8 Colouring Planar Graphs

The Four Colour Theorem

Lemma 8.1 If G is a simple planar graph, then
(i) $12 \leq \sum_{v \in V(G)}(6-\operatorname{deg}(v))$ with equality for triangulations.
(ii) $\quad G$ has a vertex of degree ≤ 5.

Proof: For (i), note that by Lemma 7.5 we have $12 \leq 6|V(G)|-2|E(G)|=\sum_{v \in V(G)}(6-$ $\operatorname{deg}(v))$ with equality for triangulations. Part (ii) follows immediately from this.

Theorem 8.2 (Heawood) Every loopless planar graph is 5 -colourable.

Proof: We proceed by induction on $|V(G)|$. As a base, note that the result is trivial when $|V(G)|=0$. For the inductive step, let G be a planar graph with $|V(G)|>0$. By removing parallel edges, we may also assume that G is simple. Now by (ii) of the previous lemma, we may choose $v \in V(G)$ with $\operatorname{deg}(v) \leq 5$. By the inductive hypothesis, we may choose a 5 -colouring of $G-v$. If there is a colour which does not appear on a neighbor of v, then we may extend this colouring to a 5 -colouring of G. Thus, we may assume that v has exactly 5 neighbors, $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ appearing in this order clockwise around v (in our embedding), and we may assume that v_{i} has colour i for $i=1 \ldots 5$.

For every $1 \leq i<j \leq 5$ let $G_{i j}$ be the subgraph of $G-v$ induced by the vertices of colour i and j. Note that the colouring obtained by switching colours i and j on any component of $G_{i j}$ is still a colouring of $G-v$. Now, consider the component of G_{13} which contains the vertex v_{1}. If this component does not contain v_{3}, then by switching colours 1 and 3 on it, we obtain a 5 -colouring of $G-v$ where no neighbor of v has colour 1 , and this may be extended to a 5 -colouring of G. Thus, we may assume that the component of G_{13} containing v_{1} also contains v_{3}. So, in particular, there is a path in $G-v$ containing only vertices of colour 1 and 3 joining v_{1} and v_{3}. This path may be completed to a cycle by adding v, and this cycle separates v_{2} and v_{4}. It follows that the component of G_{24} containing v_{2} does not contain v_{4}. By switching colours on this component, we obtain a 5 -colouring of $G-v$ where no neighbor of v has colour 2. This may then be extended to a 5-colouring of G as required.

Theorem 8.3 (The Four Colour Theorem - Appel, Haken) Every loopless planar graph is 4-colourable.

Proof: The proof involves a finite set \mathcal{X} of planar graphs, and splits into two parts. First, it is proved that every (sufficiently well connected) planar graph contains at least one of the graphs in \mathcal{X} as a subgraph. Second, it is proved that every graph in \mathcal{X} is reducible in the sense that whenever G contains a graph in \mathcal{X} as a subgraph, this subgraph may be deleted or replaced by something smaller in such a way that every 4 -colouring of this new graph can be extended to a 4 -colouring of the original graph. We give two easy examples of this in the next two lemmas. See "http://www.math.gatech.edu/~ thomas/FC/fourcolor.html" for a more detailed description (you can also access this page by typing " 4 color theorem" into Google and clicking "I'm Feeling Lucky")

Lemma 8.4 (Birkhoff) Let G be a plane graph which contains the subgraph in Figure 1 embedded as shown. Let G^{\prime} be the (plane) graph obtained from G by deleting vertices w, x, y, z, identifying a and c, and then adding an edge between d and f (as shown in Figure 2). Then G is 4 -colourable if G^{\prime} is 4 -colourable.

Figure 1

Figure 2

Proof: Consider a 4-colouring of G^{\prime}. We may assume that vertex $a c$ has colour 1, vertex d has colour 2, and vertex f has colour 3. By removing the edge $d f$ and then splitting $a c$ back to a and c, we obtain a 4-colouring of $G-\{w, x, y, z\}$ where vertices a and c have colour 1 , d has colour 2 , and f has colour 3. If b is not colour 4, then we may assign x colour $4, w$ colour 2 , y colour 3 , and z either colour 1 or 4 (depending on the colour of e) to achieve a 4 -colouring of G. Thus, we may assume that b has colour 4. If e has colour 4, then giving
w, x, y, z the colours $3,2,4,1$ respectively yields a colouring, so we may also assume that e has colour 1 .

For every 4-colouring of $G-\{w, x, y, z\}$ using the colours $\{1,2,3,4\}$ and every $1 \leq i<$ $j \leq 4$, we let $G_{i j}$ be the subgraph of $G-\{w, x, y, z\}$ induced by the vertices of colours i and j. If the component of G_{14} containing e does not contain b, then switching colours on this component changes e to colour 4 and does not effect any of a, b, c, d, f bringing us back to a previously handled case. Thus, we may assume that there is a path with vertices coloured 1 and 4 joining b and e. It follows that the component of G_{23} containing d does not contain f. By switching colours on this component, we get a colouring of $G-\{w, x, y, z\}$ where a, b, c, d, e, f have colours $1,4,1,3,1,3$ respectively. Now consider the component of G_{12} containing e. If this component does not contain a or c, then we may switch colours on it, and extend to a colouring of G by assigning w, x, y, z the colours $4,3,2,1$ respectively. Thus, by symmetry, we may assume that there is a path of vertices with colours 1 and 2 joining e and a. It follows from this that the component of G_{34} containing f does not contain b or d. By switching colours on this component, and then assigning w, x, y, z the colours $3,2,4,2$ we obtain a 4 -colouring of G. This completes the proof.

Lemma 8.5 Let G be a triangulation of the plane. Then must contain one of the following configurations.
(i) A vertex with degree ≤ 4.
(ii) Two adjacent vertices with degree 5.
(iii) A triangle with vertices of degree 5, 6, 6 .

Proof: We shall assume that every vertex of G has degree ≥ 5 and show that one of the other two outcomes must occur. For every vertex v, put a charge of $3(6-\operatorname{deg}(v))$ on v. By (i) of Lemma 8.1 we have that $36=\sum_{v \in V(G)} 3(6-\operatorname{deg}(v))$, so the sum of the charges is 36 . Next, move one unit of charge from each vertex v of degree 5 to each neighbor of v with degree ≥ 7. Now, consider a vertex u with charge >0 (one must exist since they sum to 36). First suppose that u has degree 5 . Then it began with a charge of 3 , so it must have lost ≤ 2, so it has ≤ 2 neighbors of degree ≥ 7. But then, either G has a neighbor of degree 5 (config. (ii)) or two adjacent neighbors of degree 6 (config (iii)) so we are done. The degree of u cannot be 6 , since such vertices have 0 charge. If u has degree 7 , then it began with a charge of -3 ,
so it must have ≥ 4 neighbors of degree 5 , two of which must be adjacent. Similarly, if u has degree 8 , then it began with a charge of -6 , so it must have ≥ 7 neighbors of degree 5 , two of which must be adjacent. Finally, u cannot have degree $d \geq 9$ since in this case its initial charge would be $3(6-d)=18-3 d \leq-d$ and in this case it is impossible for u to end up with positive charge.

Tait's Theorem

Theorem 8.6 (Tait) A triangulation G is 4-colourable if and only if G^{*} is 3-edge-colourable.

Proof: For the "only if" direction, let $\phi: V(G) \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ be a 4 -colouring of G. Now, define a labeling $\psi^{*}: E\left(G^{*}\right) \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ by the rule that if $e^{*} \in E\left(G^{*}\right)$ and e has ends x and y, then $\psi^{*}\left(e^{*}\right)=\phi(x)+\phi(y)$. Since ϕ is a colouring, $\psi^{*}\left(e^{*}\right) \neq(0,0)$ for every $e^{*} \in E\left(G^{*}\right)$. Let $a^{*} \in V\left(G^{*}\right)$ and assume that a^{*} is incident with the faces $x^{*}, y^{*}, z^{*} \in F\left(G^{*}\right)$. Then $\sum_{e^{*} \in \delta\left(a^{*}\right)} \psi\left(e^{*}\right)$ adds each of $\phi(x), \phi(y)$, and $\phi(z)$ twice, so this sum is zero. The only possibility for a triple of nonzero elements in $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ to have zero sum is if these elements are distinct. Thus ψ^{*} is a 3 -edge-colouring of G^{*}.

For the "if" direction, let $\psi^{*}: E\left(G^{*}\right) \rightarrow\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \backslash\{(0,0)\}$ be a 3-edge-colouring of G^{*} and let ψ be the dual map given by the rule $\psi(e)=\psi^{*}\left(e^{*}\right)$. Next we prove a key fact.

Claim: If $v_{1}, e_{1}, \ldots, v_{n}$ is a closed walk in G, then $\sum_{i=1}^{n-1} \psi\left(e_{i}\right)=(0,0)$.
Proof of Claim: It suffices to prove the claim for closed walks without repeated vertices, so we may assume v_{1}, \ldots, v_{n-1} are distinct. The claim holds trivially for walks of length 2 which traverse the same edge twice. Otherwise, we may assume that $\left\{e_{1}, \ldots, e_{n-1}\right\}$ is the edge set of a cycle C in G. Now, let A be the set of faces of G which are inside C. By construction, every $a \in A$, is a triangle and ψ assigns each edge of this triangle a distinct nonzero element from $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. It follows that the sum of ψ on the edges of this triangle is zero. Now, form a sum by adding for every $a \in A$ the sum of ψ over the edges of the triangle bounding a. As observed, this sum must be zero. However, since every edge not in C is counted twice, and every edge in C is counted once, this is also the sum of ϕ on the edges of C.

Now, choose a vertex $u \in V(G)$ and define the map $\phi: V(G) \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ by the rule that $\phi(v)$ is the sum of ψ on the edges of a walk from u to v. It follows from the claim that this sum is independent of the choice of walk. Further, if $v, w \in V(G)$ are joined by the edge e,
then we may construct a walk from u to w by first walking to v and then traversing the edge e. It follows that $\phi(w)=\phi(v)+\psi(e) \neq \phi(v)$, so ϕ is a 4-colouring of G.

Corollary 8.7 The following statements are equivalent.
(i) Every loopless planar graph is 4-colourable (The Four Colour Theorem).
(ii) Every loopless triangulation of the plane is 4-colourable.
(iii) Every 2-edge-connected 3-regular plane graph is 3-edge-colourable.

Proof: To see that (ii) \Leftrightarrow (iii), note that if G, G^{*} are connected dual planar graphs, then G is a loopless triangulation if and only if G^{*} is 2 -edge-connected and 3 -regular (loops are dual to cut-edges by (i) of Proposition 7.4). It follows from this and Tait's Theorem that (ii) \Leftrightarrow (iii). It is immediate that (i) \Rightarrow (ii). To see that (ii) \Rightarrow (i), assume (ii) holds and let G be a loopless plane graph. By adding edges to G we may form a loopless triangulation. By (ii) this new graph has a 4-colouring, and this is also a 4-colouring of G.

Choosability

Theorem 8.8 (Voigt) There exists a loopless planar graph which is not 4-choosable.

Proof: Homework.
Theorem 8.9 (Thomassen) Every loopless planar graph is 5-choosable.

Proof: Since adding edges cannot reduce the list chromatic number (and the result is trivial for graphs with <2 vertices), it suffices to prove the following stronger statement.

Claim: Let G be a connected plane graph with all finite faces of length 3 , let v_{1}, v_{2} be distinct adjacent vertices which lie on the infinite face, and let $L: V(G) \rightarrow \mathbb{N}$ be a list assignment. If the following conditions are satisfied, then G is L-choosable:

- $|L(v)| \geq 5$ if v does not lie on the infinite face.
- $|L(v)| \geq 3$ if $v \neq v_{1}, v_{2}$ and v lies on the infinite face.
- $\left|L\left(v_{1}\right)\right|=\left|L\left(v_{2}\right)\right|=1$ and $L\left(v_{1}\right) \neq L\left(v_{2}\right)$.

We prove the claim by induction on $|V(G)|$. As a base case, observe that the result holds trivially when $|V(G)|=2$. For the inductive step, let G and L satisfy the above conditions, and assume that the claim holds for any graph with fewer vertices.

Suppose the infinite face is not bounded by a cycle.
In this case, there exists a proper 1-separation $\left(H_{1}, H_{2}\right)$ of G with $V\left(H_{1}\right) \cap V\left(H_{2}\right)=\{u\}$ so that u lies on the infinite face. Since v_{1} and v_{2} are adjacent, we must have either $v_{1}, v_{2} \in$ $V\left(H_{1}\right)$ or $v_{1}, v_{2} \in V\left(H_{2}\right)$ and we may assume the former case without loss. By induction, we may choose a colouring ϕ of H_{1} so that every vertex receives a colour from its list. Now, modify the list of u by setting $L(u)=\{\phi(u)\}$. Choose a neighbor u^{\prime} of u in H_{2} which lies on the infinite face, choose a colour $q \in L\left(u^{\prime}\right)$ so that $q \neq \phi(u)$ and set $L\left(u^{\prime}\right)=\{q\}$. By applying the claim inductively to H_{2} where u and u^{\prime} play the roles of v_{1} and v_{2}, we obtain a colouring of H_{2} so that every vertex receives a colour from its list. Merging these two colourings gives us a colouring of G. Thus, we may assume that the infinite face is bounded by a cycle.

Suppose the cycle bounding the infinite face is not induced.
In this case, there exists a proper 2-separation $\left(H_{1}, H_{2}\right)$ of G with $V\left(H_{1}\right) \cap V\left(H_{2}\right)=\{u, w\}$ where u, w lie on the cycle C bounding the infinite face, and u, v are adjacent in G but not in C. Since v_{1} and v_{2} are adjacent, we must have either $v_{1}, v_{2} \in V\left(H_{1}\right)$ or $v_{1}, v_{2} \in V\left(H_{2}\right)$ and we may assume the former case without loss. By induction, we may choose a colouring ϕ of H_{1} so that every vertex receives a colour from its list. Modify the lists of u and w by setting $L(u)=\{\phi(u)\}$ and $L(w)=\{\phi(w)\}$. Now by applying the claim inductively to H_{2} where u and w play the roles of v_{1} and v_{2}, we obtain a colouring of H_{2} so that every vertex receives a colour from its list. Merging these two colourings gives us a colouring of G. Thus, we may assume that the cycle bounding the infinite face is induced.

Let $v_{1}, v_{2}, v_{3}, \ldots, v_{k}$ be an ordering of the vertices of C so that $v_{i} v_{i+1} \in E(G)$ for every $1 \leq i \leq k-1$. Let $u_{1}, u_{2}, \ldots, u_{\ell}$ be the neighbors of v_{3} which do not lie on the infinite face. Now, $\left|L\left(v_{3}\right)\right| \geq 3$ so we may choose a set $S \subseteq L\left(v_{3}\right)$ of size 2 which is disjoint from $L\left(v_{2}\right)$. Delete the vertex v_{3} and then modify the lists of the vertices u_{1}, \ldots, u_{ℓ} by removing from them any colour which appears in S. By induction, we may choose a colouring of $G-v$ where every vertex receives a colour from its list. Now, none of the vertices $v_{2}, u_{1}, \ldots, u_{\ell}$ has
a colour in S, and v_{3} has only one neighbor not appearing in this list, so we may extend our colouring to a list colouring of G by giving v_{3} one of the colours in S. This completes the proof.

