6 Graph Colouring

In this section, we shall assume (except where noted) that graphs are loopless.

Upper and Lower Bounds

Colouring: A k-colouring of a graph G is a map $\phi: V(G) \rightarrow S$ where $|S|=k$ with the property that $\phi(u) \neq \phi(v)$ whenever there is an edge with ends u, v. The elements of S are called colours, and the vertices of one colour form a colour class. The chromatic number of G, denoted $\chi(G)$, is the smallest integer k such that G is k-colourable. If G has a loop, then it does not have a colouring, and we set $\chi(G)=\infty$.

Independent Set: A set of vertices is independent if they are pairwise nonadjacent. We let $\alpha(G)$ denote the size of the largest independent set in G. Note that in a colouring, every colour class is an independent set.

Clique: A set of vertices is a clique if they are pairwise adjacent. We let $\omega(G)$ denote the size of the largest clique in G.

Observation 6.1

$$
\begin{aligned}
& \chi(G) \geq \omega(G) \\
& \chi(G) \geq \frac{|V(G)|}{\alpha(G)}
\end{aligned}
$$

Proof: The first part follows from the observation that any two vertices in a clique must receive different colours. The second follows from the observation that each colour class in a colouring has size $\leq \alpha(G)$.

Greedy Algorithm: Order the vertices $v_{1}, v_{2}, \ldots, v_{n}$ and then colour them (using positive integers) in order by assigning to v_{i} the smallest possible integer which is not already used on a neighbor of v_{i}.

Maximum and Minimum Degree: We let $\Delta(G)$ denote the maximum degree of a vertex in G and we let $\delta(G)$ denote the minimum degree of a vertex in G.

Degeneracy: A graph G is k-degenerate if every subgraph of G has a vertex of degree at most k.

Observation 6.2

$$
\begin{aligned}
& \chi(G) \leq \Delta(G)+1 \\
& \chi(G) \leq k+1 \quad \text { if } G \text { is } k \text {-degenerate }
\end{aligned}
$$

Proof: The first part follows by applying the greedy algorithm to any ordering of $V(G)$. For the second part, let $|V(G)|=n$, and order the vertices starting from the back and working forward by the rule that v_{i} is chosen to be a vertex of degree $\leq k$ in the graph $G-\left\{v_{i+1}, v_{i+2}, \ldots, v_{n}\right\}$. When the greedy algorithm is applied to this ordering, each vertex has $\leq k$ neighbors preceding it, so we obtain a colouring with $\leq k+1$ colours as desired.

Theorem 6.3 (Brooks) If G is a connected graph which is not complete and not an odd cycle, then $\chi(G) \leq \Delta(G)$.

Proof: Let $\Delta=\Delta(G)$. If G is $(\Delta-1)$-degenerate, then we are done by the previous observation. Thus, we may assume that there is a subgraph $H \subseteq G$ so that H has minimum degree Δ. But then H must be Δ-regular, and no vertex in H can have a neighbor outside $V(H)$, so we find that $H=G$. It follows from this that G is Δ-regular and every proper subgraph of H is $(\Delta-1)$-degenerate. The theorem is trivial if $\Delta=2$, so we may further assume that $\Delta \geq 3$.

If G has a proper 1-separation $\left(H_{1}, H_{2}\right)$, then H_{1} and H_{2} are $(\Delta-1)$-degenerate, so each of these graphs is Δ-colourable. By permuting colours in the colouring of H_{2}, we may arrange that these two Δ-colourings assign the same colour to the vertex in $V\left(H_{1}\right) \cap V\left(H_{2}\right)$, and then combining these colourings gives a Δ-colouring of G. Thus, we may assume that G is 2-connected.

If G is 3 -connected, choose $v_{n} \in V(G)$. If every pair of neighbors of v_{n} are adjacent, then G is a complete graph and we are finished. Otherwise, let v_{1}, v_{2} be neighbors of v_{n}, and note that $G-\left\{v_{1}, v_{2}\right\}$ is connected.

If G is not 3-connected, choose $v_{n} \in V(G)$ so that $G-v_{n}$ is not 2-connected. Consider the block-cutpoint graph of $G-v_{n}$, and for $i=1,2$, let H_{i} be a leaf block of $G-v_{n}$ which is adjacent in the block-cutpoint graph to the cut-vertex x_{i}. Since G is 2-connected, for $i=1,2$ there exists a vertex $v_{i} \in V\left(H_{i}\right) \backslash\left\{x_{i}\right\}$ which is adjacent to v_{n}. Note that because
H_{i} is 2-connected, $H_{i}-v_{i}$ is connected for $i=1,2$ and it then follows that $G-\left\{v_{1}, v_{2}\right\}$ is connected.

So, in both cases, we have found a vertex v_{n} and two nonadjacent neighbors v_{1}, v_{2} of v_{n} so that $G-\left\{v_{1}, v_{2}\right\}$ is connected. Next, choose an ordering $v_{3}, v_{4}, \ldots, v_{n}$ of the vertices of $G-\left\{v_{1}, v_{2}\right\}$ so that $i<j$ whenever $\operatorname{dist}\left(v_{i}, v_{n}\right)>\operatorname{dist}\left(v_{j}, v_{n}\right)$ (this can be achieved by taking a breadth first search tree rooted at v_{n}). We claim that the greedy algorithm will use at most Δ colours when following this order. Since v_{1} and v_{2} are nonadjacent, they both get colour 1. Since v_{3}, \ldots, v_{n-1} have at least one neighbor following them, they have at most $\Delta-1$ neighbors preceding them, so they will also receive colours which are $\leq \Delta$. Finally, since v_{1} and v_{2} got the same colour, there are at most $\Delta-1$ distinct colours used on the neighbors of v_{n}, so v_{n} will also get a colour which is $\leq \Delta$.

Colouring Structure

Theorem 6.4 (Gallai-Roy-Vitaver) If D is an orientation of G and the longest directed path in D has length t, then $\chi(G) \leq t+1$. Furthermore, equality holds for some orientation of G.

Proof: We may assume without loss that G is connected. Now, let D^{\prime} be a maximal acyclic subgraph of D, and note that $V\left(D^{\prime}\right)=V(G)$. Define a function $\phi: V(G) \rightarrow\{0,1, \ldots, t\}$ by the rule that $\phi(v)$ is the length of the longest directed path in D^{\prime} ending at v. We claim that ϕ is a colouring of G. To see this, let $(u, v) \in E(D)$. If $(u, v) \in E\left(D^{\prime}\right)$ and $P \subseteq D^{\prime}$ is the longest directed path in D^{\prime} ending at u, then appending the edge (u, v) to P yields a longer directed path in D^{\prime} ending at v (it cannot form a directed cycle since D^{\prime} is acyclic). It follows that $\phi(v)>\phi(u)$. If $(u, v) \notin D^{\prime}$, then it follows from the maximality of D^{\prime} that there must exist a directed path $Q \subseteq D^{\prime}$ from v to u. Now, if P is the longest directed path in D^{\prime} ending at v, we find that $P \cup Q$ is a directed path ending at u. Thus $\phi(u)>\phi(v)$. It follows that f is a $(t+1)$-colouring of G, as required.

To see that there exists an orientation of G for which equality holds, let $k=\chi(G)$ and let $\phi: V(G) \rightarrow\{1,2, \ldots, k\}$ be a k-colouring of G. Now, orient the edges of G to form an acyclic digraph D by the rule that every edge $u v$ with $\phi(u)<\phi(v)$ is oriented from u to v. Now the colours increase along every directed path in D, so every such path must have length at most $k-1$.

Mycielski's Construction: Let G be a graph with vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. We construct a new graph G^{\prime} from G by the following procedure: For every $1 \leq i \leq n$, add a new vertex u_{i} and add an edge from u_{i} to every neighbor of v_{i} in $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Finally, add one new vertex w and add an edge from w to every u_{i}.

Theorem 6.5 (Mycielski) Let G^{\prime} be a graph obtained from G by applying Mycielski's construction. Then $\chi\left(G^{\prime}\right)=\chi(G)+1$. Further, if G is triangle free, then so is G^{\prime}.

Proof: We shall use the notation in the description of Mycielski's Construction and we shall assume that $\chi(G)=k$. If $\phi: V(G) \rightarrow\{1,2, \ldots, k\}$ is a k-colouring of G, we may extend ϕ to a $(k+1)$-colouring of G^{\prime} by assigning $\phi\left(u_{i}\right)=\phi\left(v_{i}\right)$ for $1 \leq i \leq n$ and then setting $\phi(w)=k+1$. It follows from this that $\chi\left(G^{\prime}\right) \leq \chi(G)+1$. Also, note that it follows from the definitions that G^{\prime} will be triangle free if G is triangle free.

It remains to show that $\chi\left(G^{\prime}\right) \geq \chi(G)+1$. Suppose (for a contradiction) that $\phi: V\left(G^{\prime}\right) \rightarrow$ $\{1, \ldots, k\}$ is a colouring of G^{\prime} and assume (without loss) that $\phi(w)=k$. Note that no vertex in $\left\{u_{1}, \ldots, u_{n}\right\}$ can get colour k and let $S=\left\{v_{i}: 1 \leq i \leq n\right.$ and $\left.\phi\left(v_{i}\right)=k\right\}$. Now we shall modify ϕ by the rule that for every $v_{i} \in S$ we change $\phi\left(v_{i}\right)$ to $\phi\left(u_{i}\right)$. We claim that the restriction of ϕ to G is still a colouring of G. Since S is an independent set, we need only check that ϕ does not have a conflict on edges $v_{i} v_{j}$ where $v_{i} \in S$ and $v_{j} \notin S$. However, in this case the colour of v_{i} was changed to $\phi\left(u_{i}\right)$, but $u_{i} v_{j} \in E\left(G^{\prime}\right)$. It follows that $\phi\left(v_{i}\right) \neq \phi\left(v_{j}\right)$ after our change. Now we have now found a $(k-1)$-colouring of G, which contradicts our assumption.

Critical Graphs: If G is a graph with $\chi(G)=k$ and $\chi(H)<k$ for every proper subgraph $H \subset G$, then we say that G is k-colour critical or k-critical.

Observation 6.6 If G is k-critical, then $\delta(G) \geq k-1$.
Proof: Suppose (for a contradiction) that G is k-critical and that $v \in V(G)$ satisfies $\operatorname{deg}(v)<$ $k-1$. Then $G-v$ has a $(k-1)$-colouring, and this colouring extends to a $(k-1)$-colouring of G, a contradiction.

Theorem 6.7 If G is $(k+1)$-critical, then G is k-edge-connected.

Proof: Suppose (for a contradiction) that G is not k-edge-connected, and choose a partition $\{X, Y\}$ of $V(G)$ so that the number of edges between X and Y is at most $k-1$. Now, by our $(k+1)$-critical assumption, we may choose k colourings of both $G-Y$ and $G-X$ using the colours $\{1, \ldots, k\}$. For $1 \leq i \leq k$ let $X_{i} \subseteq X$ and $Y_{i} \subseteq Y$ be the sets of vertices which receive colour i in these colourings.

Now, we shall form a bipartite graph H with bipartition $\left(\left\{X_{1}, \ldots, X_{k}\right\},\left\{Y_{1}, \ldots, Y_{k}\right\}\right)$ by the rule that we add an edge from X_{i} to Y_{j} if there is no edge in G from a vertex in X_{i} to a vertex in Y_{j}. It follows from our assumptions that $E(H) \geq k^{2}-(k-1)>k(k-1)$. Now, every set of m vertices in H can cover at most $m k$ edges. It follows from this that the smallest vertex cover of H must have size at least k. But then, the König-Egervary Theorem (3.6) implies that H has a perfect matching M.

Now we shall use M to modify our k-colouring of $G-X$ by the rule that if $X_{i} Y_{j} \in M$, we change all vertices in Y_{j} to colour i. This only permutes colour classes, so it results in a proper k-colouring of $G-X$. However, by this construction, we have that for every colour $1 \leq i \leq k$, there is no edge between a vertex in X of colour i and a vertex in Y of colour i. Thus, we have obtained a k-colouring of G. This contradicts our assumption, thus completing the proof.

Subdivision: Let $e=u v$ be an edge of the graph G and modify G to form a new graph G^{\prime} by removing the edge e and then adding a new vertex w which is adjacent to u and v. We say that G^{\prime} is obtained from G by subdividing the edge e. Any graph obtained from G by a sequence of such operations is called a subdivision of G.

Theorem 6.8 Every simple graph with minimum degree ≥ 3 contains a subdivision of K_{4}.
Proof: For inductive purposes, we shall prove the following stronger statement.
Claim: Let G be a graph with a special vertex. If G satisfies the following conditions, then it contains a subdivision of K_{4}.

- $|V(G)| \geq 2$.
- Every non-special vertex has degree ≥ 3.
- There are ≤ 2 edges in parallel, and any such edge is incident with the special vertex.

We prove the claim by induction on $|V(G)|+|E(G)|$. Note that G must have a vertex of degree ≥ 3 and has at most two parallel edges, so $|V(G)| \geq 3$. Let $u \in V(G)$ be the special vertex. If u has at most one neighbor, then the result follows by applying induction to $G-u$ (if u has a neighbor, use it as the special vertex). If u has exactly two neighbors, say v_{1}, v_{2}, then the result follows by applying induction to the graph G^{\prime} obtained from $G-u$ by adding a new edge between v_{1} and v_{2} (in G^{\prime} the only possible parallel edges are between v_{1} and v_{2} and at most one of v_{1}, v_{2} can have degree <3 so this may be taken as the special vertex). If $\operatorname{deg}(u) \geq 4$, then let e be an edge in parallel if G contains one, and otherwise let e be any edge incident with u. Now $G-e$ has no parallel edges and has at most one vertex of degree <3, so the result follows by applying induction to this graph. The only remaining case is when u has ≥ 3 neighbors, and has degree ≤ 3, so G is simple and $\operatorname{deg}(u)=3$. Let $\left\{v_{1}, v_{2}, v_{3}\right\}$ be the neighbors of u. If v_{1}, v_{2}, v_{3} are pairwise adjacent, then G contains a K_{4} subgraph and we are done. Otherwise, assume without loss that v_{1} and v_{2} are not adjacent. Now, form a graph G^{\prime} from $G-u$ by adding the edge $v_{1} v_{2}$. By induction on G^{\prime} with the special vertex v_{3}, we find that G^{\prime} contains a subdivision of K_{4}. However, this implies that G contains a subdivision of K_{4} as well.

Corollary 6.9 (Dirac) Every graph of chromatic number ≥ 4 contains a subdivision of K_{4}. Proof: If G has $\chi(G) \geq 4$, then G contains a 4-critical subgraph G^{\prime}. Now G^{\prime} is a simple graph of minimum degree ≥ 3, so by the above theorem, G^{\prime} (and thus G) contains a subdivision of K_{4}.

Counting Colourings

For the purposes of this subsection, we shall permit graphs to have loops.
Counting Colourings For any graph G and any positive integer t, we let $\chi(G ; t)$ denote the number of proper t-colourings $\phi: V(G) \rightarrow\{1,2, \ldots, t\}$ of G. Note that ϕ need not be onto (so not all t colours must be used).

Observation 6.10

(i) $\chi(G, t)=0$ if G has a loop.
(ii) $\chi\left(\bar{K}_{n} ; t\right)=t^{n}$
(iii) $\chi\left(K_{n} ; t\right)=t(t-1)(t-2) \ldots(t-n+1)$
(iv) $\chi(G ; t)=t(t-1)^{n-1}$ if G is a tree on n vertices.

Proof: Parts (i) and (ii) follow immediately from the definition. For part (iii), order the vertices $v_{1}, v_{2}, \ldots, v_{n}$, and colour them in this order. Since there are $(t-i+1)$ choices for the colour of v_{i} (and every colouring arises in this manner), we conclude that $\chi\left(K_{n} ; t\right)=$ $t(t-1) \ldots(t-n+1)$. For part (iv), proceed by induction on $|V(G)|$. As a base case, observe that the formula holds whenever $|V(G)|=1$. For the inductive step, let G be a tree with $|V(G)| \geq 2$, and assume that formula holds for every tree with fewer vertices. Now, choose a leaf vertex v. Since every t-colouring of $G-v$ extends to a t-colouring of G in exactly $(t-1)$ ways, we have $\chi(G ; t)=\chi(G-v ; t)(t-1)=t(t-1)^{n-1}$.

Contraction: Let $e \in E(G)$ be a non-loop edge with ends u, v. Modify G by deleting the edge e and then identifying the vertices u and v. We say that this new graph is obtained from G by contracting e and we denote it by $G \cdot e$.

Proposition 6.11 (Chromatic Recurrence)

$\chi(G ; t)=\chi(G-e ; t)-\chi(G \cdot e ; t)$ whenever e is a non-loop edge of G.
Proof: Let $e=u v$. Then we have

$$
\begin{aligned}
\chi(G-e ; t)= & \mid\{\phi: V(G) \rightarrow\{1, \ldots, t\}: \phi \text { is a colouring and } \phi(u) \neq \phi(v)\} \mid \\
& +\mid\{\phi: V(G) \rightarrow\{1, \ldots, t\}: \phi \text { is a colouring and } \phi(u)=\phi(v)\} \mid \\
= & \chi(G ; t)+\chi(G \cdot e ; t) .
\end{aligned}
$$

Proposition 6.12 (Chromatic Polynomial) $\chi(G ; t)$ is a polynomial for every graph G.
Proof: We proceed by induction on $|E(G)|$. If G has no non-loop edge, then it follows from Observation 6.10 that either $E(G)=\emptyset$ and $\chi(G ; t)=|V(G)|^{t}$ or $E(G) \neq \emptyset$ and $\chi(G ; t)=0$. Thus, we may assume that G has a non-loop edge e. By the chromatic recurrence we have $\chi(G ; t)=\chi(G-e ; t)-\chi(G \cdot e ; t)$. Now, it follows from our inductive hypothesis that both $\chi(G-e ; t)$ and $\chi(G \cdot e ; t)$ are polynomials, so we conclude that $\chi(G ; t)$ is a polynomial as well.

Theorem 6.13 (Whitney) If $G=(V, E)$ is a graph, then

$$
\chi(G ; t)=\sum_{S \subseteq E}(-1)^{|S|} t^{\operatorname{comp}(V, S)}
$$

Proof: For every set $S \subseteq E$, let q_{S} denote the number of labellings $\phi: V \rightarrow\{1, \ldots, t\}$ for which every edge $e \in S$ has the same colour on both endpoints. By inclusion-exclusion, we find

$$
\chi(G ; t)=\sum_{S \subseteq E}(-1)^{|S|} q_{S} .
$$

Now, for a set $S \subseteq E$, a labelling $\phi: V \rightarrow\{1, \ldots, t\}$ will have the same colour on both ends on all edges in S if and only if for every component H of (V, S), this labelling assigns the same value to all vertices in H. The number of such labellings, q_{S} is precisely $t^{\text {comp }(V, S)}$, and substituting this in the above equation gives the desired result.

Edge Colouring

Edge Colouring A k-edge colouring of a graph G is a map $\phi: E(G) \rightarrow S$ where $|S|=k$ with the property that $\phi(e) \neq \phi(f)$ whenever e and f share an endpoint. As before, the elements of S are called colours, and the edges of one colour form a colour class. The chromatic index of G, denoted $\chi^{\prime}(G)$, is the smallest k so that G is k-edge colourable.

Line Graph For any graph G, the line graph of G, denoted $L(G)$, is the simple graph with vertex set $E(G)$, and adjacency determined by the rule that $e, f \in E(G)$ are adjacent vertices in $L(G)$ if they share an endpoint in G. Note that $\chi^{\prime}(G)=\chi(L(G))$.

Observation $6.14 \Delta(G) \leq \chi^{\prime}(G) \leq 2 \Delta(G)-1$ for every graph G
Proof: If v is a vertex of degree $\Delta(G)$, then the edges of G incident with v form a clique in $L(G)$. Thus $\chi^{\prime}(G)=\chi(L(G)) \geq \omega(L(G)) \geq \Delta(G)$. Every edge in G is adjacent to at most $2(\Delta(G)-1)$ other edges, so we have $\chi^{\prime}(G)=\chi(L(G)) \leq \Delta(L(G))+1 \leq 2 \Delta(G)-1$.

Lemma 6.15 If $d \geq \Delta(G)$, then G is a subgraph of a d-regular graph H. Furthermore, if G is bipartite, then H may be chosen to be bipartite.

Proof: Let $G=(V, E)$ and let $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be a copy of G so that every vertex $v \in V$ has a corresponding copy $v^{\prime} \in V^{\prime}$. Now, construct a new graph H by taking the disjoint union of G and G^{\prime} and then adding $d-\operatorname{deg}(v)$ new edges between the vertices v and v^{\prime} for every $v \in V(G)$. It follows that H is d-regular and $G \subseteq H$. Furthermore, if (A, B) is a bipartition of G, and $\left(A^{\prime}, B^{\prime}\right)$ is the corresponding bipartition of G^{\prime}, then H has bipartition $\left(A \cup B^{\prime}, A^{\prime} \cup B\right)$.

Theorem 6.16 (König) $\chi^{\prime}(G)=\Delta(G)$ For every bipartite graph G.
Proof: By Observation 6.14 we have $\chi^{\prime}(G) \geq \Delta(G)$. We shall prove $\chi^{\prime}(G) \leq \Delta(G)$ by induction on $\Delta=\Delta(G)$. As a base case, observe that the theorem holds trivially when $\Delta=0$. For the inductive step, we may assume that $\Delta>0$ and that the result holds for all graphs with smaller maximum degree. Now, by Lemma 6.15, we may choose a Δ-regular bipartite graph G^{\prime} which contains G as a subgraph. It follows from Corollary 3.3 of Hall's Matching Theorem that G^{\prime} contains a perfect matching M. Now $G^{\prime}-M$ has maximum degree $\Delta-1$, so by induction, $G^{\prime}-M$ has a proper $\Delta-1$ edge colouring $\phi: E\left(G^{\prime}-M\right) \rightarrow\{1,2, \ldots, \Delta-1\}$. Now giving every edge in M colour Δ extends this to a proper Δ-edge colouring of G^{\prime} (and thus G).

Factors: A k-factor in a graph $G=(V, E)$ is a set $S \subseteq E$ so that (V, S) is k-regular.
Proposition 6.17 If G is a $2 k$-regular graph, then $E(G)$ may be partitioned into k 2-factors.
Proof: For each component of G, choose an Eulerian tour, and orient the edges of G according to these walks to obtain a directed graph D. By construction every vertex in D has indegree and outdegree equal to k. Now, let V^{\prime} be a copy of V so that every $v \in V$ corresponds to a vertex $v^{\prime} \in V^{\prime}$ and construct a new bipartite graph H with vertex set $V \cup V^{\prime}$ and bipartition $\left(V, V^{\prime}\right)$, by the rule that $u \in V$ and $v \in V^{\prime}$ are adjacent if (u, v) is a directed edge of D. By construction, H is a k-regular bipartite graph, so by König's Theorem we may partition the edges of H into k perfect matchings. Each perfect matching in H corresponds to a 2-factor in G, so this yields the desired decomposition.

Theorem 6.18 (Shannon) $\chi^{\prime}(G) \leq 3\left\lceil\frac{\Delta(G)}{2}\right\rceil$ for every graph G.
Proof: Let $k=\left\lceil\frac{\Delta(G)}{2}\right\rceil$. By Lemma 6.15 we may choose a $2 k$-regular graph H so that $G \subseteq H$. By the above proposition, we may choose a partition of $E(H)$ into k 2-factors $\left\{F_{1}, F_{2}, \ldots, F_{k}\right\}$. The edges in each 2-factor may be coloured using ≤ 3 colours, so by using a new set of 3 colours for each 2-factor, we obtain a proper $3 k=3\left\lceil\frac{\Delta(G)}{2}\right\rceil$ edge colouring of G.

Kempe Chain: Let $\phi: E(G) \rightarrow S$ be an edge-colouring of the graph G and let $s, t \in S$. Let $G_{s t}$ be the subgraph of G consisting of all vertices, and all edges with colour in $\{s, t\}$.

We define an (s, t)-Kempe Chain to be any component of $G_{s t}$. If we modify ϕ by switching colours s and t on a Kempe Chain K, we obtain a new colouring which we say is obtained from the original by switching on K.

Theorem 6.19 (Vizing) $\chi^{\prime}(G) \leq \Delta(G)+1$ for every simple graph G.
Proof: Let $\Delta=\Delta(G)$ and proceed by induction on $|E(G)|$. Choose an edge $f \in E(G)$ and apply the induction hypothesis to find a $(\Delta+1)$-edge-colouring of $G-f$. We say that a colour is missing at a vertex v if no edge incident with v has this colour, and is present otherwise. Call a path $P \subseteq G$ acceptable If P has vertex-edge sequence $v_{1}, e_{1}, v_{2}, e_{2}, \ldots, v_{k}$ where $e_{1}=f$ and every e_{i} with $i>1$ has a colour which is missing at an earlier vertex in the path (i.e. missing at some v_{j} with $j<i$.).

Consider a maximal acceptable path P with vertex-edge sequence $v_{1}, e_{2}, \ldots, v_{k}$, and suppose (for a contradiction) that no colour is missing at >1 vertex of this path. If S is the set of colours missing at the vertices v_{1}, \ldots, v_{k-1}, then $|S| \geq k$ (since v_{1}, v_{2} are missing ≥ 2 colours, and every other vertex ≥ 1). By assumption, no colour in S is missing at v_{k}, but then there is an edge incident with v_{k} with colour in S with its other endpoint not in $\left\{v_{1}, \ldots, v_{k-1}\right\}$, thus contradicting the maximality of P.

Now, over all acceptable paths in all possible edge-colourings of $G-f$, choose an acceptable path P with vertex edge sequence $v_{1}, e_{1}, \ldots, v_{k}$ so that some colour s is missing at both v_{j} for some $1 \leq j \leq k-1$ and missing at v_{k} and so that:

1. k is as small as possible.
2. j is as large as possible (subject to 1.)

If $j=1$ and $k=2$, then some colour is missing at both v_{1} and v_{2} and this colour may be used on the edge f to give a proper $(\Delta+1)$-edge-colouring of G. We now assume (for a contradiction) that this does not hold. If $j=k-1$, let t be the colour of e_{k-1} (note that t must be missing at some vertex in v_{1}, \ldots, v_{k-2}), and modify the colouring by changing e_{k-1} to the colour s. Now, $P-v_{k}$ is an acceptable path which is missing the colour t at both v_{k-1} and at some earlier vertex, thus contradicting our choice. Thus, we may now assume that $j<k-1$. Let r be a colour which is missing at the vertex v_{j+1}. Note that by our choices r must be present at v_{1}, \ldots, v_{j} and s must be present at v_{1}, \ldots, v_{j-1} and v_{j+1}. Now, let K be the (s, r)-Kempe Chain containing v_{j+1}, note that K is a path, and then modify the
colouring by switching on K. If v_{j} is not the other endpoint of K, then after this recolouring, the path with vertex and edge sequence $v_{1}, e_{1}, \ldots, v_{j}, e_{j}, v_{j+1}$ is an acceptable path missing the colour s at both v_{j} and v_{j+1} which contradicts our choice of P. It follows that K has ends v_{j} and v_{j+1}. But then, after switching on K, the path P is still acceptable, and is now missing the colour t on both v_{j+1} and v_{k}, giving us a final contradiction.

Choosability

Choosability: Let G be a graph, and for every $v \in V(G)$ let $L(v)$ be a set of colours. We say that G is L-choosable if there exists a colouring ϕ so that $\phi(v) \in L(v)$ for every $v \in V(G)$. We say that G is k-choosable if G is L-choosable whenever every list has size $\geq k$ and we define $\chi_{\ell}(G)$ to be the minimum k so that G is k-choosable. We define choosability for edge-colouring similarly, and we let $\chi_{\ell}^{\prime}(G)$ denote the smallest integer k so that G is k-edge-choosable. Note, that by using the same list for every vertex, we have $\chi(G) \leq \chi_{\ell}(G)$ and $\chi^{\prime}(G) \leq \chi_{\ell}^{\prime}(G)$.

Observation 6.20 If $m=\binom{2 k-1}{k}$, then $\chi_{\ell}\left(K_{m, m}\right)>k$.
Proof: Let $\left(A_{1}, A_{2}\right)$ be the bipartition of our $K_{m, m}$ and for $i=1,2$ assign every element of A_{i} a distinct k element subset of $\{1,2, \ldots, 2 k-1\}$. Now, for $i=1,2$, however we choose one element from each list of a vertex in A_{i}, there must be at least k different colours appearing on the vertices in A_{i}. However, then some colour is used on both A_{1} and A_{2}, and this causes a conflict.

Kernel: A kernel of a digraph D is an independent set $X \subseteq V(D)$ so that $X \cup N^{+}(X)=$ $V(D)$. A digraph is kernel-perfect if every induced subdigraph has a kernel.

Lemma 6.21 If D is a kernel-perfect digraph and $L: V(D) \rightarrow \mathbb{N}$ is a list assignment with the property that $|L(v)|>\operatorname{deg}^{-}(v)$ for every $v \in V(D)$, then D is L-choosable.

Proof: We proceed by induction on $|V(D)|$. As a base, note that the lemma is trivial when $|V(D)|=0$. Otherwise, choose s in the range of L and let D^{\prime} be the subgraph of D induced by those vertices whose list contains s. By assumption, we may choose a kernel X of D^{\prime}. Now, X is an independent set of vertices whose list contain s, and we shall use the colour s on precisely those vertices in X. To complete our colouring, we must now find a list colouring
of the digraph $D^{\prime \prime}=D-X$ after s has been removed from all of the lists. However, since X was a kernel of D^{\prime}, every vertex in $D^{\prime \prime}$ whose list originally contained s loses at least one in indegree when passing from D to $D^{\prime \prime}$. Thus, the lemma may be applied inductively to obtain the desired colouring of $D^{\prime \prime}$.

Preference Oriented Line Graphs: Let G be a graph with a system of preferences $\left\{>_{v}\right\}_{v \in V(G)}$. The preference oriented line graph of G is the directed graph obtained by orienting the edges of the line graph $L(G)$ by the rule that if $e, f \in E(G)$ are incident with v and $e>{ }_{v} f$, then we orient the edge between e and f from e to f.

Lemma 6.22 If D is the preference oriented line graph of a bipartite graph, then D is kernel-perfect.

Proof: Let G be the bipartite graph with preference system $\left\{<_{v}\right\}_{v \in V(G)}$ for which D is the preference oriented line graph. Now, by the Gale-Shapley Theorem, G has a stable matching M. We claim that M is a kernel in D. To see this, note that since M is a matching in G, it is an independent set in D. Further, for every $e \notin M$, there must be an edge $f \in M$ sharing an endpoint, say v, with e so that v prefers f to e. However, this means that in D there will be an edge directed from f to e. It follows that M is a kernel, as desired.

Theorem 6.23 Every bipartite graph G satisfies $\chi_{\ell}^{\prime}(G)=\Delta(G)$.

Proof: Let (A, B) be a bipartition of G, let $\Delta=\Delta(G)$, and choose a Δ-edge-colouring $\phi: E(G) \rightarrow\{1,2, \ldots, \Delta\}$. Now, we define a system of preferences on G by the rule that every vertex in A prefers edges in order of their colour, and every vertex in B prefers edges in reverse order of their colour. Now, let D be the preference oriented line graph of G with this system of preferences. By construction, every vertex in D has indegree $\Delta-1$. Now, by Lemma $6.22, D$ is kernel perfect, and by Lemma 6.21 we see that D is Δ-choosable.

