10 Hamiltonian Cycles

In this section, we consider only simple graphs.

Finding Hamiltonian Cycles

Hamiltonian: A cycle C of a graph G is Hamiltonian if $V(C)=V(G)$. A graph is Hamiltonian if it has a Hamiltonian cycle.

Closure: The (Hamiltonian) closure of a graph G, denoted $C l(G)$, is the simple graph obtained from G by repeatedly adding edges joining pairs of nonadjacent vertices with degree sum at least $|V(G)|$ until no such pair remains.

Lemma 10.1 A graph G is Hamiltonian if and only if its closure is Hamiltonian.
Proof: Suppose (for a contradiction) that the lemma is false. Then we may choose a graph G with $|V(G)|=n$ and a pair of non-adjacent vertices $u, v \in V(G)$ with $\operatorname{deg}(u)+\operatorname{deg}(v) \geq n$ so that G is not Hamiltonian, but adding a new edge $u v$ to G results in a Hamiltonian graph. Every Hamiltonian cycle in this new graph contains the new edge $u v$, so in the original graph G there is a path from u to v containing every vertex. Let $v=v_{1}, v_{2}, \ldots, v_{n}=u$ be the vertex sequence of this path. Set

$$
\begin{aligned}
& P=\left\{v_{i}: i \geq 2 \text { and } v_{i} \text { is adjacent to } v_{1}\right\} \\
& Q=\left\{v_{i}: i \geq 2 \text { and } v_{i-1} \text { is adjacent to } v_{n}\right\}
\end{aligned}
$$

Then $|P|+|Q|=\operatorname{deg}(v)+\operatorname{deg}(u) \geq n$ and since $P \cup Q \subseteq\left\{v_{2}, \ldots, v_{n}\right\}$, it follows that there exists $2 \leq i \leq n$ with $v_{i} \in P \cap Q$, so there is an edge e with ends v_{1} and v_{i} and an edge e^{\prime} with ends v_{n} and v_{i-1}. Using these two edges, we may form a Hamiltonian cycle in G as desired.

Theorem 10.2 (Dirac) If G is a graph with $n=|V(G)| \geq 3$ and $\delta(G) \geq \frac{n}{2}$, then G is Hamiltonian.

Proof: The graph $C l(G)$ is complete, so this follows from the above lemma.

Theorem 10.3 (Chvátal) Let G be a graph with $n=|V(G)| \geq 3$ and vertex degrees $d_{1} \leq d_{2} \leq \ldots \leq d_{n}$. If either $d_{i}>i$ or $d_{n-i} \geq n-i$ for every $1 \leq i<\frac{n}{2}$, then G is Hamiltonian.

Proof: It suffices to prove that $C l(G)$ is complete for any graph satisfying the above assumption. Suppose (for a contradiction) that G is a graph with $E(G)$ maximal which satisfies the above assumption but has $C l(G)$ not complete. It follows from our maximality assumption that $G=C l(G)$. Now, choose nonadjacent vertices u, v with $\operatorname{deg}(u)+\operatorname{deg}(v)$ maximum, and assume that $\operatorname{deg}(u) \leq \operatorname{deg}(v)$. Set $i=\operatorname{deg}(u)$ and note that by assumption $\operatorname{deg}(u)+\operatorname{deg}(v) \leq n-1$ so $i<\frac{n}{2}$ and $\operatorname{deg}(v) \leq n-i-1$.

Since $\operatorname{deg}(v) \leq n-i-1$ there are at least i vertices nonadjacent to v, and by our assumption each of these has degree $\leq \operatorname{deg}(u)=i$. Thus, G has at least i vertices with degree $\leq i$ and we have $d_{i} \leq i$.

Similarly, $\operatorname{deg}(u)=i$ so there are exactly $n-i-1$ vertices nonadjacent to u, and by our assumption, each has degree $\leq \operatorname{deg}(v) \leq n-i-1$. Since u also has degree $i=\operatorname{deg}(u) \leq$ $\operatorname{deg}(v) \leq n-i-1$, this gives us a total of at least $n-i$ vertices with degree $<n-i$ so $d_{n-i}<n-i$. This contradicts our assumption and completes the proof.

Lemma 10.4 If G is a graph with $\delta(G) \geq 2$, then G has a cycle of length $\geq \delta(G)+1$.
Proof: Set $\delta=\delta(G)$. Let P be a maximal path in G and let v be an end of P. By assumption, v has at least δ neighbors all of which must lie on P. If u is the neighbor of v which is furthest from v on P, then the subpath of P from v to u together with $u v$ is a cycle of length $\geq \delta+1$.

Theorem 10.5 (Chvátal-Erdös) If G is a k-connected graph with $|V(G)| \geq 3$ and $\alpha(G) \leq$ k, then G is Hamiltonian.

Proof: Let C be a cycle of G of maximum length, and suppose (for a contradiction) that C is not Hamiltonian. Since G has minimum degree $\geq k$, it follows from Lemma 10.4 that C has length $\geq k+1$. Let H be a component of $G-V(C)$ and let S be the set of vertices in $V(C)$ which have a neighbor in $V(H)$. Since G is k-connected and $|V(G)| \geq k+1$ we must have $|S| \geq k$. Also, observe that no two vertices in S can be consecutive on C since this would yield a cycle longer than C (contradicting our assumption). Let T be the set of all vertices
$v \in V(C)$ so that v is the clockwise neighbor of a point in S (on the cycle C). Note that $S \cap T=\emptyset$ by our earlier observation. If there exist $t_{1}, t_{2} \in T$ which are adjacent, then let $s_{1}, s_{2} \in S$ be the counterclockwise neighbors of t_{1}, t_{2} (respectively) and choose a path $P \subseteq G$ from s_{1} to s_{2} with all internal vertice in $V(H)$. Now the graph $C-s_{1} t_{1}-s_{2} t_{2}+P+t_{1} t_{2}$ is a cycle longer than C contradicting our assumption. Thus T is an independent set of size $|T|=|S| \geq k$, and we may add to T any vertex in $V(H)$ to obtain an independent set of size $\geq k+1$. However, this contradicts the assumption $\alpha(G) \leq k$, thus completing the proof.

Structure

Observation 10.6 Let G be a graph and let $X \subseteq V(G)$. If $|X|<\operatorname{comp}(G-X)$, then G is not Hamiltonian.

Proof: We prove the contrapositive. If $C \subseteq G$ is a Hamiltonian cycle, then

$$
|X| \geq \operatorname{comp}(C-X) \geq \operatorname{comp}(G-X)
$$

Theorem 10.7 (Smith) If G is a d-regular graph where d is odd and $e \in E(G)$, then there are an even number of Hamiltonian cycles in G which pass through the edge e.

Proof: Choose an end v of e, and construct a simple graph H as follows. Define $V(H)$ to be the set of all Hamiltonian paths in G which have v as an end and contain e. If P is such a path with ends v, u, then for every $u w \in E(G)$ with $w \neq v$, add an edge in the graph H from P to other Hamiltonian path contained in $P+u w$. Now, a vertex of H has odd degree if and only if this Hamiltonian path may be extended to a Hamiltonian cycle. Further, for every Hamiltonian cycle containing e, the Hamiltonian path obtained by removing the other edge incident with v appears as a vertex of H with odd degree. Thus, the number of Hamiltonian cycles containing e is exactly equal to the number of vertices of odd degree in H, and this is necessarily even.

Observation 10.8 Every 3-regular graph which is Hamiltonian is 3-edge-colourable.
Proof: Let G be 3-regular and Hamiltonian. Then $|V(G)|$ is even (since all degrees are odd), so if C is a Hamiltonian cycle, we can colour the edges of C alternately red and blue and colour all other edges green.

Theorem 10.9 (Grinberg) If G is a plane graph with a Hamiltonian cycle C, and G has f_{i}^{\prime} faces of length i inside C and $f_{i}^{\prime \prime}$ faces of length i outside C for every i, then $\sum_{i}(i-$ 2) $\left(f_{i}^{\prime}-f_{i}^{\prime \prime}\right)=0$

Proof: We shall prove that $\sum_{i}(i-2) f_{i}^{\prime}=|V(G)|-2=\sum_{i}(i-2) f_{i}^{\prime \prime}$ by induction on $|E(G) \backslash E(C)|$. As a base case, observe that the formula holds trivially whenever $\mid E(G) \backslash$ $E(C) \mid=0$. For the inductive step, let G be a plane graph with Hamiltonian cycle C and $|E(G) \backslash E(C)|>0$, and assume that the theorem holds for every such graph and cycle with $|E(G) \backslash E(C)|$ of smaller value. Let $e \in E(G) \backslash E(C)$. We shall assume that e lies inside the cycle C, the other case is similar. Let S and T be the faces on either side of e and assume that S has size s and T has size t. By induction, the formula holds for $G-e$, and since the outside of C is the same in $G-e$ as in G we have $\sum_{i}(i-2) f_{i}^{\prime \prime}=|V(G)|-2$. For the inner faces, we see that $G-e$ has lost a contribution of $s-2$ from S and $t-2$ from T, but has gained a contribution of $(s-t-2)-2$ from the new face formed from S and T. Thus, the formula holds for G.

