybe” to the

man who proposes to her whom she most prefers, and rejects the others

who proposed.

Theorem 3.4 The Gale-Shapley Algorithm outputs a stable marriage (as claimed).

Proof: Note first that this algorithm must terminate, since some man is rejected at each non-

final step (and the total number of rejections is no more than n2). Let M be the marriage

resulting from this algorithm, and say that a man m and woman w are married if mw ∈ M .

Suppose that the woman w receives proposals from some nonempty set X ⊆ men at

some step. Then w says ”maybe” to the man m who she prefers most among X, and at the

next step, m will again propose to w (since the set of women who have rejected him has not

changed). This immediately implies the following claim.

Claim: Every woman w is married to the man m she most prefers among those who propose

to her during the algorithm. In particular, if w has at least one proposal, then w is married

to some man.

13

With this claim, we now show that M covers every vertex. Suppose (for a contradiction)

that M does not cover some man m. Then m must have been rejected by every woman.

But then, by the claim, every woman must be married. Since |men| = |women|, this is

contradictory.

Next let us show that M is stable. Suppose (for a contradiction) that it is not, and

choose mw, m′w′ ∈ M so that m prefers w′ to w and w′ prefers m to m′. It follows from

the definition of the algorithm that m must have proposed to w′ at some step (since m will

propose to w′ before w). Applying the claim to w′, we see that w′ must be married to m or

a person she prefers to m, thus contradicting our assumptions.

It follows that M is a stable marriage, as claimed. ¤

Fact: Let M be the stable marriage output by the above algorithm and let M ′ be another

stable marriage. Then, for every man m, if mw ∈ M and mw′ ∈ M ′, then either w = w′ or

m prefers w to w′. Similarly, for every woman w, if wm ∈ M and wm′ ∈ M ′, then either

m = m′, or w prefers m′ to m. So, among all stable marriages, the Gale-Shapley algorithm

produces one which is best possible for every man, and worst possible for every woman.

Covers

Covers: A vertex cover of G is a set of vertices X ⊆ V (G) so that every edge is incident

with some vertex in X. Simlarly, an edge cover of G is a set of edges S ⊆ V (G) so that

every vertex is incident with some edge in S.

Independent Set: A subset of vertices X ⊆ V (G) is independent if there is no loop with

endpoint in X and there is no non-loop with both ends in X.

Matching & Cover Parameters: For every graph G, we define the following parameters

α(G) maximum size of an independent set

α′(G) maximum size of a matching

β(G) minimum size of a vertex cover

β′(G) minimum size of an edge cover

Observation 3.5 α(G) + β(G) = |V (G)| for every simple graph G.

14

Proof: A set X ⊆ V (G) is independent if and only if V (G) \ X is a vertex cover. Thus,

the complement of an independent set of maximum size is a vertex cover of minimum size.

¤

Theorem 3.6 (König, Egerváry) If G is bipartite, then α′(G) = β(G).

Proof: It is immediate that β(G) ≥ α′(G) since for a maximum matching M , any vertex

cover must contain at least one endpoint of each edge in M .

Next we shall show that β(G) ≤ α′(G). Let (A,B) be a bipartition of G, let X be a

vertex cover of minimum size, and define two bipartite subgraphs H1 and H2 so that H1 has

bipartition (A∩X,B \X), H2 has bipartition (A \X,B ∩X), and both H1 and H2 have all

edges with both ends in their vertex sets.

Suppose (for a contradiction) that there does not exist a matching in H1 which covers

A∩X. Then, by Hall’s theorem, there is a subset Y ⊆ A∩X so that |NH1(Y)| < |Y |. Now,

we claim that the set X ′ = (X \ Y) ∪NH1(Y) is a vertex cover. Let e ∈ E(G). If e has one

end in B ∩X, then e is covered by X ′. If e has no end in B ∩X, then (since X is a vertex

cover) e must have one end in A ∩X and the other in B \X, so e ∈ E(H1). If e does not

have an end in Y , then e is covered by X \ Y ⊆ X ′. Otherwise, e is an edge in H1 with one

end in Y , so its other end is in NH1(Y) and we again find that e is covered. But then X ′ is

a vertex cover with |X ′| = |X| − |Y |+ |NH1(Y)| < |X|, giving us a contradiction.

Thus, H1 has a matching M1, which covers A ∩ X. By a similar argument, H2 has

a matching, M2, which covers B ∩ X. Since these subgraphs have disjoint vertex sets,

M = M1 ∪ M2 is a matching of G. Furthermore, α′(G) ≥ |M | = |X| = β(G). This

completes the proof. ¤

Theorem 3.7 (Gallai) If G is a simple connected graph with at least two vertices, then

α′(G) + β′(G) = |V (G)|.

Proof: First, let M be a maximum matching (so |M | = α′(G)). Now, we form an edge cover L

from M as follows: For every vertex v not covered by M , choose an edge e incident with v and

add e to L. Then L is an edge cover, so β′(G) ≤ |L| = |M |+|V (G)|−2|M | = |V (G)|−α′(G).

Next, let L be a minimum edge cover (so |L| = β′(G)) and consider the subgraph H

consisting of all the vertices, and those edges in L. Since L is a minimum edge cover, it

follows that L \ {e} is not an edge cover for every e ∈ L. Thus, every edge e ∈ E(H)

15

must have one endpoint of degree 1 in H. It follows from this that every component of

H is isomorphic to a star (a graph of the form K1,m for some positive integer m). Choose

a matching M ⊆ L by selecting one edge from each component of H. Then we have

α′(G) ≥ |M | = comp(H) = |V (G)| − |L| = |V (G)| − β′(G).

Combining the two inequalities yields α′(G) + β′(G) = |V (G)|, as required. ¤

Corollary 3.8 If G is a connected bipartite graph with at least two vertices, then α(G) =

β′(G).

Proof: By Observation 11.1 and Theorem 11.3 we have α(G) + β(G) = α′(G) + β′(G). Now,

subtracting the relation β(G) = α′(G) proved in 11.2 we have α(G) = β′(G) as desired.

¤

Tutte’s Theorem

Odd Components: For every graph G, we let odd(G) denote the number of components

of G which have an odd number of vertices.

Identification: If X ⊆ V (G), we may form a new graph from G by merging all vertices in

X to a single new vertex. If an edge has an endpoint in X, then this edge will have the new

vertex as its new endpoint. We say this graph is obtained from G by identifying X.

Theorem 3.9 (Tutte) G has a perfect matching if and only if odd(G−X) ≤ |X| for every

X ⊆ V (G)

Proof: The ”only if” is immediate: if G has a set X ⊆ V (G) with odd(G−X) > |X|, then

G cannot have a perfect matching.

We prove the ”if” direction by induction on |V (G)|. As a base, observe that this is trivial

when |V (G)| ≤ 2. For the inductive step, let G be a graph for which odd(G−X) ≤ |X| for

every X ⊆ V (G) and assume the theorem holds for all graphs with fewer vertices. Call a set

X ⊆ V (G) critical if odd(G−X) ≥ |X| − 1. We shall establish the theorem in steps.

(1) |V (G)| is even

This follows from odd(G− ∅) ≤ |∅| = 0.

(2) If X is critical, then odd(G−X) = |X|.

16

This follows from the observation that |X|+ odd(G−X) ∼= |V (G)| (modulo 2).

(3) There is a critical set.

For instance, ∅ is critical.

Based on (3), we may now choose a maximal critical set X. Let |X| = k and let the odd

components of G−X be G1, . . . , Gk.

(4) G−X has no even components.

If G − X has an even component G′, then choose v ∈ V (G′). Now X ∪ {v} is critical,

contradicting the choice of X.

(5) For every 1 ≤ i ≤ k and v ∈ V (Gi), the graph Gi − v has a perfect matching.

If not, then by induction there exists Y ⊆ V (Gi− v) so that (Gi− v)− Y has > |Y | odd

components. But then G \ (X ∪ Y ∪ {v}) has ≥ |X|+ |Y | odd components, so it is critical -

again contradicting the maximality of X.

(6) G has a matching M with |M | = k so that M covers X and every Gi has exactly one

vertex covered by M .

Construct a graph H from G by identifying V (Gi) to a new vertex yi for every 1 ≤ i ≤ k

and then deleting every loop and every edge with both ends in X. Now, H is bipartite with

bipartition (X, Y) where Y = {y1, . . . , yk}. Suppose (for a contradiction) that H does not

have a perfect matching. Then by Hall’s Theorem there exists Y ′ ⊆ Y with |NH(Y ′)| < |Y ′|.
Let X ′ = NH(Y ′). Now the graph G − X ′ has ≥ |Y ′| > |X ′| odd components, giving us a

contradiction. So, H has a perfect matching, which proves (6).

It follows from (5) and (6) that G has a perfect matching, as desired. ¤

Theorem 3.10 (Tutte-Berge Formula)

α′(G) =
1

2

(
|V (G)| − max

X⊆V (G)
(odd(G−X)− |X|)

)

Proof: Let k = maxX⊆V (G)(odd(G−X)− |X|) and choose X ⊆ V (G) so that k = odd(G−
X) − |X|. Note that k = odd(G − X) − |X| ∼= odd(G − X) + |X| ∼= |V (G)| (modulo 2).

By considering X and odd(G − X) we find that every matching of G must not cover ≥ k

vertices, so α′(G) ≤ 1
2
(|V (G)| − k).

17

To prove the other inequality, we construct a new graph G′ from G by adding a set Y of

k new vertices to G each adjacent to every other vertex. Let Z ′ ⊆ V (G′). We claim that

odd(G′ − Z ′) ≤ |Z ′|. If Z ′ = ∅, then this follows from the observation that k ∼= |V (G)|
(modulo 2). If Y 6⊆ Z ′, then G′ − Z ′ is connected, so |Z ′| ≥ 1 ≥ odd(G′ − Z ′). Finally, if

Y ⊆ Z ′, then we have

odd(G′ − Z ′) = odd(G− Z) ≤ k + |Z| = |Y |+ |Z| = |Z ′|.

Since Z ′ was arbitrary, Tutte’s Theorem shows that G′ has a perfect matching, and it follows

that G has a matching covering all but k vertices, so α′(G) ≥ 1
2
(|V (G)| − k) as required.

¤

Theorem 3.11 (Petersen) If every vertex of G has degree 3 and G has no cut-edge, then

G has a perfect matching.

Proof: We shall show that G satisfies the condition for Tutte’s Theorem. Let X ⊆ V (G),

let G1, . . . , Gk be the odd components of G −X, and for every 1 ≤ i ≤ k let Si be the set

of edges with one end in X and the other in V (Gi). Now, for every 1 ≤ i ≤ Gi, we have

3|V (Gi)| =
∑

v∈V (Gi)
degG(v) = |Si| + 2|E(Gi)|. Since |V (Gi)| is odd, it follows that |Si|

must also be odd. By our assumptions, |Si| 6= 1, so we conclude that |Si| ≥ 3.

Now, form a new graph H from G by deleting every vertex in every even component of

G−X, then identifying every Gi to a single new vertex yi, and then deleting every loop and

every edge with both ends in X. This graph H is bipartite with bipartition (X, Y) where

Y = {y1, . . . , yk}. Furthermore, by our assumptions, every vertex in Y has degree ≥ 3 and

every vertex in X has degree ≤ 3. Thus, we have

3|X| ≥
∑
x∈X

degH(x) = |E(H)| =
∑
y∈Y

degH(y) ≥ 3|Y |.

So, |X| ≥ |Y | = k = odd(G−X). Since X was arbitrary, it follows from Theorem 3.9 that

G has a perfect matching. ¤

18

4 Connectivity

2-connectivity

Separation: A separation of G of order k is a pair of subgraphs (H,K) with H ∪K = G

and E(H ∩K) = ∅ and |V (H) ∩ V (K)| = k. Such a separation is proper if V (H) \ V (K)

and V (K) \ V (H) are nonempty.

Observation 4.1 G has a proper separation of order 0 if and only if G is disconnected.

Cut-vertex: A vertex v is a cut-vertex if comp(G− v) > comp(G).

Observation 4.2 If G is connected, then v is a cut-vertex of G if and only if there exists a

proper 1-separation (H, K) of G with V (H) ∩ V (K) = {v}.

Proposition 4.3 Let e, f be distinct non-loop edges of the graph G. Then exactly one of

the following holds:

(i) There exists a cycle C with e, f ∈ E(C)

(ii) There is a separation (H, K) of order ≤ 1 with e ∈ E(H) and f ∈ E(K).

Proof: It is clear that (i) and (ii) are mutually exclusive, so it suffices to show that (i) or

(ii) holds. For this, we may assume that G is connected, and set k to be the length of the

shortest walk containing e, f . We proceed by induction k. For the base case, if k = 2, then

we may assume e = uv and f = vw. If u,w are in the same component of the graph G− v,

then (i) holds. Otherwise, v is a cut-vertex and (ii) holds.

For the inductive step, we may assume k ≥ 3. Let f = uv and choose an edge f ′ = vw

so that there is a walk containing e, f ′ of length k − 1. First suppose that there is a cycle

C containing e, f ′. If C − v and u are in distinct components of G − v, then v is a cut-

vertex and (ii) holds. Otherwise, we may choose a path P ⊆ G − v from u to a vertex of

V (C) \ {v}. Now P ∪C + f has a cycle which contains e, f , so (i) holds. If there is no cycle

containing e, f ′, then it follows from our inductive hypothesis that there is a 1-separation

(H, K) with e ∈ E(H) and f ′ ∈ E(K). Suppose (for a contradiction) that f ∈ E(H). Then

V (H) ∩ V (K) = {v}, the shortest walk containing e, f has length k and the shortest walk

19

containing e, f ′ has length < k which is contradictory. Thus, f ∈ E(K) and (H, K) satisfy

(ii). This completes the proof. ¤

2-connected: A graph G is 2-connected if it is connected, |V (G)| ≥ 3, and G has no

cut-vertex.

Theorem 4.4 Let G be a graph with at least three vertices. Then the following are equiva-

lent:

(i) G is 2-connected

(ii) For all x, y ∈ V (G) there exists a cycle C with x, y ∈ V (C).

(iii) G has no vertex of degree 0, and for all e, f ∈ E(G) there exists a cycle C with

e, f ∈ E(C).

Proof: It is easy to see that (iii) implies (ii): to find a cycle C with x, y ∈ V (C) just choose

an edge e incident with x and an edge f incident with y and apply (iii) to e, f . Trivially, (ii)

implies (i). So, to complete the argument, we need only show that (i) implies (iii), but this

is an immediate consequence of the previous proposition. ¤

Block: A block of G is a maximal connected subgraph H ⊆ G so that H does not have a

cut-vertex. Note that if H is a block, then either H is 2-connected, or |V (H)| ≤ 2.

Proposition 4.5 If H1, H2 are distinct blocks in G, then |V (H1) ∩ V (H2)| ≤ 1.

Proof: Suppose (for a contradiction) that |V (H1) ∩ V (H2)| ≥ 2. Let H ′ = H1 ∪ H2, let

x ∈ H ′ and consider H ′ − x. By assumption, H1 − x is connected, and H2 − x is connected.

Since these graphs share a vertex, H ′− x = (H1− x)∪ (H2− x) is connected. Thus, H ′ has

no cut-vertex. This contradicts the maximality of H1, thus completing the proof. ¤

Block-Cutpoint graph: If G is a graph, the block-cutpoint graph of G, denoted BC(G)

is the simple bipartite graph with bipartition (A,B) where A is the set of cut-vertices of G,

and B is the set of blocks of G, and a ∈ A and b ∈ B adjacent if the block b contains the

cut-vertex a.

Observation 4.6 If G is connected, then BC(G) is a tree.

20

Proof: Let (A,B) be the bipartition of BC(G) as above. It follows from the connectivity of

G that BC(G) is connected. If there is a cycle C ⊆ BC(G), then set H to be the union of

all blocks in B ∩ V (C). It follows that H is a 2-connected subgraph of G (as in the proof

of the previous proposition). This contradicts the maximality of the blocks in B ∩ V (C).

¤

Ears: An ear of a graph G is a path P ⊆ G which is maximal subject to the constraint that

all interior vertices of P have degree 2 in G. An ear decomposition of G is a decomposition

of G into C, P1, . . . , Pk so that C is a cycle of length ≥ 3, and for every 1 ≤ i ≤ k, the

subgraph Pi is an ear of C ∪ P1 ∪ . . . Pi.

Theorem 4.7 A graph G is 2-connected if and only if it has an ear decomposition.

Proof: For the ”if” direction, let C,P1, . . . , Pk be an ear decomposition of G. We shall prove

that G is 2-connected by induction on k. As a base, if k = 0, then G = C is 2-connected.

For the inductive step, we may assume that k ≥ 1 and that C ∪P1 ∪ . . . Pk−1 is 2-connected.

It then follows easily that G = C ∪ P1 ∪ . . . Pk is also 2-connected.

We prove the ”only if” direction by a simple process. First, choose a cycle C ⊆ G of length

≥ 3 (this is possible by Theorem 4.4). Next we choose a sequence of paths P1, . . . , Pk as

follows. If G′ = C ∪P1∪ . . . Pi−1 6= G, then choose an edge e ∈ E(G′) and f ∈ E(G)\E(G′),

and then choose a cycle D ⊆ G containing e, f (again using 4.4). Finally, let Pi be the

maximal path in D which contains the edge f but does not contain any edge in E(G′).

Then Pi is an ear of C ∪ P1 ∪ . . . Pi, and when this process terminates, we have an ear

decomposition. ¤

Menger’s Theorem

Theorem 4.8 Let G be a graph, let A,B ⊆ V (G) and let k ≥ 0 be an integer. Then exactly

one of the following holds:

(i) There exist k pairwise (vertex) disjoint paths P1, . . . , Pk from A to B.

(ii) There is a separation (H, K) of G of order < k with A ⊆ V (H) and B ⊆ V (K).

Proof: It is clear that (i) and (ii) are mutually exclusive, so it suffices to show that (i) or

(ii) holds. We prove this by induction on |E(G)|. As a base, observe that the theorem holds

21

trivially when |E(G)| ≤ 1. For the inductive step, we may then assume |E(G)| ≥ 2. Choose

an edge e and consider the graph G′ = G− e. If G′ contains k disjoint paths from A to B,

then so does G, and (i) holds. Otherwise, by induction, there is a separation (H,K) of G′

of order < k with A ⊆ V (H) and B ⊆ V (K).

Now consider the separations (H + e, K) and (H, K + e) of G. If one of these separations

has order < k, then (ii) holds. Thus, we may assume that e has one end in V (H) \ V (K),

the other end in V (K) \ V (H), and both (H + e,K) and (H, K + e) have order k. Choose

(H ′, K ′) to be one of these two separations with E(H ′), E(K ′) 6= ∅ (this is possible since

|E(G)| ≥ 2) and set X = V (H ′) ∩ V (K ′) (note that |X| = k). Now, we apply the theorem

inductively to the graph H ′ for the sets A, X and to K ′ for the sets X, B. If there are k

disjoint paths from A to X in H ′ and k disjoint paths from X to B in K ′, then (i) holds.

Otherwise, by induction there is a separation of H ′ or K ′ in accordance with (ii), and it

follows that (ii) is satsified. ¤

Note: The above theorem implies Theorem 11.2 (König Egerváry). Simply apply the above

theorem to the bipartite graph G with bipartition (A,B). Then (i) holds if and only if

α′(G) ≥ k, and (ii) holds if and only if β(G) < k (here V (H) ∩ V (K) is a vertex cover).

Internally Disjoint: The paths P1, . . . , Pk are internally disjoint if they are pairwise vertex

disjoint except for their ends.

Theorem 4.9 (Menger’s Theorem) Let u, v be distinct non-adjacent vertices of G, and

let k ≥ 0 be an integer. Then exactly one of the following holds:

(i) There exist k internally disjoint paths P1, . . . , Pk from u to v.

(ii) There is a separation (H, K) of G of order < k with u ∈ V (H) \ V (K) and v ∈
V (K) \ V (H).

Proof: Let A = N(u) and B = N(v) and apply the above theorem to G− {u, v}. ¤

k-Connected: A graph G is k-connected if |V (G)| ≥ k + 1 and G − X is connected for

every X ⊆ V (G) with |X| < k. Note that this generalizes the notion of 2-connected from

Section 13. Also note that 1-connected is equivalent to connected.

22

Corollary 4.10 A simple graph G with |V (G)| ≥ k + 1 is k-connected if and only if for

every u, v ∈ V (G) there exist k internally disjoint paths from u to v.

Line Graph: If G is a graph, the line graph of G, denoted L(G), is the simple graph with

vertex set E(G), and two vertices e, f ∈ E(G) adjacent if e, f share an endpoint in G.

Edge cut: If X ⊆ V (G), we let δ(X) = {xy ∈ E(G) : x ∈ X and y 6∈ X}, and we call any

set of this form an edge cut. If v ∈ V (G) we let δ(v) = δ({v}).

Theorem 4.11 (Menger’s Theorem - edge version) Let u, v be distinct vertices of G

and let k ≥ 0 be an integer. Then exactly one of the following holds:

(i) There exist k edge disjoint paths P1, . . . , Pk from u to v.

(ii) There exists X ⊆ V (G) with u ∈ X and v 6∈ X so that |δ(X)| < k.

Proof: Apply Theorem 4.8 to the graph L(G) for δ(u) and δ(v) and k. ¤

k-edge-connected: A graph G is k-edge-connected if G−S is connected for every S ⊆ E(G)

with |S| < k.

Corollary 4.12 A graph G is k-edge-connected if and only if for every u, v ∈ V (G) there

exist k pairwise edge disjoint paths from u to v.

Fans and Cycles

Subdivision: If e = uv is an edge of the graph G, then we subdivide e by removing the

edge e, adding a new vertex w, and two new edges uw and wv.

Observation 4.13

1. Subdividing an edge of a 2-connected graph yields a 2-connected graph.

2. Adding an edge to a k-connected graph results in a k-connected graph.

3. If G is k-connected and A ⊆ V (G) satisfies |A| ≥ k, then adding a new vertex to G

and an edge from this vertex to each point in A results in a k-connected graph.

23

Fan: Let v ∈ V (G) and let A ⊆ V (G) \ {v}. A (v, A)-fan of size k is a collection of k

paths {P1, . . . , Pk} so that each Pi is a path from v to a point in A, and any two such paths

intersect only in the vertex v.

Lemma 4.14 If G is k-connected, v ∈ V (G) and A ⊆ V (G) \ {v} satisfies |A| ≥ k, then G

contains a (v,A)-fan of size k.

Proof: Construct a new graph G′ from G by adding a new vertex u and then adding a new

edge between u and each point of A. By the above observation, G′ is k-connected, and

u, v ∈ V (G′) are nonadjacent, so by Menger’s theorem there exist k internally disjoint paths

from u to v. Removing the vertex u from each of these paths yields a (v, A)-fan of size k in

G. ¤

Theorem 4.15 Let G be a k-connected graph with k ≥ 2 and let X ⊆ V (G) satisfy |X| = k.

Then there exists a cycle C ⊆ G with X ⊆ V (C).

Proof: Choose a cycle C ⊆ G so that |V (C) ∩ X| is maximum, and suppose (for a con-

tradiction) that X 6⊆ V (C). Choose a vertex v ∈ X \ V (C) and set k′ = min{k, |V (C)|}.
It follows from the above lemma that G has a (v, V (C))-fan of size k′, say {P1, . . . , Pk′}.
Since |X ∩ V (C)| < k, it follows that there exists a cycle C ′ ⊆ C ∪ P1 ∪ . . . ∪ Pk′ so that

{v} ∪ (X ∩ V (C)) ⊆ V (C ′). This contradiction completes the proof. ¤

5 Directed Graphs

What is a directed graph?

Directed Graph: A directed graph, or digraph, D, consists of a set of vertices V (D), a set

of edges E(D), and a function which assigns each edge e an ordered pair of vertices (u, v).

We call u the tail of e, v the head of e, and u, v the ends of e. If there is an edge with tail

u and head v, then we let (u, v) denote such an edge, and we say that this edge is directed

from u to v.

Loops, Parallel Edges, and Simple Digraphs: An edge e = (u, v) in a digraph D is a

loop if u = v. Two edges e, f are parallel if they have the same tails and the same heads. If

D has no loops or parallel edges, then we say that D is simple.

24

Drawing: As with undirected graphs, it is helpful to represent them with drawings so that

each vertex corresponds to a distinct point, and each edge from u to v is represented by a

curve directed from the point corresponding to u to the point corresponding to v (usually

we indicate this direction with an arrowhead).

Orientations: If D is a directed graph, then there is an ordinary (undirected) graph G

with the same vertex and edge sets as D which is obtained from D by associating each edge

(u, v) with the ends u, v (in other words, we just ignore the directions of the edges). We call

G the underlying (undirected) graph, and we call D an orientation of G.

Standard Diraphs

Null digraph the (unique) digraph with no vertices or edges.

Directed Path a graph whose vertex set may be numbered {v1, . . . , vn} and

edges may be numbered {e1, . . . , en−1} so that ei = (vi, vi+1)

for every 1 ≤ i ≤ n− 1.

Directed Cycle a graph whose vertex set may be numbered {v1, . . . , vn} and

edges may be numbered {e1, . . . , en} so that ei = (vi, vi+1)

(modulo n) for every 1 ≤ i ≤ n

Tournament A digraph whose underlying graph is a complete graph.

Subgraphs and Isomorphism: These concepts are precisely analogous to those for undi-

rected graphs.

Degrees: The outdegree of a vertex v, denoted deg+(v) is the number of edges with tail v,

and the indegree of v, denoted deg−(v) is the number of edges with head v.

Theorem 5.1 For every digraph D

∑

v∈V (D)

deg+(v) = |E(D)| =
∑

v∈V (D)

deg−(v)

Proof: Each edge contributes exactly 1 to the terms on the left and right. ¤

Connectivity

Directed Walks & Paths: A directed walk in a digraph D is a sequence v0, e1, v1, . . . , envn

so that vi ∈ V (D) for every 0 ≤ i ≤ n, and so that ei is an edge from vi−1 to vi for every

25

1 ≤ i ≤ n. We say that this is a walk from v0 to vn. If v0 = vn we say the walk is closed and

if v0, v1, . . . , vn are distinct we call it a directed path.

Proposition 5.2 If there is a directed walk from u to v, then there is a directed path from

u to v.

Proof: Every directed walk from u to v of minimum length is a directed path. ¤

δ+ and δ−: If X ⊆ V (D), we let δ+(X) denote the set of edges with tail in X and head in

V (G) \X, and we let δ−(X) = δ+(V (G) \X).

Proposition 5.3 Let D be a digraph and let u, v ∈ V (D). Then exactly one of the following

holds.

(i) There is a directed walk from u to v.

(ii) There exists X ⊆ V (D) with u ∈ X and v 6∈ X so that δ+(X) = ∅.

Proof: It is immediate that (i) and (ii) are mutually exclusive, so it suffices to show that at

least one holds. Let X = {w ∈ V (D) : there is a directed walk from u to w}. If v ∈ X then

(i) holds. Otherwise, δ+(X) = ∅, so (ii) holds. ¤

Strongly Connected: We say that a digraph D is strongly connected if for every u, v ∈
V (D) there is a directed walk from u to v.

Proposition 5.4 Let D be a digraph and let H1, H2 ⊆ D be strongly connected. If V (H1)∩
V (H2) 6= ∅, then H1 ∪H2 is strongly connected.

Proof: If v ∈ V (H1) ∩ V (H2), then every vertex has a directed walk both to v and from v,

so it follows that H1 ∪H2 is strongly connected. ¤

Strong Component: A strong component of a digraph D is a maximal strongly connected

subgraph of D.

Theorem 5.5 Every vertex is in a unique strong component of D.

Proof: This follows immediately from the previous proposition, and the observation that a

one-vertex digraph is strongly connected.

26

Observation 5.6 Let D be a digraph in which every vertex has outdegree ≥ 1. Then D

contains a directed cycle.

Proof: Construct a walk greedily by starting at an arbitrary vertex v0, and at each step

continue from the vertex vi along an arbitrary edge with tail vi (possible since each vertex

has outdegree ≥ 1) until a vertex is repeated. At this point, we have a directed cycle. ¤

Acyclic: A digraph D is acyclic if it has no directed cycle.

Proposition 5.7 The digraph D is acyclic if and only if there is an ordering v1, v2, . . . , vn

of V (D) so that every edge (vi, vj) satisfies i < j.

Proof: The ”if” direction is immediate. We prove the ”only if” direction by induction on

|V (D)|. As a base, observe that this is trivial when |V (D)| = 1. For the inductive step,

we may assume that D is acyclic, |V (D)| = n ≥ 2, and that the proposition holds for all

digraphs with fewer vertices. Now, apply the Observation 5.6 to choose a vertex vn with

deg+(vn) = 0. The digraph D − vn is acyclic, so by induction we may choose an ordering

v1, v2, . . . , vn−1 of V (D− vn) so that every edge (vi, vj) satisfies i < j. But then v1, . . . , vn is

such an ordering of V (D). ¤

Proposition 5.8 Let D be a digraph, and let D′ be the digraph obtained from D by taking

each strong component H ⊆ D, identifying V (H) to a single new vertex, and then deleting

any loops. Then D′ is acyclic.

Proof: If D′ had a directed cycle, then there would exist a directed cycle in D not contained

in any strong component, but this contradicts Theorem 5.5. ¤

Theorem 5.9 If G is a 2-connected graph, then there is an orientation D of G so that D

is strongly connected.

Proof: Let C, P1, . . . , Pk be an ear decomposition of G. Now, orient the edges of C to form

a directed cycle, and orient the edges of each path Pi to form a directed path. It now

follows from the obvious inductive argument (on k) that the resulting digraph D is strongly

connected. ¤

27

Eulerian, Hamiltonian, & path partitions

Proposition 5.10 Let D be a digraph and assume that deg+(v) = deg−(v) for every vertex

v. Then there exists a list of directed cycles C1, C2, . . . , Ck so that every edge appears in

exactly one.

Proof: Choose a maximal list of cycles C1, C2, . . . , Ck so that every edge appears in at most

one. Suppose (for a contradiction) that there is an edge not included in any cycle Ci and let

H be a component of D \ ∪k
i=1E(Ci) which contains an edge. Now, every vertex v ∈ V (H)

satisfies deg+
H(v) = deg−H(v) 6= 0, so by Observation 17.5 there is a directed cycle C ⊆ H.

But then C may be appended to the list of cycles C1, . . . , Ck. This contradiction completes

the proof. ¤

Eulerian: A closed directed walk in a digraph D is called Eulerian if it uses every edge

exactly once. We say that D is Eulerian if it has such a walk.

Theorem 5.11 Let D be a digraph D whose underlying graph is connected. Then D is

Eulerian if and only if deg+(v) = deg−(v) for every v ∈ V (D).

Proof: The ”only if” direction is immediate. For the ”if” direction, choose a closed walk

v0, e1, . . . , vn which uses each edge at most once and is maximum in length (subject to this

constraint). Suppose (for a contradiction) that this walk is not Eulerian. Then, as in the

undirected case, it follows from the fact that the underlying graph is connected that there

exists an edge e ∈ E(D) which does not appear in the walk so that e is incident with some

vertex in the walk, say vi. Let H = D−{e1, e2, . . . , en}. Then every vertex of H has indegree

equal to its outdegree, so by the previous proposition, there is a list of directed cycles in

H containing every edge exactly once. In particular, there is a directed cycle C ⊆ H with

e ∈ C. But then, the walk obtained by following v0, e1, . . . , vi, then following the directed

cycle C from vi back to itself, and then following ei+1, vi, . . . , vn is a longer closed walk which

contradicts our choice. This completes the proof. ¤
Hamiltonian: Let D be a directed graph. A cycle C ⊆ D is Hamiltonian if V (C) = V (D).

Similarly, a path P ⊆ D is Hamiltonian if V (P) = V (D).

In & Out Neighbors: If X ⊆ V (D), we define

N+(X) = {y ∈ V (D) \X : (x, y) ∈ E(D) for some x ∈ X}
N−(X) = {y ∈ V (D) \X : (y, x) ∈ E(D) for some x ∈ X}

28

We call N+(X) the out-neighbors of X and N−(X) the in-neighbors of X. If x ∈ X we let

N+(x) = N+({x} and N−(x) = N−({x}).

Theorem 5.12 (Rédei) Every tournament has a Hamiltonian path.

Proof: Let T be a tournament. We prove the result by induction on |V (T)|. As a base,

if |V (T)| = 1, then the one vertex path suffices. For the inductive step, we may assume

that |V (T)| ≥ 2. Choose a vertex v ∈ V (T) and let T− (resp. T+) be the subgraph of T

consisting of all vertices in N−(v) (resp. N+(v)) and all edges with both ends in this set.

If both T− and T+ are not null, then each has a Hamiltonian path, say P− and P+ and

we may form a Hamiltonian path in T by following P− then going to the vertex v, then

following P+. A similar argument works if either T− or T+ is null. ¤

Theorem 5.13 (Camion) Every strongly connected tournament has a Hamiltonian cycle.

Proof: Let T be a strongly connected tournament, and choose a cycle C ⊆ T with |V (C)|
maximum. Suppose (for a contradiction) that V (C) 6= V (T). If there is a vertex v ∈
V (T) \ V (C) so that N+(v) ∩ V (C) 6= ∅ and N−(v) ∩ V (C) 6= ∅, then there must exist an

edge (w, x) ∈ E(C) so that (w, v), (v, x) ∈ E(T). However, then we may use these edges

to find a longer cycle. It follows that the vertices in V (T) \ V (C) may be partitioned into

{A,B} so that every x ∈ A has V (C) ⊆ N+(v) and every y ∈ B has V (C) ⊆ N−(y). It

follows from the strong connectivity of T that A,B 6= ∅ and that there exists an edge (y, z)

with y ∈ B and z ∈ A. However, then we may replace an edge (w, x) ∈ E(C) with the path

containing the edges (w, y), (y, z), (z, x) to get a longer cycle. This contradiction completes

the proof. ¤
Path Partition: A path partition of a digraph D is a collection P = {P1, P2, . . . , Pk} so

that Pi is a directed path for 1 ≤ i ≤ k and {V (P1), V (P2), . . . , V (Pk)} is a partition of

V (D). We let heads(P) (tails(P)) denote the set of vertices which are the initial (terminal)

vertex in some Pi.

Lemma 5.14 (Bondy) Let P be a path partition of the digraph D, and assume |P| > α(D).

Then there is a path partition P ′ of D so that |P ′| = |P| − 1, and tails(P ′) ⊆ tails(P).

Proof: We proceed by induction on |V (D)|. As a base, observe that the result is trivial

when |V (D)| = 1. For the inductive step, note that since α(D) < |tails(P)| there must

29

exist an edge (x, y) with x, y ∈ tails(P). Choose i so that y ∈ V (Pi). If |V (Pi)| = 1, then

we may remove Pi from P and then append the edge (x, y) to the path containing x to get

a suitable path partition. Thus, we may assume that |V (Pi)| > 1, and choose w ∈ V (D)

so that (w, y) ∈ E(Pi). Now, P ′ = {P1, . . . , Pi−1, Pi − y, Pi+1, . . . , Pk} is a path partition of

D − y and α(D − y) ≤ α(D) < |P ′|, so by induction, there is a path partition P ′′ of D − y

with |P ′′| = |P ′| − 1 and tails(P ′′) ⊆ tails(P ′). Since x,w ∈ tails(P ′), at least one of x,w

is in x,w ∈ tails(P ′′). Since (x, y), (w, y) ∈ E(D), we may extend P ′′ to a suitable path

partition of D by using one of these edges. ¤

Theorem 5.15 (Gallai-Milgram) Every digraph D has a path partition P with |P| =

α(D).

Proof: This follows immediately from the observation that every digraph has a path partition

(for instance, take each vertex as a one vertex path), and (repeated applications of) the above

lemma. ¤

Note: This is a generalization of Theorem 5.12.

Partially Ordered Set: A partially ordered set (or poset) consists of a set X and a binary

relation ≺ which is reflexive (x ≺ x for every x ∈ X), antisymmetric (x ≺ y and y ≺ x imply

x = y), and transitive (x ≺ y and y ≺ z imply x ≺ z). We say that two points x, y ∈ X are

comparable if either x ≺ y or y ≺ x.

Chains and Antichains: In a poset, a chain is a subset A ⊆ X so that any two points in A

are comparable. An antichain is a subset B ⊆ X so that no two points in B are comparable.

Theorem 5.16 (Dilworth) Let (X,≺) be a poset and let k be the size of the largest an-

tichain. Then there is a partition of X into k chains.

Proof: Form a digraph D with vertex set X by adding an edge from x to y whenever x 6= y

and x ≺ y. Now α(D) = k, so the Gallai-Milgram Theorem gives us a path partition of D

of size k. However, the vertex set of a directed path is a chain in the poset, so this yields a

partition of X into k chains. ¤

30

The Ford-Fulkerson Theorem

Flows: If D is a digraph and s, t ∈ V (D), then an (s, t)-flow is a map φ : E(D) → R with

the property that for every v ∈ V (D) \ {s, t} the following holds.

∑

e∈δ+(v)

φ(e) =
∑

e∈δ−(v)

φ(e).

The value of φ is
∑

e∈δ+(s) φ(e)−∑
e∈δ−(s) φ(e).

Proposition 5.17 If φ is an (s, t)-flow of value q, then every X ⊆ V (D) with s ∈ X and

t 6∈ X satisfies ∑

e∈δ+(X)

φ(e)−
∑

e∈δ−(X)

φ(e) = q.

Proof:

q =
∑

e∈δ+(s)

φ(e)−
∑

e∈δ−(s)

φ(e)

=
∑
x∈X

 ∑

e∈δ+(x)

φ(e)−
∑

e∈δ−(x)

φ(e)

=
∑

e∈δ+(X)

φ(e)−
∑

e∈δ−(X)

φ(e)

¤

Capacities: We shall call a weight function c : E(D) → R+ ∪ {∞} a capacity function. If

X ⊆ V (D), we say that δ+(X) has capacity
∑

e∈δ+(X) φ(e).

Admissible Flows: An (s, t)-flow φ is admissible if 0 ≤ φ(e) ≤ c(e) for every edge e.

Augmenting Paths: Let c be a capacity function and φ : E(D) → R an admissible (s, t)-

flow. A path P from u to v is called augmenting if for every edge e ∈ E(P), either e is

traversed in the forward direction and φ(e) < c(e) or e is traversed in the backward direction

and φ(e) > 0.

Theorem 5.18 (Ford-Fulkerson) Let D be a digraph, let s, t ∈ V (D), and let c be a

capacity function. Then the maximum value of an (s, t)-flow is equal to the minimum capacity

of a cut δ+(X) with s ∈ X and t 6∈ X. Furthermore, if c is integer valued, then there exists

a flow of maximum value φ which is also integer valued.

31

Proof: It follows immediately from Proposition 19.1 that every admissible (s, t)-flow has

value less than or equal to the capacity of any cut δ+(X) with s ∈ X and t 6∈ X.

We shall prove the other direction of this result only for capacity functions c : E(D) → Q+

(although it holds in general). For every edge e, let pe

qe
be a reduced fraction equal to c(e),

and let n be the least common multiple of {qe : e ∈ E(D)}. We shall prove that there exists

a flow φ : E(D) → Q+ so that φ(e) can be expressed as a fraction with denominator n for

every edge e. To do this, choose a flow φ with this property of maximum value. Define the

set X as follows.

X = {v ∈ V (D) : there is an augmenting path from s to v}

If t ∈ X, then there exists an augmenting path P from s to t. However, then we may modify

the flow φ to produce a new admissible flow of greater value by increasing the flow by 1
n

on

every forward edge of P and decreasing the flow by 1
n

on every backward edge of P . Since

this new flow would contradict the choice of φ, it follows that t 6∈ X.

It follows from the definition of X that every edge e ∈ δ+(X) satisfies φ(e) = c(e) and

every edge f ∈ δ−(X) satisfies φ(f) = 0. Thus, our flow φ has value equal to the capacity

of the cut δ+(X) and the proof is complete. ¤

Note: The above proof for rational valued flows combined with a simple convergence ar-

gument yields the proof in general. However, the algorithm inherent in the above proof

does not yield a finite algorithm for finding a flow of maximum value for arbitrary capacity

functions.

Corollary 5.19 (edge-digraph version of Menger) Let D be a digraph and let s, t ∈
V (D). Then exactly one of the following holds:

(i) There exist k pairwise edge disjoint directed paths P1, . . . , Pk from s to t.

(ii) There exists X ⊆ V (D) with s ∈ X and t 6∈ X so that |δ+(X)| < k

Proof: It is immediate that (i) and (ii) are mutually exclusive, so it suffices to show that at

least one holds. Define a capacity function c : E(D) → R by the rule that c(e) = 1 for every

edge e. Apply the Ford-Fulkerson Theorem to choose an admissible integer valued (s, t)-flow

φ : E(D) → Z and a cut δ+(X) with s ∈ X and t 6∈ X so that the value of φ and the capacity

32

of δ+(X) are both equal to the integer q. Now, let H = D − {e ∈ E(D) : φ(e) = 0}. Then

H is a digraph with the property that δ+
H(s)− δ−H(s) = q = δ−H(t)− δ+

H(t) and δ+
H(v) = δ−H(v)

for every v ∈ V (H) \ {s, t}. By Problem 3 of Homework 10, we find that H contains q edge

disjoint directed paths from s to t. So, if q ≤ k, then (i) holds, and if q > k (ii) holds. ¤

