
12 Extremal Graph Theory II

In this section, graphs are assumed to have no loops or parallel edges.

Average Degree: The average degree of a graph G is 2|E(G)|
|V (G)| = 1

|V (G)|
∑

v∈V (G) deg(v).

Observation 12.1 For every r ∈ N, every graph of average degree ≥ 2r contains a subgraph

of minimum degree ≥ r + 1.

Proof: We prove the observation by induction on |V (G)|. If G has minimum degree ≥ r + 1,

then we are done. Otherwise, let v ∈ V (G) satisfy deg(v) ≤ r. Then we have

2|E(G− v)|+ 2|δ(v)|
|V (G− v)|+ 1

=
2|E(G)|
|V (G)| ≥ 2r ≥ 2|δ(v)|

1
.

It follows from this (and the observation a+b
c+d

≥ b
d
⇒ a

c
≥ a+b

c+d
) that 2|E(G−v)|

|V (G−v)| ≥ 2|E(G)|
|V (G)| ≥ 2r.

(So, deleting a vertex of degree ≤ r from a graph with average degree ≥ 2r can only increase

the average degree). Now, by induction, G− v has a subgraph of minimum degree ≥ r + 1

and this completes the proof. ¤

Theorem 12.2 (Mader) For every positive integer r, every graph with average degree ≥
2(r

2) contains a subdivision of Kr.

Proof: We will prove by induction that for m = r−1, r, r+1, . . . ,
(

r
2

)
, every graph of average

degree ≥ 2m contains a subgraph which is a subdivision of a (simple) graph on r vertices with

m edges. As a base, when m = r− 1, we may choose a vertex v with deg(v) ≥ 2r−1 ≥ r− 1.

Now v together with r − 1 of its neighbors induce a graph with r vertices and r − 1 edges.

For the inductive step, we let r ≤ m ≤ (
r
2

)
and let G be a graph with average degree

≥ 2m. We may assume (without loss) that G is connected. Choose a maximal set U ⊆ V (G)

so that the graph induced on U is connected and so that the graph G′ obtained from G by

identifying U to a new vertex u and then deleting all loops and parallel edges has average

degree ≥ 2m. Note that such a set U exists since U = {v} works for every v ∈ V (G).

Now, let H be the subgraph of G′ induced by the neighbors of u. If there exists a vertex

v ∈ V (H) with degH(v) < 2m−1, then replacing U by U ∪{v} reduces the number of vertices

in G′ by 1 and the number of edges by < 2m−1 so this gives a G′ with average degree ≥ 2m,

contradicting our choice of U . It follows that H has average degree ≥ 2m−1. By induction,
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we may choose a subgraph K of H which is a subdivision of an r vertex graph with m− 1

edges. Since every point in V (H) is adjacent to a point in U and the graph induced on U

is connected, we may extend K to a subgraph K ′ of G which is a subdivision of an r vertex

graph with m edges, as desired. ¤

Ball: If x ∈ V (G) and n ∈ N, the ball of radius n around x is

Bn(x) = {v ∈ V (G) : d ist(x, v) ≤ n}.

Theorem 12.3 Every graph G with δ(G) ≥ 3 and no cycle of length ≤ 8
(

r
2

)
+ 2 contains

Kr as a minor.

Proof: Set k =
(

r
2

)
and choose a maximal subset of vertices X ⊆ V (G) with the property

that d ist(x, y) ≥ 2k + 1 for every distinct x, y ∈ X. Now let X = {x1, . . . , xm} and define a

function f : V (G) → X by the rule that for every v ∈ V (G), the vertex f(v) = xi is a point

in X with minimum distance to v, and subject to this has i as small as possible. Now for

1 ≤ i ≤ m let Vi = {v ∈ V (G) : f(v) = xi}. The following inclusion follows immediately

from our definitions (it holds for every 1 ≤ i ≤ m).

Bk(xi) ⊆ Vi ⊆ B2k(xi)

Claim: If v ∈ Vi and P is a shortest path from v to xi then V (P ) ⊆ Vi.

Proof of Claim: Suppose (for a contradiction) that u ∈ V (P ) satisfies u ∈ Vj for j 6= i.

If d ist(u, xj) < d ist(u, xi), then we find d ist(v, xj) < d ist(u, xi), which is contradictory.

It follows from this (and u ∈ Vj) that d ist(u, xj) = d ist(u, xi). From this we deduce

d ist(v, xj) = d ist(v, xi). However, now v ∈ Vi implies i < j and u ∈ Vj implies j < i which

is a contradiction.

With this claim, we now deduce the following properties of Vi.

• The graph induced by Vi is connected.

• d ist(v, xi) ≤ 2k for every v ∈ Vi.

• If x, y ∈ Vi then d ist(x, y) ≤ 4k.
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For every 1 ≤ i ≤ m let Ti be the graph induced on Vi. Suppose (for a contradiction)

that Ti has a cycle and choose such a cycle C ⊆ Ti of minimum length. By assumption,

|E(C)| ≥ 8k+2, but then we may choose two points u, v ∈ V (C) which are distance ≥ 4k+1

on this cycle. Now there is a path P ⊆ Ti from u to v of length ≤ 4k and now P ∪C contains

a shorter cycle than C, giving us a contradiction. Thus, we find that Ti is a tree.

Now by degree sum arguments, we have

|δ(Vi)| =
∑
v∈Vi

deg(v)− 2|E(Ti)|

≥ 3|Vi| − 2|Vi|
= |Vi|
≥ |Bk(xi)|
≥ 2k

Now, construct a graph G′ from G by contracting every edge in Ti for every 1 ≤ i ≤ m. It

follows from the assumption that any two points in Ti are joined by a path of length ≤ 4k

in Ti and the assumption that all cycles in G have length ≥ 4k + 3 that G′ has no loops or

parallel edges. So, G′ is a minor of G which is simple with minimum degree ≥ 2k = 2(r
2), and

by Theorem 12.2 we find that G′ contains a subdivision of Kr. This gives us a Kr minor in

G, as required. ¤

Linking: A graph G is k-linked if |V (G)| ≥ 2k and for every {s1, . . . , sk, t1, . . . , tk} ⊆ V (G),

there exist vertex disjoint paths P1, . . . , Pk so that Pi has ends si and ti for 1 ≤ i ≤ k.

Theorem 12.4 For every positive integer k, every 2(3k
2 )-connected graph is k-linked.

Proof: Let {s1, . . . , sk, t1, . . . , tk} ⊆ V (G) and apply Theorem 12.2 to choose a subdivision

of K3k in G. Call this subdivision H and let U ⊆ V (G) be the set of vertices with degree

3k in H. By Menger’s Theorem, we may choose a collection of paths Q1 . . . , Q2k ⊆ G so

that each of these paths has a distinct starting point in {s1 . . . , sk, t1, . . . , tk} and a distinct

endpoint in U . Subject to this, choose Q1, . . . , Q2k so that each Qi has a minimum number

of edges in E(G) \ E(H).

Let U = {s′1, . . . , s′k, t′1, . . . , t′k, u1, . . . , uk} and assume that for 1 ≤ i ≤ k the path Qi has

ends si and s′i and that the path Qk+i has ends ti and t′i. Let 1 ≤ i ≤ k and let Ri, R
′
i ⊆ H
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be the paths from ui to s′i and t′i which correspond to (possibly subdivided) edges of our K3k.

Let vi be the first vertex on the path Ri from ui to s′i which is contained in one of the paths

Q1, . . . , Q2k and suppose that vi ∈ Qj. Now, consider rerouting Qj along Ri to the vertex

ui. The resulting paths Q1, . . . , Q2k would be vertex disjoint, so it follows from our choice

that Qj uses no edges in E(G) \E(H) after vi. It follows from this that j = i and after the

vertex vi, the path Qi follows Ri to s′i. By a similar argument, we find that the first vertex

v′i on R′
i which lies on one of Q1, . . . , Q2k is on the path Qk+i. Now, define the path Pi to be

the path from si to ti obtained by following Qi from si to vi, then following Ri to ui, then

following R′
i to v′i and then following Qk+i to ti. It is a consequence of our construction that

P1, . . . , Pk are vertex disjoint, thus completing the proof. ¤


