11 Extremal Graph Theory

In this section, graphs are assumed to have no loops or parallel edges.

Complete t-Partite If m_1, m_2, \ldots, m_t are nonnegative integers, the *complete t-partite* graph K_{m_1,m_2,\ldots,m_t} is a simple graph with vertex partition $\{I_1, I_2, \ldots, I_t\}$ where $|I_j| = m_j$ for every $1 \le j \le t$ and adjacency is determined by the rule that vertices x, y are adjacent if and only if they lie in different members of this partition.

Turán Graph Let n, t be positive integers with $n \ge t$, and choose ℓ and $0 \le j < t$ so that $n = t\ell + j$. Then the Turán Graph $T_{n,t}$ is defined as follows.

$$T_{n,t} = K_{\underbrace{\ell, \dots, \ell}_{t-j}, \underbrace{\ell+1, \dots, \ell+1}_{j}}$$

Observation 11.1 The Turán graph $T_{n,t}$ has the maximum number of edges over all complete t-partite graphs on n vertices.

Proof: Let m_1, m_2, \ldots, m_t be positive integers with $\sum_{i=1}^t m_i = n$ and consider the graph K_{m_1,m_2,\ldots,m_t} . If there exist distinct $i, j \in \{1, 2, \ldots, t\}$ with $m_i \leq m_j + 2$, then replacing m_i by $m_i + 1$ and m_j by $m_j - 1$ increases the number of edges by $(m_i + 1)(m_j - 1) - m_i m_j = m_j - m_i - 1 > 0$. We may repeat this operation until $|m_i - m_j| \leq 1$ for every $i, j \in \{1, 2, \ldots, t\}$ (since the number of edges increases each time, it can only be repeated finitely many times) at which point we have the desired graph. \Box

Theorem 11.2 (Turán) The Turán graph $T_{n,t}$ has the maximum number of edges over all n vertex graphs which do not contain a clique of order t + 1.

Proof: We proceed by induction on t. As a base, observe that the result holds trivially when t = 1. For the inductive step, let G be an n-vertex graph with no clique of order t+1. Our approach will be to construct a complete t-partite graph G' on n vertices so that $|E(G')| \ge |E(G)|$. To do this, let $\Delta = \Delta(G)$, choose a vertex $v \in V(G)$ with $deg(v) = \Delta$, and let H be the subgraph of G induced by N(v). Now, H does not have a clique of order t, so by induction there is a complete (t-1)-partite graph H' on Δ vertices with $|E(H')| \ge |E(H)|$. Now, extend H' to a new graph G' by adding an independent set X of size $n - \Delta$ and joining every vertex in X to every vertex in V(H'). Now G' is a complete t-partite graph on n vertices and

$$|E(G)| = |E(H)| + |E(G) \setminus E(H)|$$

$$\leq |E(H)| + \Delta |V(G) \setminus V(H)|$$

$$\leq |E(H')| + \Delta (n - \Delta)$$

$$= |E(G')|.$$

It now follows from the previous observation that $|E(G)| \leq |E(G')| \leq |E(T_{n,t})|$, thus completing the proof. \Box