
10 Hamiltonian Cycles

In this section, we consider only simple graphs.

Finding Hamiltonian Cycles

Hamiltonian: A cycle C of a graph G is Hamiltonian if V (C) = V (G). A graph is

Hamiltonian if it has a Hamiltonian cycle.

Closure: The (Hamiltonian) closure of a graph G, denoted Cl(G), is the simple graph

obtained from G by repeatedly adding edges joining pairs of nonadjacent vertices with degree

sum at least |V (G)| until no such pair remains.

Lemma 10.1 A graph G is Hamiltonian if and only if its closure is Hamiltonian.

Proof: Suppose (for a contradiction) that the lemma is false. Then we may choose a graph G

with |V (G)| = n and a pair of non-adjacent vertices u, v ∈ V (G) with deg(u) + deg(v) ≥ n

so that G is not Hamiltonian, but adding a new edge uv to G results in a Hamiltonian graph.

Every Hamiltonian cycle in this new graph contains the new edge uv, so in the original graph

G there is a path from u to v containing every vertex. Let v = v1, v2, . . . , vn = u be the

vertex sequence of this path. Set

P = {vi : i ≥ 2 and vi is adjacent to v1}
Q = {vi : i ≥ 2 and vi−1 is adjacent to vn}

Then |P |+ |Q| = deg(v) + deg(u) ≥ n and since P ∪Q ⊆ {v2, . . . , vn}, it follows that there

exists 2 ≤ i ≤ n with vi ∈ P ∩ Q, so there is an edge e with ends v1 and vi and an edge

e′ with ends vn and vi−1. Using these two edges, we may form a Hamiltonian cycle in G as

desired. ¤

Theorem 10.2 (Dirac) If G is a graph with n = |V (G)| ≥ 3 and δ(G) ≥ n
2
, then G is

Hamiltonian.

Proof: The graph Cl(G) is complete, so this follows from the above lemma. ¤
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Theorem 10.3 (Chvátal) Let G be a graph with n = |V (G)| ≥ 3 and vertex degrees

d1 ≤ d2 ≤ . . . ≤ dn. If either di > i or dn−i ≥ n − i for every 1 ≤ i < n
2
, then G is

Hamiltonian.

Proof: It suffices to prove that Cl(G) is complete for any graph satisfying the above assump-

tion. Suppose (for a contradiction) that G is a graph with E(G) maximal which satisfies

the above assumption but has Cl(G) not complete. It follows from our maximality as-

sumption that G = Cl(G). Now, choose nonadjacent vertices u, v with deg(u) + deg(v)

maximum, and assume that deg(u) ≤ deg(v). Set i = deg(u) and note that by assumption

deg(u) + deg(v) ≤ n− 1 so i < n
2

and deg(v) ≤ n− i− 1.

Since deg(v) ≤ n − i − 1 there are at least i vertices nonadjacent to v, and by our

assumption each of these has degree ≤ deg(u) = i. Thus, G has at least i vertices with

degree ≤ i and we have di ≤ i.

Similarly, deg(u) = i so there are exactly n− i− 1 vertices nonadjacent to u, and by our

assumption, each has degree ≤ deg(v) ≤ n − i − 1. Since u also has degree i = deg(u) ≤
deg(v) ≤ n − i − 1, this gives us a total of at least n − i vertices with degree < n − i so

dn−i < n− i. This contradicts our assumption and completes the proof. ¤

Lemma 10.4 If G is a graph with δ(G) ≥ 2, then G has a cycle of length ≥ δ(G) + 1.

Proof: Set δ = δ(G). Let P be a maximal path in G and let v be an end of P . By assumption,

v has at least δ neighbors all of which must lie on P . If u is the neighbor of v which is furthest

from v on P , then the subpath of P from v to u together with uv is a cycle of length ≥ δ +1.

¤

Theorem 10.5 (Chvátal-Erdös) If G is a k-connected graph with |V (G)| ≥ 3 and α(G) ≤
k, then G is Hamiltonian.

Proof: Let C be a cycle of G of maximum length, and suppose (for a contradiction) that C is

not Hamiltonian. Since G has minimum degree ≥ k, it follows from Lemma 10.4 that C has

length ≥ k + 1. Let H be a component of G−V (C) and let S be the set of vertices in V (C)

which have a neighbor in V (H). Since G is k-connected and |V (G)| ≥ k + 1 we must have

|S| ≥ k. Also, observe that no two vertices in S can be consecutive on C since this would

yield a cycle longer than C (contradicting our assumption). Let T be the set of all vertices
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v ∈ V (C) so that v is the clockwise neighbor of a point in S (on the cycle C). Note that

S ∩ T = ∅ by our earlier observation. If there exist t1, t2 ∈ T which are adjacent, then let

s1, s2 ∈ S be the counterclockwise neighbors of t1, t2 (respectively) and choose a path P ⊆ G

from s1 to s2 with all internal vertice in V (H). Now the graph C − s1t1 − s2t2 + P + t1t2

is a cycle longer than C contradicting our assumption. Thus T is an independent set of size

|T | = |S| ≥ k, and we may add to T any vertex in V (H) to obtain an independent set of

size ≥ k+1. However, this contradicts the assumption α(G) ≤ k, thus completing the proof.

¤

Structure

Observation 10.6 Let G be a graph and let X ⊆ V (G). If |X| < comp(G−X), then G is

not Hamiltonian.

Proof: We prove the contrapositive. If C ⊆ G is a Hamiltonian cycle, then

|X| ≥ comp(C −X) ≥ comp(G−X). ¤

Theorem 10.7 (Smith) If G is a d-regular graph where d is odd and e ∈ E(G), then there

are an even number of Hamiltonian cycles in G which pass through the edge e.

Proof: Choose an end v of e, and construct a simple graph H as follows. Define V (H) to be

the set of all Hamiltonian paths in G which have v as an end and contain e. If P is such a

path with ends v, u, then for every uw ∈ E(G) with w 6= v, add an edge in the graph H from

P to other Hamiltonian path contained in P +uw. Now, a vertex of H has odd degree if and

only if this Hamiltonian path may be extended to a Hamiltonian cycle. Further, for every

Hamiltonian cycle containing e, the Hamiltonian path obtained by removing the other edge

incident with v appears as a vertex of H with odd degree. Thus, the number of Hamiltonian

cycles containing e is exactly equal to the number of vertices of odd degree in H, and this is

necessarily even. ¤

Observation 10.8 Every 3-regular graph which is Hamiltonian is 3-edge-colourable.

Proof: Let G be 3-regular and Hamiltonian. Then |V (G)| is even (since all degrees are odd),

so if C is a Hamiltonian cycle, we can colour the edges of C alternately red and blue and

colour all other edges green. ¤
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Theorem 10.9 (Grinberg) If G is a plane graph with a Hamiltonian cycle C, and G has

f ′i faces of length i inside C and f ′′i faces of length i outside C for every i, then
∑

i(i −
2)(f ′i − f ′′i ) = 0

Proof: We shall prove that
∑

i(i − 2)f ′i = |V (G)| − 2 =
∑

i(i − 2)f ′′i by induction on

|E(G) \ E(C)|. As a base case, observe that the formula holds trivially whenever |E(G) \
E(C)| = 0. For the inductive step, let G be a plane graph with Hamiltonian cycle C and

|E(G) \E(C)| > 0, and assume that the theorem holds for every such graph and cycle with

|E(G) \E(C)| of smaller value. Let e ∈ E(G) \E(C). We shall assume that e lies inside the

cycle C, the other case is similar. Let S and T be the faces on either side of e and assume

that S has size s and T has size t. By induction, the formula holds for G− e, and since the

outside of C is the same in G− e as in G we have
∑

i(i− 2)f ′′i = |V (G)| − 2. For the inner

faces, we see that G − e has lost a contribution of s − 2 from S and t − 2 from T , but has

gained a contribution of (s− t− 2)− 2 from the new face formed from S and T . Thus, the

formula holds for G. ¤


