11 Extremal Graph Theory

In this section, graphs are assumed to have no loops or parallel edges.
Complete t-Partite If $m_{1}, m_{2}, \ldots, m_{t}$ are nonnegative integers, the complete t-partite graph $K_{m_{1}, m_{2}, \ldots, m_{t}}$ is a simple graph with vertex partition $\left\{I_{1}, I_{2}, \ldots, I_{t}\right\}$ where $\left|I_{j}\right|=m_{j}$ for every $1 \leq j \leq t$ and adjacency is determined by the rule that vertices x, y are adjacent if and only if they lie in different members of this partition.

Turán Graph Let n, t be positive integers with $n \geq t$, and choose ℓ and $0 \leq j<t$ so that $n=t \ell+j$. Then the Turán Graph $T_{n, t}$ is defined as follows.

$$
T_{n, t}=K_{\underbrace{}_{t-j}, \ldots, \ell} \underbrace{\ell+1, \ldots, \ell+1}_{j}
$$

Observation 11.1 The Turán graph $T_{n, t}$ has the maximum number of edges over all complete t-partite graphs on n vertices.

Proof: Let $m_{1}, m_{2}, \ldots, m_{t}$ be positive integers with $\sum_{i=1}^{t} m_{i}=n$ and consider the graph $K_{m_{1}, m_{2}, \ldots, m_{t}}$. If there exist distinct $i, j \in\{1,2, \ldots, t\}$ with $m_{i} \leq m_{j}+2$, then replacing m_{i} by $m_{i}+1$ and m_{j} by $m_{j}-1$ increases the number of edges by $\left(m_{i}+1\right)\left(m_{j}-1\right)-m_{i} m_{j}=$ $m_{j}-m_{i}-1>0$. We may repeat this operation until $\left|m_{i}-m_{j}\right| \leq 1$ for every $i, j \in\{1,2, \ldots, t\}$ (since the number of edges increases each time, it can only be repeated finitely many times) at which point we have the desired graph.

Theorem 11.2 (Turán) The Turán graph $T_{n, t}$ has the maximum number of edges over all n vertex graphs which do not contain a clique of order $t+1$.

Proof: We proceed by induction on t. As a base, observe that the result holds trivially when $t=1$. For the inductive step, let G be an n-vertex graph with no clique of order $t+1$. Our approach will be to construct a complete t-partite graph G^{\prime} on n vertices so that $\left|E\left(G^{\prime}\right)\right| \geq|E(G)|$. To do this, let $\Delta=\Delta(G)$, choose a vertex $v \in V(G)$ with $\operatorname{deg}(v)=\Delta$, and let H be the subgraph of G induced by $N(v)$. Now, H does not have a clique of order t, so by induction there is a complete $(t-1)$-partite graph H^{\prime} on Δ vertices with $\left|E\left(H^{\prime}\right)\right| \geq|E(H)|$. Now, extend H^{\prime} to a new graph G^{\prime} by adding an independent set X of size $n-\Delta$ and joining
every vertex in X to every vertex in $V\left(H^{\prime}\right)$. Now G^{\prime} is a complete t-partite graph on n vertices and

$$
\begin{aligned}
|E(G)| & =|E(H)|+|E(G) \backslash E(H)| \\
& \leq|E(H)|+\Delta|V(G) \backslash V(H)| \\
& \leq\left|E\left(H^{\prime}\right)\right|+\Delta(n-\Delta) \\
& =\left|E\left(G^{\prime}\right)\right| .
\end{aligned}
$$

It now follows from the previous observation that $|E(G)| \leq\left|E\left(G^{\prime}\right)\right| \leq \mid E\left(T_{n, t} \mid\right.$, thus completing the proof.

