12 Extremal Graph Theory II

In this section, graphs are assumed to have no loops or parallel edges.

Average Degree: The average degree of a graph G is % = ﬁ ZUEV(G) deg(v).

Observation 12.1 For everyr € N, every graph of average degree > 2r contains a subgraph

of minimum degree > r + 1.

Proof: We prove the observation by induction on |V(G)|. If G has minimum degree > r + 1,
then we are done. Otherwise, let v € V(G) satisfy deg(v) < r. Then we have

2|E(G —v)[ +2[0(v)] _ 2|E(G)] _ , - 2[0(v)]

V(G —v)|+1 @G| — — 1
|E(G—v)| ~ 2/E(G)]
Vgl = W) = 2
(So, deleting a vertex of degree < r from a graph with average degree > 2r can only increase

It follows from this (and the observation % >0 0> ZTJFZ) that 2‘

the average degree). Now, by induction, G — v has a subgraph of minimum degree > r + 1

and this completes the proof. U

Theorem 12.2 (Mader) For every positive integer r, every graph with average degree >

9() contains a subdivision of K,.

Proof: We will prove by induction that form =r—1,r,r+1,..., (;), every graph of average
degree > 2™ contains a subgraph which is a subdivision of a (simple) graph on r vertices with
m edges. As a base, when m = r — 1, we may choose a vertex v with deg(v) > 277! >r —1.

Now v together with » — 1 of its neighbors induce a graph with r vertices and r — 1 edges.

T
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> 2™, We may assume (without loss) that G is connected. Choose a maximal set U C V(G)

For the inductive step, we let r < m < ( ) and let G be a graph with average degree
so that the graph induced on U is connected and so that the graph G’ obtained from G by
identifying U to a new vertex u and then deleting all loops and parallel edges has average
degree > 2™. Note that such a set U exists since U = {v} works for every v € V(G).

Now, let H be the subgraph of G’ induced by the neighbors of u. If there exists a vertex
v € V(H) with degp(v) < 2™, then replacing U by U U{v} reduces the number of vertices
in G’ by 1 and the number of edges by < 2™~! so this gives a G’ with average degree > 2™,

contradicting our choice of U. It follows that H has average degree > 2™~ By induction,



2

we may choose a subgraph K of H which is a subdivision of an r vertex graph with m — 1
edges. Since every point in V(H) is adjacent to a point in U and the graph induced on U
is connected, we may extend K to a subgraph K’ of G which is a subdivision of an r vertex

graph with m edges, as desired. 0
Ball: If x € V(G) and n € N, the ball of radius n around x is
B, (z) ={v € V(G) : dist(z,v) < n}.

Theorem 12.3 Every graph G with 6(G) > 3 and no cycle of length < 8(;) + 2 contains

K, as a minor.

Proof: Set k = (3) and choose a maximal subset of vertices X C V(G) with the property

that dist(x,y) > 2k + 1 for every distinct z,y € X. Now let X = {xy,...,x,,} and define a
function f : V(G) — X by the rule that for every v € V(G), the vertex f(v) = z; is a point
in X with minimum distance to v, and subject to this has ¢ as small as possible. Now for
1<i<mletV,={veV(G): fv) = x;}. The following inclusion follows immediately

from our definitions (it holds for every 1 <i < m).
By(x;) CV; C Bay(x:)

Claim: If v € V; and P is a shortest path from v to z; then V(P) C V;.

Proof of Claim: Suppose (for a contradiction) that u € V(P) satisfies u € V; for j # i.
If dist(u,z;) < dist(u,x;), then we find dist(v,z;) < dist(u,x;), which is contradictory.
It follows from this (and w € Vj) that dist(u,z;) = dist(u,z;). From this we deduce
dist(v, z;) = dist(v, x;). However, now v € V; implies ¢ < j and u € V; implies j < ¢ which
is a contradiction.

With this claim, we now deduce the following properties of V.
e The graph induced by V; is connected.
o dist(v,x;) < 2k for every v € V.

o If 2,y € V; then dist(z,y) < 4k.
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For every 1 < i < m let T; be the graph induced on V;. Suppose (for a contradiction)
that T; has a cycle and choose such a cycle C' C T; of minimum length. By assumption,
|E(C)| > 8k-+2, but then we may choose two points u, v € V(C') which are distance > 4k+1
on this cycle. Now there is a path P C T; from u to v of length < 4k and now PUC' contains
a shorter cycle than C, giving us a contradiction. Thus, we find that 7; is a tree.

Now by degree sum arguments, we have

(V) = > deg(v) — 2|E(T;)|

veV;
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Now, construct a graph G’ from G by contracting every edge in T; for every 1 < i < m. It
follows from the assumption that any two points in 7; are joined by a path of length < 4k
in T; and the assumption that all cycles in G have length > 4k + 3 that G’ has no loops or
parallel edges. So, G’ is a minor of G which is simple with minimum degree > 2% = 2(5), and
by Theorem 12.2 we find that G’ contains a subdivision of K. This gives us a K, minor in

G, as required. O

Linking: A graph G is k-linked if |V (G)| > 2k and for every {si,..., sk, t1,...,t} C V(G),
there exist vertex disjoint paths Py, ..., P, so that P; has ends s; and ¢; for 1 < i < k.
Theorem 12.4 For every positive integer k, every 2(3) _connected graph is k-linked.
Proof: Let {s1,...,8k t1,...,tx} € V(G) and apply Theorem 12.2 to choose a subdivision
of K3 in G. Call this subdivision H and let U C V(G) be the set of vertices with degree
3k in H. By Menger’s Theorem, we may choose a collection of paths Q1...,Qy C G so

that each of these paths has a distinct starting point in {s; ..., sk, t1,..., ¢} and a distinct

endpoint in U. Subject to this, choose )y, ..., Qo so that each (); has a minimum number
of edges in E(G) \ E(H).
Let U ={s},...,s,t0,...,th,u1,...,u;} and assume that for 1 < i < k the path @), has

ends s; and s, and that the path Qy4; has ends ¢; and ¢. Let 1 <i <k and let R;, R, C H
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be the paths from w; to s; and ¢; which correspond to (possibly subdivided) edges of our K.

Let v; be the first vertex on the path R; from w; to s, which is contained in one of the paths
Q1, ..., Q2 and suppose that v; € @);. Now, consider rerouting @); along R; to the vertex
u;. The resulting paths @1, ..., Q. would be vertex disjoint, so it follows from our choice
that @), uses no edges in E(G) \ E(H) after v;. It follows from this that j = ¢ and after the
vertex v;, the path @; follows R; to s;. By a similar argument, we find that the first vertex
v; on R} which lies on one of Qy, ..., Qa is on the path Qi1;. Now, define the path P; to be
the path from s; to t; obtained by following @); from s; to v;, then following R; to u;, then
following R} to v and then following Qx; to t;. It is a consequence of our construction that

Py, ..., P, are vertex disjoint, thus completing the proof. 0



