
6 Graph Colouring

In this section, we shall assume (except where noted) that graphs are loopless.

Upper and Lower Bounds

Colouring: A k-colouring of a graph G is a map φ : V (G) → S where |S| = k with the

property that φ(u) 6= φ(v) whenever there is an edge with ends u, v. The elements of S are

called colours, and the vertices of one colour form a colour class. The chromatic number of

G, denoted χ(G), is the smallest integer k such that G is k-colourable. If G has a loop, then

it does not have a colouring, and we set χ(G) = ∞.

Independent Set: A set of vertices is independent if they are pairwise nonadjacent. We

let α(G) denote the size of the largest independent set in G. Note that in a colouring, every

colour class is an independent set.

Clique: A set of vertices is a clique if they are pairwise adjacent. We let ω(G) denote the

size of the largest clique in G.

Observation 6.1

χ(G) ≥ ω(G)

χ(G) ≥ |V (G)|
α(G)

Proof: The first part follows from the observation that any two vertices in a clique must

receive different colours. The second follows from the observation that each colour class in

a colouring has size ≤ α(G). ¤

Greedy Algorithm: Order the vertices v1, v2, . . . , vn and then colour them (using positive

integers) in order by assigning to vi the smallest possible integer which is not already used

on a neighbor of vi.

Maximum and Minimum Degree: We let ∆(G) denote the maximum degree of a vertex

in G and we let δ(G) denote the minimum degree of a vertex in G.

Degeneracy: A graph G is k-degenerate if every subgraph of G has a vertex of degree at

most k.
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Observation 6.2

χ(G) ≤ ∆(G) + 1

χ(G) ≤ k + 1 if G is k-degenerate

Proof: The first part follows by applying the greedy algorithm to any ordering of V (G).

For the second part, let |V (G)| = n, and order the vertices starting from the back and

working forward by the rule that vi is chosen to be a vertex of degree ≤ k in the graph

G− {vi+1, vi+2, . . . , vn}. When the greedy algorithm is applied to this ordering, each vertex

has ≤ k neighbors preceding it, so we obtain a colouring with ≤ k + 1 colours as desired.

¤

Theorem 6.3 (Brooks) If G is a connected graph which is not complete and not an odd

cycle, then χ(G) ≤ ∆(G).

Proof: Let ∆ = ∆(G). If G is (∆ − 1)-degenerate, then we are done by the previous

observation. Thus, we may assume that there is a subgraph H ⊆ G so that H has minimum

degree ∆. But then H must be ∆-regular, and no vertex in H can have a neighbor outside

V (H), so we find that H = G. It follows from this that G is ∆-regular and every proper

subgraph of H is (∆ − 1)-degenerate. The theorem is trivial if ∆ = 2, so we may further

assume that ∆ ≥ 3.

If G has a proper 1-separation (H1, H2), then H1 and H2 are (∆ − 1)-degenerate, so

each of these graphs is ∆-colourable. By permuting colours in the colouring of H2, we may

arrange that these two ∆-colourings assign the same colour to the vertex in V (H1)∩V (H2),

and then combining these colourings gives a ∆-colouring of G. Thus, we may assume that

G is 2-connected.

If G is 3-connected, choose vn ∈ V (G). If every pair of neighbors of vn are adjacent, then

G is a complete graph and we are finished. Otherwise, let v1, v2 be neighbors of vn, and note

that G− {v1, v2} is connected.

If G is not 3-connected, choose vn ∈ V (G) so that G − vn is not 2-connected. Consider

the block-cutpoint graph of G− vn, and for i = 1, 2, let Hi be a leaf block of G− vn which

is adjacent in the block-cutpoint graph to the cut-vertex xi. Since G is 2-connected, for

i = 1, 2 there exists a vertex vi ∈ V (Hi) \ {xi} which is adjacent to vn. Note that because
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Hi is 2-connected, Hi − vi is connected for i = 1, 2 and it then follows that G − {v1, v2} is

connected.

So, in both cases, we have found a vertex vn and two nonadjacent neighbors v1, v2 of vn

so that G − {v1, v2} is connected. Next, choose an ordering v3, v4, . . . , vn of the vertices of

G−{v1, v2} so that i < j whenever d ist(vi, vn) > d ist(vj, vn) (this can be achieved by taking

a breadth first search tree rooted at vn). We claim that the greedy algorithm will use at

most ∆ colours when following this order. Since v1 and v2 are nonadjacent, they both get

colour 1. Since v3, . . . , vn−1 have at least one neighbor following them, they have at most

∆ − 1 neighbors preceding them, so they will also receive colours which are ≤ ∆. Finally,

since v1 and v2 got the same colour, there are at most ∆ − 1 distinct colours used on the

neighbors of vn, so vn will also get a colour which is ≤ ∆. ¤

Colouring Structure

Theorem 6.4 (Gallai-Roy-Vitaver) If D is an orientation of G and the longest directed

path in D has length t, then χ(G) ≤ t + 1. Furthermore, equality holds for some orientation

of G.

Proof: We may assume without loss that G is connected. Now, let D′ be a maximal acyclic

subgraph of D, and note that V (D′) = V (G). Define a function φ : V (G) → {0, 1, . . . , t}
by the rule that φ(v) is the length of the longest directed path in D′ ending at v. We claim

that φ is a colouring of G. To see this, let (u, v) ∈ E(D). If (u, v) ∈ E(D′) and P ⊆ D′ is

the longest directed path in D′ ending at u, then appending the edge (u, v) to P yields a

longer directed path in D′ ending at v (it cannot form a directed cycle since D′ is acyclic).

It follows that φ(v) > φ(u). If (u, v) 6∈ D′, then it follows from the maximality of D′ that

there must exist a directed path Q ⊆ D′ from v to u. Now, if P is the longest directed path

in D′ ending at v, we find that P ∪Q is a directed path ending at u. Thus φ(u) > φ(v). It

follows that f is a (t + 1)-colouring of G, as required.

To see that there exists an orientation of G for which equality holds, let k = χ(G) and

let φ : V (G) → {1, 2, . . . , k} be a k-colouring of G. Now, orient the edges of G to form an

acyclic digraph D by the rule that every edge uv with φ(u) < φ(v) is oriented from u to

v. Now the colours increase along every directed path in D, so every such path must have

length at most k − 1. ¤
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Mycielski’s Construction: Let G be a graph with vertex set V = {v1, v2, . . . , vn}. We

construct a new graph G′ from G by the following procedure: For every 1 ≤ i ≤ n, add a

new vertex ui and add an edge from ui to every neighbor of vi in {v1, v2, . . . , vn}. Finally,

add one new vertex w and add an edge from w to every ui.

Theorem 6.5 (Mycielski) Let G′ be a graph obtained from G by applying Mycielski’s con-

struction. Then χ(G′) = χ(G) + 1. Further, if G is triangle free, then so is G′.

Proof: We shall use the notation in the description of Mycielski’s Construction and we shall

assume that χ(G) = k. If φ : V (G) → {1, 2, . . . , k} is a k-colouring of G, we may extend

φ to a (k + 1)-colouring of G′ by assigning φ(ui) = φ(vi) for 1 ≤ i ≤ n and then setting

φ(w) = k + 1. It follows from this that χ(G′) ≤ χ(G) + 1. Also, note that it follows from

the definitions that G′ will be triangle free if G is triangle free.

It remains to show that χ(G′) ≥ χ(G)+1. Suppose (for a contradiction) that φ : V (G′) →
{1, . . . , k} is a colouring of G′ and assume (without loss) that φ(w) = k. Note that no vertex

in {u1, . . . , un} can get colour k and let S = {vi : 1 ≤ i ≤ n and φ(vi) = k}. Now we shall

modify φ by the rule that for every vi ∈ S we change φ(vi) to φ(ui). We claim that the

restriction of φ to G is still a colouring of G. Since S is an independent set, we need only

check that φ does not have a conflict on edges vivj where vi ∈ S and vj 6∈ S. However, in this

case the colour of vi was changed to φ(ui), but uivj ∈ E(G′). It follows that φ(vi) 6= φ(vj)

after our change. Now we have now found a (k − 1)-colouring of G, which contradicts our

assumption. ¤

Critical Graphs: If G is a graph with χ(G) = k and χ(H) < k for every proper subgraph

H ⊂ G, then we say that G is k-colour critical or k-critical.

Observation 6.6 If G is k-critical, then δ(G) ≥ k − 1.

Proof: Suppose (for a contradiction) that G is k-critical and that v ∈ V (G) satisfies deg(v) <

k− 1. Then G− v has a (k− 1)-colouring, and this colouring extends to a (k− 1)-colouring

of G, a contradiction. ¤

Theorem 6.7 If G is (k + 1)-critical, then G is k-edge-connected.
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Proof: Suppose (for a contradiction) that G is not k-edge-connected, and choose a partition

{X, Y } of V (G) so that the number of edges between X and Y is at most k − 1. Now, by

our (k + 1)-critical assumption, we may choose k colourings of both G−Y and G−X using

the colours {1, . . . , k}. For 1 ≤ i ≤ k let Xi ⊆ X and Yi ⊆ Y be the sets of vertices which

receive colour i in these colourings.

Now, we shall form a bipartite graph H with bipartition ({X1, . . . , Xk}, {Y1, . . . , Yk}) by

the rule that we add an edge from Xi to Yj if there is no edge in G from a vertex in Xi

to a vertex in Yj. It follows from our assumptions that E(H) ≥ k2 − (k − 1) > k(k − 1).

Now, every set of m vertices in H can cover at most mk edges. It follows from this that the

smallest vertex cover of H must have size at least k. But then, the König-Egervary Theorem

(3.6) implies that H has a perfect matching M .

Now we shall use M to modify our k-colouring of G −X by the rule that if XiYj ∈ M ,

we change all vertices in Yj to colour i. This only permutes colour classes, so it results

in a proper k-colouring of G − X. However, by this construction, we have that for every

colour 1 ≤ i ≤ k, there is no edge between a vertex in X of colour i and a vertex in Y of

colour i. Thus, we have obtained a k-colouring of G. This contradicts our assumption, thus

completing the proof. ¤

Subdivision: Let e = uv be an edge of the graph G and modify G to form a new graph G′

by removing the edge e and then adding a new vertex w which is adjacent to u and v. We

say that G′ is obtained from G by subdividing the edge e. Any graph obtained from G by a

sequence of such operations is called a subdivision of G.

Theorem 6.8 Every simple graph with minimum degree ≥ 3 contains a subdivision of K4.

Proof: For inductive purposes, we shall prove the following stronger statement.

Claim: Let G be a graph with a special vertex. If G satisfies the following conditions, then

it contains a subdivision of K4.

• |V (G)| ≥ 2.

• Every non-special vertex has degree ≥ 3.

• There are ≤ 2 edges in parallel, and any such edge is incident with the special vertex.
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We prove the claim by induction on |V (G)| + |E(G)|. Note that G must have a vertex

of degree ≥ 3 and has at most two parallel edges, so |V (G)| ≥ 3. Let u ∈ V (G) be the

special vertex. If u has at most one neighbor, then the result follows by applying induction

to G − u (if u has a neighbor, use it as the special vertex). If u has exactly two neighbors,

say v1, v2, then the result follows by applying induction to the graph G′ obtained from G−u

by adding a new edge between v1 and v2 (in G′ the only possible parallel edges are between

v1 and v2 and at most one of v1, v2 can have degree < 3 so this may be taken as the special

vertex). If deg(u) ≥ 4, then let e be an edge in parallel if G contains one, and otherwise let

e be any edge incident with u. Now G− e has no parallel edges and has at most one vertex

of degree < 3, so the result follows by applying induction to this graph. The only remaining

case is when u has ≥ 3 neighbors, and has degree ≤ 3, so G is simple and deg(u) = 3. Let

{v1, v2, v3} be the neighbors of u. If v1, v2, v3 are pairwise adjacent, then G contains a K4

subgraph and we are done. Otherwise, assume without loss that v1 and v2 are not adjacent.

Now, form a graph G′ from G − u by adding the edge v1v2. By induction on G′ with the

special vertex v3, we find that G′ contains a subdivision of K4. However, this implies that

G contains a subdivision of K4 as well. ¤

Corollary 6.9 (Dirac) Every graph of chromatic number ≥ 4 contains a subdivision of K4.

Proof: If G has χ(G) ≥ 4, then G contains a 4-critical subgraph G′. Now G′ is a simple graph

of minimum degree ≥ 3, so by the above theorem, G′ (and thus G) contains a subdivision

of K4. ¤

Counting Colourings

For the purposes of this subsection, we shall permit graphs to have loops.

Counting Colourings For any graph G and any positive integer t, we let χ(G; t) denote

the number of proper t-colourings φ : V (G) → {1, 2, . . . , t} of G. Note that φ need not be

onto (so not all t colours must be used).

Observation 6.10
(i) χ(G, t) = 0 if G has a loop.

(ii) χ(K̄n; t) = tn

(iii) χ(Kn; t) = t(t− 1)(t− 2) . . . (t− n + 1)

(iv) χ(G; t) = t(t− 1)n−1 if G is a tree on n vertices.
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Proof: Parts (i) and (ii) follow immediately from the definition. For part (iii), order the

vertices v1, v2, . . . , vn, and colour them in this order. Since there are (t − i + 1) choices for

the colour of vi (and every colouring arises in this manner), we conclude that χ(Kn; t) =

t(t−1) . . . (t−n+1). For part (iv), proceed by induction on |V (G)|. As a base case, observe

that the formula holds whenever |V (G)| = 1. For the inductive step, let G be a tree with

|V (G)| ≥ 2, and assume that formula holds for every tree with fewer vertices. Now, choose

a leaf vertex v. Since every t-colouring of G − v extends to a t-colouring of G in exactly

(t− 1) ways, we have χ(G; t) = χ(G− v; t)(t− 1) = t(t− 1)n−1. ¤

Contraction: Let e ∈ E(G) be a non-loop edge with ends u, v. Modify G by deleting the

edge e and then identifying the vertices u and v. We say that this new graph is obtained

from G by contracting e and we denote it by G · e.

Proposition 6.11 (Chromatic Recurrence)

χ(G; t) = χ(G− e; t)− χ(G · e; t) whenever e is a non-loop edge of G.

Proof: Let e = uv. Then we have

χ(G− e; t) = |{φ : V (G) → {1, . . . , t} : φ is a colouring and φ(u) 6= φ(v)}|
+|{φ : V (G) → {1, . . . , t} : φ is a colouring and φ(u) = φ(v)}|

= χ(G; t) + χ(G · e; t).

Proposition 6.12 (Chromatic Polynomial) χ(G; t) is a polynomial for every graph G.

Proof: We proceed by induction on |E(G)|. If G has no non-loop edge, then it follows from

Observation 6.10 that either E(G) = ∅ and χ(G; t) = |V (G)|t or E(G) 6= ∅ and χ(G; t) = 0.

Thus, we may assume that G has a non-loop edge e. By the chromatic recurrence we have

χ(G; t) = χ(G − e; t) − χ(G · e; t). Now, it follows from our inductive hypothesis that both

χ(G − e; t) and χ(G · e; t) are polynomials, so we conclude that χ(G; t) is a polynomial as

well.

Theorem 6.13 (Whitney) If G = (V,E) is a graph, then

χ(G; t) =
∑
S⊆E

(−1)|S|tcomp(V,S)



8

Proof: For every set S ⊆ E, let qS denote the number of labellings φ : V → {1, . . . , t} for

which every edge e ∈ S has the same colour on both endpoints. By inclusion-exclusion, we

find

χ(G; t) =
∑
S⊆E

(−1)|S|qS.

Now, for a set S ⊆ E, a labelling φ : V → {1, . . . , t} will have the same colour on both ends

on all edges in S if and only if for every component H of (V, S), this labelling assigns the

same value to all vertices in H. The number of such labellings, qS is precisely tcomp(V,S), and

substituting this in the above equation gives the desired result. ¤

Edge Colouring

Edge Colouring A k-edge colouring of a graph G is a map φ : E(G) → S where |S| = k with

the property that φ(e) 6= φ(f) whenever e and f share an endpoint. As before, the elements

of S are called colours, and the edges of one colour form a colour class. The chromatic index

of G, denoted χ′(G), is the smallest k so that G is k-edge colourable.

Line Graph For any graph G, the line graph of G, denoted L(G), is the simple graph with

vertex set E(G), and adjacency determined by the rule that e, f ∈ E(G) are adjacent vertices

in L(G) if they share an endpoint in G. Note that χ′(G) = χ(L(G)).

Observation 6.14 ∆(G) ≤ χ′(G) ≤ 2∆(G)− 1 for every graph G

Proof: If v is a vertex of degree ∆(G), then the edges of G incident with v form a clique in

L(G). Thus χ′(G) = χ(L(G)) ≥ ω(L(G)) ≥ ∆(G). Every edge in G is adjacent to at most

2(∆(G)− 1) other edges, so we have χ′(G) = χ(L(G)) ≤ ∆(L(G)) + 1 ≤ 2∆(G)− 1. ¤

Lemma 6.15 If d ≥ ∆(G), then G is a subgraph of a d-regular graph H. Furthermore, if

G is bipartite, then H may be chosen to be bipartite.

Proof: Let G = (V,E) and let G′ = (V ′, E ′) be a copy of G so that every vertex v ∈ V

has a corresponding copy v′ ∈ V ′. Now, construct a new graph H by taking the disjoint

union of G and G′ and then adding d− deg(v) new edges between the vertices v and v′ for

every v ∈ V (G). It follows that H is d-regular and G ⊆ H. Furthermore, if (A,B) is a

bipartition of G, and (A′, B′) is the corresponding bipartition of G′, then H has bipartition

(A ∪B′, A′ ∪B). ¤
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Theorem 6.16 (König) χ′(G) = ∆(G) For every bipartite graph G.

Proof: By Observation 6.14 we have χ′(G) ≥ ∆(G). We shall prove χ′(G) ≤ ∆(G) by

induction on ∆ = ∆(G). As a base case, observe that the theorem holds trivially when ∆ = 0.

For the inductive step, we may assume that ∆ > 0 and that the result holds for all graphs

with smaller maximum degree. Now, by Lemma 6.15, we may choose a ∆-regular bipartite

graph G′ which contains G as a subgraph. It follows from Corollary 3.3 of Hall’s Matching

Theorem that G′ contains a perfect matching M . Now G′−M has maximum degree ∆− 1,

so by induction, G′−M has a proper ∆−1 edge colouring φ : E(G′−M) → {1, 2, . . . , ∆−1}.
Now giving every edge in M colour ∆ extends this to a proper ∆-edge colouring of G′ (and

thus G). ¤

Factors: A k-factor in a graph G = (V, E) is a set S ⊆ E so that (V, S) is k-regular.

Proposition 6.17 If G is a 2k-regular graph, then E(G) may be partitioned into k 2-factors.

Proof: For each component of G, choose an Eulerian tour, and orient the edges of G according

to these walks to obtain a directed graph D. By construction every vertex in D has indegree

and outdegree equal to k. Now, let V ′ be a copy of V so that every v ∈ V corresponds to a

vertex v′ ∈ V ′ and construct a new bipartite graph H with vertex set V ∪V ′ and bipartition

(V, V ′), by the rule that u ∈ V and v ∈ V ′ are adjacent if (u, v) is a directed edge of D. By

construction, H is a k-regular bipartite graph, so by König’s Theorem we may partition the

edges of H into k perfect matchings. Each perfect matching in H corresponds to a 2-factor

in G, so this yields the desired decomposition. ¤

Theorem 6.18 (Shannon) χ′(G) ≤ 3d∆(G)
2
e for every graph G.

Proof: Let k = d∆(G)
2
e. By Lemma 6.15 we may choose a 2k-regular graph H so that

G ⊆ H. By the above proposition, we may choose a partition of E(H) into k 2-factors

{F1, F2, . . . , Fk}. The edges in each 2-factor may be coloured using ≤ 3 colours, so by using

a new set of 3 colours for each 2-factor, we obtain a proper 3k = 3d∆(G)
2
e edge colouring of

G.

Kempe Chain: Let φ : E(G) → S be an edge-colouring of the graph G and let s, t ∈ S.

Let Gst be the subgraph of G consisting of all vertices, and all edges with colour in {s, t}.
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We define an (s, t)-Kempe Chain to be any component of Gst. If we modify φ by switching

colours s and t on a Kempe Chain K, we obtain a new colouring which we say is obtained

from the original by switching on K.

Theorem 6.19 (Vizing) χ′(G) ≤ ∆(G) + 1 for every simple graph G.

Proof: Let ∆ = ∆(G) and proceed by induction on |E(G)|. Choose an edge f ∈ E(G) and

apply the induction hypothesis to find a (∆ + 1)-edge-colouring of G − f . We say that a

colour is missing at a vertex v if no edge incident with v has this colour, and is present

otherwise. Call a path P ⊆ G acceptable If P has vertex-edge sequence v1, e1, v2, e2, . . . , vk

where e1 = f and every ei with i > 1 has a colour which is missing at an earlier vertex in

the path (i.e. missing at some vj with j < i.).

Consider a maximal acceptable path P with vertex-edge sequence v1, e2, . . . , vk, and sup-

pose (for a contradiction) that no colour is missing at > 1 vertex of this path. If S is the

set of colours missing at the vertices v1, . . . , vk−1, then |S| ≥ k (since v1, v2 are missing

≥ 2 colours, and every other vertex ≥ 1). By assumption, no colour in S is missing at vk,

but then there is an edge incident with vk with colour in S with its other endpoint not in

{v1, . . . , vk−1}, thus contradicting the maximality of P .

Now, over all acceptable paths in all possible edge-colourings of G− f , choose an accept-

able path P with vertex edge sequence v1, e1, . . . , vk so that some colour s is missing at both

vj for some 1 ≤ j ≤ k − 1 and missing at vk and so that:

1. k is as small as possible.

2. j is as large as possible (subject to 1.)

If j = 1 and k = 2, then some colour is missing at both v1 and v2 and this colour may

be used on the edge f to give a proper (∆ + 1)-edge-colouring of G. We now assume (for a

contradiction) that this does not hold. If j = k − 1, let t be the colour of ek−1 (note that t

must be missing at some vertex in v1, . . . , vk−2), and modify the colouring by changing ek−1

to the colour s. Now, P −vk is an acceptable path which is missing the colour t at both vk−1

and at some earlier vertex, thus contradicting our choice. Thus, we may now assume that

j < k − 1. Let r be a colour which is missing at the vertex vj+1. Note that by our choices

r must be present at v1, . . . , vj and s must be present at v1, . . . , vj−1 and vj+1. Now, let

K be the (s, r)-Kempe Chain containing vj+1, note that K is a path, and then modify the
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colouring by switching on K. If vj is not the other endpoint of K, then after this recolouring,

the path with vertex and edge sequence v1, e1, . . . , vj, ej, vj+1 is an acceptable path missing

the colour s at both vj and vj+1 which contradicts our choice of P . It follows that K has

ends vj and vj+1. But then, after switching on K, the path P is still acceptable, and is now

missing the colour t on both vj+1 and vk, giving us a final contradiction. ¤

Choosability

Choosability: Let G be a graph, and for every v ∈ V (G) let L(v) be a set of colours.

We say that G is L-choosable if there exists a colouring φ so that φ(v) ∈ L(v) for every

v ∈ V (G). We say that G is k-choosable if G is L-choosable whenever every list has size ≥ k

and we define χ`(G) to be the minimum k so that G is k-choosable. We define choosability

for edge-colouring similarly, and we let χ′`(G) denote the smallest integer k so that G is

k-edge-choosable. Note, that by using the same list for every vertex, we have χ(G) ≤ χ`(G)

and χ′(G) ≤ χ′`(G).

Observation 6.20 If m =
(
2k−1

k

)
, then χ`(Km,m) > k.

Proof: Let (A1, A2) be the bipartition of our Km,m and for i = 1, 2 assign every element of

Ai a distinct k element subset of {1, 2, . . . , 2k−1}. Now, for i = 1, 2, however we choose one

element from each list of a vertex in Ai, there must be at least k different colours appearing

on the vertices in Ai. However, then some colour is used on both A1 and A2, and this causes

a conflict. ¤

Kernel: A kernel of a digraph D is an independent set X ⊆ V (D) so that X ∪ N+(X) =

V (D). A digraph is kernel-perfect if every induced subdigraph has a kernel.

Lemma 6.21 If D is a kernel-perfect digraph and L : V (D) → N is a list assignment with

the property that |L(v)| > deg−(v) for every v ∈ V (D), then D is L-choosable.

Proof: We proceed by induction on |V (D)|. As a base, note that the lemma is trivial when

|V (D)| = 0. Otherwise, choose s in the range of L and let D′ be the subgraph of D induced

by those vertices whose list contains s. By assumption, we may choose a kernel X of D′.

Now, X is an independent set of vertices whose list contain s, and we shall use the colour s

on precisely those vertices in X. To complete our colouring, we must now find a list colouring
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of the digraph D′′ = D − X after s has been removed from all of the lists. However, since

X was a kernel of D′, every vertex in D′′ whose list originally contained s loses at least one

in indegree when passing from D to D′′. Thus, the lemma may be applied inductively to

obtain the desired colouring of D′′. ¤

Preference Oriented Line Graphs: Let G be a graph with a system of preferences

{>v}v∈V (G). The preference oriented line graph of G is the directed graph obtained by

orienting the edges of the line graph L(G) by the rule that if e, f ∈ E(G) are incident with

v and e >v f , then we orient the edge between e and f from e to f .

Lemma 6.22 If D is the preference oriented line graph of a bipartite graph, then D is

kernel-perfect.

Proof: Let G be the bipartite graph with preference system {<v}v∈V (G) for which D is the

preference oriented line graph. Now, by the Gale-Shapley Theorem, G has a stable matching

M . We claim that M is a kernel in D. To see this, note that since M is a matching in G, it

is an independent set in D. Further, for every e 6∈ M , there must be an edge f ∈ M sharing

an endpoint, say v, with e so that v prefers f to e. However, this means that in D there will

be an edge directed from f to e. It follows that M is a kernel, as desired. ¤

Theorem 6.23 Every bipartite graph G satisfies χ′`(G) = ∆(G).

Proof: Let (A,B) be a bipartition of G, let ∆ = ∆(G), and choose a ∆-edge-colouring

φ : E(G) → {1, 2, . . . , ∆}. Now, we define a system of preferences on G by the rule that

every vertex in A prefers edges in order of their colour, and every vertex in B prefers edges

in reverse order of their colour. Now, let D be the preference oriented line graph of G with

this system of preferences. By construction, every vertex in D has indegree ∆− 1. Now, by

Lemma 6.22, D is kernel perfect, and by Lemma 6.21 we see that D is ∆-choosable. ¤


