
8 Colouring Planar Graphs

The Four Colour Theorem

Lemma 8.1 If G is a simple planar graph, then

(i) 12 ≤ ∑
v∈V (G)(6− deg(v)) with equality for triangulations.

(ii) G has a vertex of degree ≤ 5.

Proof: For (i), note that by Lemma 7.5 we have 12 ≤ 6|V (G)| − 2|E(G)| =
∑

v∈V (G)(6 −
deg(v)) with equality for triangulations. Part (ii) follows immediately from this. ¤

Theorem 8.2 (Heawood) Every loopless planar graph is 5-colourable.

Proof: We proceed by induction on |V (G)|. As a base, note that the result is trivial when

|V (G)| = 0. For the inductive step, let G be a planar graph with |V (G)| > 0. By removing

parallel edges, we may also assume that G is simple. Now by (ii) of the previous lemma,

we may choose v ∈ V (G) with deg(v) ≤ 5. By the inductive hypothesis, we may choose a

5-colouring of G− v. If there is a colour which does not appear on a neighbor of v, then we

may extend this colouring to a 5-colouring of G. Thus, we may assume that v has exactly

5 neighbors, v1, v2, v3, v4, v5 appearing in this order clockwise around v (in our embedding),

and we may assume that vi has colour i for i = 1 . . . 5.

For every 1 ≤ i < j ≤ 5 let Gij be the subgraph of G−v induced by the vertices of colour

i and j. Note that the colouring obtained by switching colours i and j on any component

of Gij is still a colouring of G− v. Now, consider the component of G13 which contains the

vertex v1. If this component does not contain v3, then by switching colours 1 and 3 on it, we

obtain a 5-colouring of G− v where no neighbor of v has colour 1, and this may be extended

to a 5-colouring of G. Thus, we may assume that the component of G13 containing v1 also

contains v3. So, in particular, there is a path in G − v containing only vertices of colour 1

and 3 joining v1 and v3. This path may be completed to a cycle by adding v, and this cycle

separates v2 and v4. It follows that the component of G24 containing v2 does not contain v4.

By switching colours on this component, we obtain a 5-colouring of G−v where no neighbor

of v has colour 2. This may then be extended to a 5-colouring of G as required. ¤
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Theorem 8.3 (The Four Colour Theorem - Appel, Haken) Every loopless planar graph

is 4-colourable.

Proof: The proof involves a finite set X of planar graphs, and splits into two parts. First,

it is proved that every (sufficiently well connected) planar graph contains at least one of the

graphs in X as a subgraph. Second, it is proved that every graph in X is reducible in the

sense that whenever G contains a graph in X as a subgraph, this subgraph may be deleted

or replaced by something smaller in such a way that every 4-colouring of this new graph can

be extended to a 4-colouring of the original graph. We give two easy examples of this in

the next two lemmas. See ”http://www.math.gatech.edu/˜thomas/FC/fourcolor.html” for

a more detailed description (you can also access this page by typing ”4 color theorem” into

Google and clicking ”I’m Feeling Lucky”) ¤

Lemma 8.4 (Birkhoff) Let G be a plane graph which contains the subgraph in Figure 1

embedded as shown. Let G′ be the (plane) graph obtained from G by deleting vertices w, x, y, z,

identifying a and c, and then adding an edge between d and f (as shown in Figure 2). Then

G is 4-colourable if G′ is 4-colourable.
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Proof: Consider a 4-colouring of G′. We may assume that vertex ac has colour 1, vertex d

has colour 2, and vertex f has colour 3. By removing the edge df and then splitting ac back

to a and c, we obtain a 4-colouring of G− {w, x, y, z} where vertices a and c have colour 1,

d has colour 2, and f has colour 3. If b is not colour 4, then we may assign x colour 4, w

colour 2, y colour 3, and z either colour 1 or 4 (depending on the colour of e) to achieve a

4-colouring of G. Thus, we may assume that b has colour 4. If e has colour 4, then giving
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w, x, y, z the colours 3, 2, 4, 1 respectively yields a colouring, so we may also assume that e

has colour 1.

For every 4-colouring of G − {w, x, y, z} using the colours {1, 2, 3, 4} and every 1 ≤ i <

j ≤ 4, we let Gij be the subgraph of G − {w, x, y, z} induced by the vertices of colours

i and j. If the component of G14 containing e does not contain b, then switching colours

on this component changes e to colour 4 and does not effect any of a, b, c, d, f bringing us

back to a previously handled case. Thus, we may assume that there is a path with vertices

coloured 1 and 4 joining b and e. It follows that the component of G23 containing d does not

contain f . By switching colours on this component, we get a colouring of G − {w, x, y, z}
where a, b, c, d, e, f have colours 1, 4, 1, 3, 1, 3 respectively. Now consider the component of

G12 containing e. If this component does not contain a or c, then we may switch colours

on it, and extend to a colouring of G by assigning w, x, y, z the colours 4, 3, 2, 1 respectively.

Thus, by symmetry, we may assume that there is a path of vertices with colours 1 and 2

joining e and a. It follows from this that the component of G34 containing f does not contain

b or d. By switching colours on this component, and then assigning w, x, y, z the colours

3, 2, 4, 2 we obtain a 4-colouring of G. This completes the proof. ¤

Lemma 8.5 Let G be a triangulation of the plane. Then must contain one of the following

configurations.

(i) A vertex with degree ≤ 4.

(ii) Two adjacent vertices with degree 5.

(iii) A triangle with vertices of degree 5, 6, 6.

Proof: We shall assume that every vertex of G has degree ≥ 5 and show that one of the other

two outcomes must occur. For every vertex v, put a charge of 3(6− deg(v)) on v. By (i) of

Lemma 8.1 we have that 36 =
∑

v∈V (G) 3(6− deg(v)), so the sum of the charges is 36. Next,

move one unit of charge from each vertex v of degree 5 to each neighbor of v with degree

≥ 7. Now, consider a vertex u with charge > 0 (one must exist since they sum to 36). First

suppose that u has degree 5. Then it began with a charge of 3, so it must have lost ≤ 2, so it

has ≤ 2 neighbors of degree ≥ 7. But then, either G has a neighbor of degree 5 (config. (ii))

or two adjacent neighbors of degree 6 (config (iii)) so we are done. The degree of u cannot

be 6, since such vertices have 0 charge. If u has degree 7, then it began with a charge of -3,
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so it must have ≥ 4 neighbors of degree 5, two of which must be adjacent. Similarly, if u has

degree 8, then it began with a charge of −6, so it must have ≥ 7 neighbors of degree 5, two

of which must be adjacent. Finally, u cannot have degree d ≥ 9 since in this case its initial

charge would be 3(6 − d) = 18 − 3d ≤ −d and in this case it is impossible for u to end up

with positive charge. ¤

Tait’s Theorem

Theorem 8.6 (Tait) A triangulation G is 4-colourable if and only if G∗ is 3-edge-colourable.

Proof: For the ”only if” direction, let φ : V (G) → Z2 × Z2 be a 4-colouring of G. Now,

define a labeling ψ∗ : E(G∗) → Z2 ×Z2 by the rule that if e∗ ∈ E(G∗) and e has ends x and

y, then ψ∗(e∗) = φ(x) + φ(y). Since φ is a colouring, ψ∗(e∗) 6= (0, 0) for every e∗ ∈ E(G∗).

Let a∗ ∈ V (G∗) and assume that a∗ is incident with the faces x∗, y∗, z∗ ∈ F (G∗). Then∑
e∗∈δ(a∗) ψ(e∗) adds each of φ(x), φ(y), and φ(z) twice, so this sum is zero. The only

possibility for a triple of nonzero elements in Z2 × Z2 to have zero sum is if these elements

are distinct. Thus ψ∗ is a 3-edge-colouring of G∗.

For the ”if” direction, let ψ∗ : E(G∗) → (Z2 × Z2) \ {(0, 0)} be a 3-edge-colouring of G∗

and let ψ be the dual map given by the rule ψ(e) = ψ∗(e∗). Next we prove a key fact.

Claim: If v1, e1, . . . , vn is a closed walk in G, then
∑n−1

i=1 ψ(ei) = (0, 0).

Proof of Claim: It suffices to prove the claim for closed walks without repeated vertices, so

we may assume v1, . . . , vn−1 are distinct. The claim holds trivially for walks of length 2 which

traverse the same edge twice. Otherwise, we may assume that {e1, . . . , en−1} is the edge set

of a cycle C in G. Now, let A be the set of faces of G which are inside C. By construction,

every a ∈ A, is a triangle and ψ assigns each edge of this triangle a distinct nonzero element

from Z2×Z2. It follows that the sum of ψ on the edges of this triangle is zero. Now, form a

sum by adding for every a ∈ A the sum of ψ over the edges of the triangle bounding a. As

observed, this sum must be zero. However, since every edge not in C is counted twice, and

every edge in C is counted once, this is also the sum of φ on the edges of C.

Now, choose a vertex u ∈ V (G) and define the map φ : V (G) → Z2×Z2 by the rule that

φ(v) is the sum of ψ on the edges of a walk from u to v. It follows from the claim that this

sum is independent of the choice of walk. Further, if v, w ∈ V (G) are joined by the edge e,
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then we may construct a walk from u to w by first walking to v and then traversing the edge

e. It follows that φ(w) = φ(v) + ψ(e) 6= φ(v), so φ is a 4-colouring of G. ¤

Corollary 8.7 The following statements are equivalent.

(i) Every loopless planar graph is 4-colourable (The Four Colour Theorem).

(ii) Every loopless triangulation of the plane is 4-colourable.

(iii) Every 2-edge-connected 3-regular plane graph is 3-edge-colourable.

Proof: To see that (ii) ⇔ (iii), note that if G,G∗ are connected dual planar graphs, then G

is a loopless triangulation if and only if G∗ is 2-edge-connected and 3-regular (loops are dual

to cut-edges by (i) of Proposition 7.4). It follows from this and Tait’s Theorem that (ii) ⇔
(iii). It is immediate that (i) ⇒ (ii). To see that (ii) ⇒ (i), assume (ii) holds and let G be

a loopless plane graph. By adding edges to G we may form a loopless triangulation. By (ii)

this new graph has a 4-colouring, and this is also a 4-colouring of G. ¤

Choosability

Theorem 8.8 (Voigt) There exists a loopless planar graph which is not 4-choosable.

Proof: Homework.

Theorem 8.9 (Thomassen) Every loopless planar graph is 5-choosable.

Proof: Since adding edges cannot reduce the list chromatic number (and the result is trivial

for graphs with < 2 vertices), it suffices to prove the following stronger statement.

Claim: Let G be a connected plane graph with all finite faces of length 3, let v1, v2 be distinct

adjacent vertices which lie on the infinite face, and let L : V (G) → N be a list assignment.

If the following conditions are satisfied, then G is L-choosable:

• |L(v)| ≥ 5 if v does not lie on the infinite face.

• |L(v)| ≥ 3 if v 6= v1, v2 and v lies on the infinite face.

• |L(v1)| = |L(v2)| = 1 and L(v1) 6= L(v2).
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We prove the claim by induction on |V (G)|. As a base case, observe that the result holds

trivially when |V (G)| = 2. For the inductive step, let G and L satisfy the above conditions,

and assume that the claim holds for any graph with fewer vertices.

Suppose the infinite face is not bounded by a cycle.

In this case, there exists a proper 1-separation (H1, H2) of G with V (H1)∩ V (H2) = {u}
so that u lies on the infinite face. Since v1 and v2 are adjacent, we must have either v1, v2 ∈
V (H1) or v1, v2 ∈ V (H2) and we may assume the former case without loss. By induction,

we may choose a colouring φ of H1 so that every vertex receives a colour from its list. Now,

modify the list of u by setting L(u) = {φ(u)}. Choose a neighbor u′ of u in H2 which lies

on the infinite face, choose a colour q ∈ L(u′) so that q 6= φ(u) and set L(u′) = {q}. By

applying the claim inductively to H2 where u and u′ play the roles of v1 and v2, we obtain

a colouring of H2 so that every vertex receives a colour from its list. Merging these two

colourings gives us a colouring of G. Thus, we may assume that the infinite face is bounded

by a cycle.

Suppose the cycle bounding the infinite face is not induced.

In this case, there exists a proper 2-separation (H1, H2) of G with V (H1)∩V (H2) = {u,w}
where u,w lie on the cycle C bounding the infinite face, and u, v are adjacent in G but not

in C. Since v1 and v2 are adjacent, we must have either v1, v2 ∈ V (H1) or v1, v2 ∈ V (H2)

and we may assume the former case without loss. By induction, we may choose a colouring

φ of H1 so that every vertex receives a colour from its list. Modify the lists of u and w by

setting L(u) = {φ(u)} and L(w) = {φ(w)}. Now by applying the claim inductively to H2

where u and w play the roles of v1 and v2, we obtain a colouring of H2 so that every vertex

receives a colour from its list. Merging these two colourings gives us a colouring of G. Thus,

we may assume that the cycle bounding the infinite face is induced.

Let v1, v2, v3, . . . , vk be an ordering of the vertices of C so that vivi+1 ∈ E(G) for every

1 ≤ i ≤ k − 1. Let u1, u2, . . . , u` be the neighbors of v3 which do not lie on the infinite face.

Now, |L(v3)| ≥ 3 so we may choose a set S ⊆ L(v3) of size 2 which is disjoint from L(v2).

Delete the vertex v3 and then modify the lists of the vertices u1, . . . , u` by removing from

them any colour which appears in S. By induction, we may choose a colouring of G − v

where every vertex receives a colour from its list. Now, none of the vertices v2, u1, . . . , u` has
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a colour in S, and v3 has only one neighbor not appearing in this list, so we may extend our

colouring to a list colouring of G by giving v3 one of the colours in S. This completes the

proof. ¤


