12 Extremal Graph Theory II

In this section, graphs are assumed to have no loops or parallel edges.
Average Degree: The average degree of a graph G is $\frac{2|E(G)|}{|V(G)|}=\frac{1}{|V(G)|} \sum_{v \in V(G)} \operatorname{deg}(v)$.
Observation 12.1 For every $r \in \mathbb{N}$, every graph of average degree $\geq 2 r$ contains a subgraph of minimum degree $\geq r+1$.

Proof: We prove the observation by induction on $|V(G)|$. If G has minimum degree $\geq r+1$, then we are done. Otherwise, let $v \in V(G)$ satisfy $\operatorname{deg}(v) \leq r$. Then we have

$$
\frac{2|E(G-v)|+2|\delta(v)|}{|V(G-v)|+1}=\frac{2|E(G)|}{|V(G)|} \geq 2 r \geq \frac{2|\delta(v)|}{1} .
$$

It follows from this (and the observation $\frac{a+b}{c+d} \geq \frac{b}{d} \Rightarrow \frac{a}{c} \geq \frac{a+b}{c+d}$) that $\frac{2|E(G-v)|}{|V(G-v)|} \geq \frac{2|E(G)|}{|V(G)|} \geq 2 r$. (So, deleting a vertex of degree $\leq r$ from a graph with average degree $\geq 2 r$ can only increase the average degree). Now, by induction, $G-v$ has a subgraph of minimum degree $\geq r+1$ and this completes the proof.

Theorem 12.2 (Mader) For every positive integer r, every graph with average degree \geq $2^{\binom{r}{2}}$ contains a subdivision of K_{r}.

Proof: We will prove by induction that for $m=r-1, r, r+1, \ldots,\binom{r}{2}$, every graph of average degree $\geq 2^{m}$ contains a subgraph which is a subdivision of a (simple) graph on r vertices with m edges. As a base, when $m=r-1$, we may choose a vertex v with $\operatorname{deg}(v) \geq 2^{r-1} \geq r-1$. Now v together with $r-1$ of its neighbors induce a graph with r vertices and $r-1$ edges.

For the inductive step, we let $r \leq m \leq\binom{ r}{2}$ and let G be a graph with average degree $\geq 2^{m}$. We may assume (without loss) that G is connected. Choose a maximal set $U \subseteq V(G)$ so that the graph induced on U is connected and so that the graph G^{\prime} obtained from G by identifying U to a new vertex u and then deleting all loops and parallel edges has average degree $\geq 2^{m}$. Note that such a set U exists since $U=\{v\}$ works for every $v \in V(G)$.

Now, let H be the subgraph of G^{\prime} induced by the neighbors of u. If there exists a vertex $v \in V(H)$ with $\operatorname{deg}_{H}(v)<2^{m-1}$, then replacing U by $U \cup\{v\}$ reduces the number of vertices in G^{\prime} by 1 and the number of edges by $<2^{m-1}$ so this gives a G^{\prime} with average degree $\geq 2^{m}$, contradicting our choice of U. It follows that H has average degree $\geq 2^{m-1}$. By induction,
we may choose a subgraph K of H which is a subdivision of an r vertex graph with $m-1$ edges. Since every point in $V(H)$ is adjacent to a point in U and the graph induced on U is connected, we may extend K to a subgraph K^{\prime} of G which is a subdivision of an r vertex graph with m edges, as desired.

Ball: If $x \in V(G)$ and $n \in \mathbb{N}$, the ball of radius n around x is

$$
B_{n}(x)=\{v \in V(G): \operatorname{dist}(x, v) \leq n\} .
$$

Theorem 12.3 Every graph G with $\delta(G) \geq 3$ and no cycle of length $\leq 8\binom{r}{2}+2$ contains K_{r} as a minor.

Proof: Set $k=\binom{r}{2}$ and choose a maximal subset of vertices $X \subseteq V(G)$ with the property that $\operatorname{dist}(x, y) \geq 2 k+1$ for every distinct $x, y \in X$. Now let $X=\left\{x_{1}, \ldots, x_{m}\right\}$ and define a function $f: V(G) \rightarrow X$ by the rule that for every $v \in V(G)$, the vertex $f(v)=x_{i}$ is a point in X with minimum distance to v, and subject to this has i as small as possible. Now for $1 \leq i \leq m$ let $V_{i}=\left\{v \in V(G): f(v)=x_{i}\right\}$. The following inclusion follows immediately from our definitions (it holds for every $1 \leq i \leq m$).

$$
B_{k}\left(x_{i}\right) \subseteq V_{i} \subseteq B_{2 k}\left(x_{i}\right)
$$

Claim: If $v \in V_{i}$ and P is a shortest path from v to x_{i} then $V(P) \subseteq V_{i}$.
Proof of Claim: Suppose (for a contradiction) that $u \in V(P)$ satisfies $u \in V_{j}$ for $j \neq i$. If $\operatorname{dist}\left(u, x_{j}\right)<\operatorname{dist}\left(u, x_{i}\right)$, then we find $\operatorname{dist}\left(v, x_{j}\right)<\operatorname{dist}\left(u, x_{i}\right)$, which is contradictory. It follows from this (and $\left.u \in V_{j}\right)$ that $\operatorname{dist}\left(u, x_{j}\right)=\operatorname{dist}\left(u, x_{i}\right)$. From this we deduce $\operatorname{dist}\left(v, x_{j}\right)=\operatorname{dist}\left(v, x_{i}\right)$. However, now $v \in V_{i}$ implies $i<j$ and $u \in V_{j}$ implies $j<i$ which is a contradiction.

With this claim, we now deduce the following properties of V_{i}.

- The graph induced by V_{i} is connected.
- $\operatorname{dist}\left(v, x_{i}\right) \leq 2 k$ for every $v \in V_{i}$.
- If $x, y \in V_{i}$ then $\operatorname{dist}(x, y) \leq 4 k$.

For every $1 \leq i \leq m$ let T_{i} be the graph induced on V_{i}. Suppose (for a contradiction) that T_{i} has a cycle and choose such a cycle $C \subseteq T_{i}$ of minimum length. By assumption, $|E(C)| \geq 8 k+2$, but then we may choose two points $u, v \in V(C)$ which are distance $\geq 4 k+1$ on this cycle. Now there is a path $P \subseteq T_{i}$ from u to v of length $\leq 4 k$ and now $P \cup C$ contains a shorter cycle than C, giving us a contradiction. Thus, we find that T_{i} is a tree.

Now by degree sum arguments, we have

$$
\begin{aligned}
\left|\delta\left(V_{i}\right)\right| & =\sum_{v \in V_{i}} \operatorname{deg}(v)-2\left|E\left(T_{i}\right)\right| \\
& \geq 3\left|V_{i}\right|-2\left|V_{i}\right| \\
& =\left|V_{i}\right| \\
& \geq\left|B_{k}\left(x_{i}\right)\right| \\
& \geq 2^{k}
\end{aligned}
$$

Now, construct a graph G^{\prime} from G by contracting every edge in T_{i} for every $1 \leq i \leq m$. It follows from the assumption that any two points in T_{i} are joined by a path of length $\leq 4 k$ in T_{i} and the assumption that all cycles in G have length $\geq 4 k+3$ that G^{\prime} has no loops or parallel edges. So, G^{\prime} is a minor of G which is simple with minimum degree $\geq 2^{k}=2^{\binom{r}{2}}$, and by Theorem 12.2 we find that G^{\prime} contains a subdivision of K_{r}. This gives us a K_{r} minor in G, as required.

Linking: A graph G is k-linked if $|V(G)| \geq 2 k$ and for every $\left\{s_{1}, \ldots, s_{k}, t_{1}, \ldots, t_{k}\right\} \subseteq V(G)$, there exist vertex disjoint paths P_{1}, \ldots, P_{k} so that P_{i} has ends s_{i} and t_{i} for $1 \leq i \leq k$.

Theorem 12.4 For every positive integer k, every $2\left(\begin{array}{c}\binom{3 k}{2} \\ \text {-connected graph is } k \text {-linked. }\end{array}\right.$
Proof: Let $\left\{s_{1}, \ldots, s_{k}, t_{1}, \ldots, t_{k}\right\} \subseteq V(G)$ and apply Theorem 12.2 to choose a subdivision of $K_{3 k}$ in G. Call this subdivision H and let $U \subseteq V(G)$ be the set of vertices with degree $3 k$ in H. By Menger's Theorem, we may choose a collection of paths $Q_{1} \ldots, Q_{2 k} \subseteq G$ so that each of these paths has a distinct starting point in $\left\{s_{1} \ldots, s_{k}, t_{1}, \ldots, t_{k}\right\}$ and a distinct endpoint in U. Subject to this, choose $Q_{1}, \ldots, Q_{2 k}$ so that each Q_{i} has a minimum number of edges in $E(G) \backslash E(H)$.

Let $U=\left\{s_{1}^{\prime}, \ldots, s_{k}^{\prime}, t_{1}^{\prime}, \ldots, t_{k}^{\prime}, u_{1}, \ldots, u_{k}\right\}$ and assume that for $1 \leq i \leq k$ the path Q_{i} has ends s_{i} and s_{i}^{\prime} and that the path Q_{k+i} has ends t_{i} and t_{i}^{\prime}. Let $1 \leq i \leq k$ and let $R_{i}, R_{i}^{\prime} \subseteq H$
be the paths from u_{i} to s_{i}^{\prime} and t_{i}^{\prime} which correspond to (possibly subdivided) edges of our $K_{3 k}$. Let v_{i} be the first vertex on the path R_{i} from u_{i} to s_{i}^{\prime} which is contained in one of the paths $Q_{1}, \ldots, Q_{2 k}$ and suppose that $v_{i} \in Q_{j}$. Now, consider rerouting Q_{j} along R_{i} to the vertex u_{i}. The resulting paths $Q_{1}, \ldots, Q_{2 k}$ would be vertex disjoint, so it follows from our choice that Q_{j} uses no edges in $E(G) \backslash E(H)$ after v_{i}. It follows from this that $j=i$ and after the vertex v_{i}, the path Q_{i} follows R_{i} to s_{i}^{\prime}. By a similar argument, we find that the first vertex v_{i}^{\prime} on R_{i}^{\prime} which lies on one of $Q_{1}, \ldots, Q_{2 k}$ is on the path Q_{k+i}. Now, define the path P_{i} to be the path from s_{i} to t_{i} obtained by following Q_{i} from s_{i} to v_{i}, then following R_{i} to u_{i}, then following R_{i}^{\prime} to v_{i}^{\prime} and then following Q_{k+i} to t_{i}. It is a consequence of our construction that P_{1}, \ldots, P_{k} are vertex disjoint, thus completing the proof.

