14 The Probabilistic Method

Probabilistic Graph Theory

Theorem 14.1 (Szele) For every positive integer n, there exists a tournament on n vertices with at least $n!2^{-(n-1)}$ Hamiltonian paths.

Proof: Construct a tournament by randomly orienting each edge of K_{n} in each direction independently with probability $\frac{1}{2}$. For any permutation σ of the vertices, let X_{σ} be the indicator random variable which has value 1 if σ is the vertex sequence of a Hamiltonian path, and 0 otherwise. Let X be the random variable which is the total number of Hamiltonain paths. Then $X=\sum X_{\sigma}$ and we have

$$
\mathbb{E}(X)=\sum_{\sigma} \mathbb{E}\left(X_{\sigma}\right)=n!2^{-(n-1)}
$$

Thus, there must exist at least one tournament on n vertices which has $\geq n!2^{-(n-1)}$ Hamiltonain paths as claimed.

Theorem 14.2 Every graph G has a bipartite subgraph H for which $|E(H)| \geq \frac{1}{2}|E(G)|$.
Proof: Choose a random subset $S \subseteq V(G)$ by independently choosing each vertex to be in S with probability $\frac{1}{2}$. Let H be the subgraph of G containing all of the vertices, and all edges with exactly one end in S. For every edge e, let X_{e} be the indicator random variable with value 1 if $e \in E(H)$ and 0 otherwise. If $e=u v$, then e will be in H if $u \in S$ and $v \notin S$ or if $u \notin S$ and $v \in S$, so $\mathbb{E}\left(X_{e}\right)=\mathbb{P}(e \in E(H))=\frac{1}{2}$ and we find

$$
\mathbb{E}(|E(H)|)=\sum_{e \in E(G)} \mathbb{E}\left(X_{e}\right)=\frac{1}{2}|E(G)| .
$$

Thus, there must exist at least one bipartite subgraph H with $|E(H)| \geq \frac{1}{2}|E(G)|$.
Theorem 14.3 (Erdös) If $\binom{n}{t}<2^{\binom{t}{2}-1}$, then $R(t, t)>n$. In particular, $R(t, t)>2^{\frac{t}{2}}$ for $t \geq 3$.

Proof: Construct a random red/blue colouring of the edges of K_{n} by colouring each edge independently either red or blue with probability $\frac{1}{2}$. For any fixed set S of t vertices, let
A_{S} be the event that the induced subgraph on S is monochromatic (either all its edges are red or all its edges are blue). Now $\mathbb{P}\left(A_{R}\right)=2^{1-\binom{t}{2}}$ so the probability that at least one of the events A_{S} occurs is at most $\binom{n}{t} 2^{1-\binom{t}{2}}<1$. Therefore, with positive probability, none of the A_{S} events occur, so there is a red/blue edge-colouring without a monochromatic K_{t} and $R(t, t) \geq n$. If $t \geq 3$ then setting $n=\left\lfloor 2^{\frac{t}{2}}\right\rfloor$ we have

$$
\binom{n}{t} 2^{1-\binom{t}{2}}=\frac{n(n-1) \ldots(n-t+1)}{t!} 2^{1-\frac{t(t-1)}{2}}<\frac{2^{1+\frac{t}{2}}}{t!} \cdot \frac{n^{t}}{2^{\frac{t^{2}}{2}}}<1
$$

This completes the proof.

Theorem 14.4 Every loopless graph G satisfies

$$
\alpha(G) \geq \sum_{v \in V(G)} \frac{1}{\operatorname{deg}(v)+1}
$$

Proof: Choose an ordering $v_{1}, v_{2}, \ldots, v_{n}$ of $V(G)$ uniformly at random. Let S be the set of all vertices which appear before all of their neighbors in our ordering. Observe that S is an independent set. Now, for each vertex v, let X_{v} be the indicator random variable which has value 1 if $v \in S$ and 0 otherwise. Then $\mathbb{E}\left(X_{v}\right)=\mathbb{P}(v \in S)=\frac{1}{\operatorname{deg}(v)+1}$ so $\mathbb{E}(|S|)=\sum_{v \in V(G)} \mathbb{E}\left(X_{v}\right)=\sum_{v \in V(G)} \frac{1}{\operatorname{deg}(v)+1}$ and we conclude that there must exist at least one ordering for which the set S is an independent set with the required size.

Dominating Set: If G is a graph, a set of vertices $S \subseteq V(G)$ is a dominating set if every vertex is either in S or has a neighbor in S.

Theorem 14.5 (Alon) Let G be a simple n-vertex graph with minimum degree δ. Then G has a dominating set of size at most $n \frac{1+\ln (\delta+1)}{\delta+1}$.

Proof: Choose a subset $S \subseteq V(G)$ by selecting each vertex to be in S independently with probability p where $p=\frac{\ln (\delta+1)}{\delta+1}$. Note that $\mathbb{E}(|S|)=p n$. Let T be the set of vertices which are not in S and have no neighbor in S, and observe that $S \cup T$ is a dominating set. For every vertex v, let X_{v} be the indicator random variable which has value 1 if $x \in T$ and 0
otherwise. Note that $\mathbb{E}\left(X_{v}\right)=\mathbb{P}(v \in T) \leq(1-p)^{\delta+1}$. Thus we have

$$
\begin{aligned}
\mathbb{E}(|S \cup T|) & =\mathbb{E}(|S|)+\mathbb{E}(|T|) \\
& =p n+\sum_{v \in V(G)} X_{v} \\
& \leq p n+n(1-p)^{\delta+1} \\
& =n \frac{\ln (\delta+1)}{\delta+1}+n\left(1-\frac{\ln (\delta+1)}{\delta+1}\right)^{\delta+1} \\
& \leq n \frac{1+\ln (\delta+1)}{\delta+1} .
\end{aligned}
$$

Here the last inequality follows from $\left(1+\frac{a}{m}\right)^{m} \leq e^{a}$ which is an easy consequence of the Taylor expansion of e^{a}. Since there must exist a set $S \cup T$ with size at most the expected value, this completes the proof.

Theorem 14.6 (Erdös) For every g, k there exists a graph with chromatic number $\geq k$ and no cycle of length $\leq g$.

Proof: For typographical reasons, we set $\theta=\frac{1}{2 g}$. Now, let $n \geq 5$ be an integer large enough so that $2 g \sqrt{n} \leq \frac{n}{2}$ and $\frac{n^{\theta}}{6 \ln n+2} \geq k$ and set $p=n^{-1+\theta}$. Form a random graph on n vertices by choosing each possible edge to occur independently with probability p. Let G be the resulting graph, and let X be the number of cycles of G with length $\leq g$. Now we have

$$
\begin{aligned}
\mathbb{E}(X) & =\sum_{i=3}^{g} \frac{n(n-1) \ldots(n-i+1)}{2 i} p^{i} \\
& \leq \sum_{i=3}^{g} n^{i} p^{i} \\
& \leq g \sqrt{n}
\end{aligned}
$$

So, by Markov's inequality, we have $\mathbb{P}\left(X \geq \frac{n}{2}\right) \leq \mathbb{P}(X \geq 2 g \sqrt{n}) \leq \frac{1}{2 g \sqrt{n}} \mathbb{E}(X) \leq \frac{1}{2}$. Thus, $X \leq \frac{n}{2}$ with probability $\geq \frac{1}{2}$. Set $t=\left\lceil\frac{3}{p} \ln n\right\rceil$. Then (using the identity $1-p<e^{-p}$ for the
third inequality) we find

$$
\begin{aligned}
\mathbb{P}(\alpha(G) \geq t) & \leq\binom{ n}{t}(1-p)^{\binom{t}{2}} \\
& \leq n^{t}(1-p)^{\frac{t(t-1)}{2}} \\
& \leq\left(n e^{-p(t-1) / 2}\right)^{t} \\
& \leq\left(n e^{-p(3 / 2 p) \ln n}\right)^{t} \\
& =\left(\frac{1}{\sqrt{n}}\right)^{t} \\
& \leq \frac{1}{\sqrt{n}} \\
& <\frac{1}{2}
\end{aligned}
$$

Since $\mathbb{P}\left(X \leq \frac{n}{2}\right) \geq \frac{1}{2}$ and $\mathbb{P}(\alpha(G)<t)>\frac{1}{2}$ there is a specific G with n vertices for which $X \leq \frac{n}{2}$ and $\alpha(G)<t$. Form the graph H from G by removing from G a vertex from each cycle of length $\leq g$. Then H has no cycles of length $\leq g,|V(H)| \geq \frac{n}{2}$, and $\alpha(H) \leq \alpha(G) \leq t$ so we have

$$
\begin{aligned}
\chi(H) & \geq \frac{|V(H)|}{\alpha(H)} \\
& \geq \frac{n}{2 t} \\
& \geq \frac{n}{(6 / p) \ln n+2} \\
& \geq \frac{n}{6 n^{1-\theta} \ln n+2} \\
& \geq \frac{n^{\theta}}{6 \ln n+2} \\
& \geq k
\end{aligned}
$$

So H satisfies the theorem.

Crossing Number and Applications

Crossing Number: The crossing number of a graph G, denoted $\operatorname{cr}(G)$, is the minimum number of crossings in a drawing of G in the plane with the property that edges only meet vertices at their endpoints and exactly two edges cross at each crossing point.

Lemma 14.7 If $G=(V, E)$ is simple, then $\operatorname{cr}(G) \geq|E|-3|V|$.

Proof: We proceed by induction on $|E|$. As a base, note that the result is trivial when $|E| \leq 1$. For the inductive step, consider a drawing of G in the plane with a minimum number of crossings. If there are no crossings, then the formula follows from Lemma ??. Otherwise, choose an edge e which is crossed, and consider the graph $G-e$. By keeping the same drawing (except for the deleted edge e) we find that $\operatorname{cr}(G) \geq \operatorname{cr}(G-e)+1$. Now, by induction we have $\operatorname{cr}(G-e) \geq|E \backslash\{e\}|-|V|=|E|-1-|V|$ and combining these inequalities yields the desired result.

Theorem 14.8 If $G=(V, E)$ is simple, then $\operatorname{cr}(G) \geq \frac{|E|^{3}}{64 \mid V V^{2}}$.
Proof: Let $|V|=n$ and $|E|=m$ and fix a drawing of G in the plane with a minimum number of crossings. Set $p=\frac{4 n}{m}$ (note that this is ≤ 1) and choose a random subset S of vertices by selecting each vertex to be in S independently with probability p. Let $H=G[S]$ and let X be the random variable which counts the number of crossings of H in the induced drawing. By the previous lemma, we have that $X \geq|E(H)|-3|V(H)|$ so we find

$$
\begin{aligned}
0 & \leq \mathbb{E}(X-|E(H)|+3|V(H)|) \\
& =\mathbb{E}(X)-\mathbb{E}(|E(H)|)+3 \mathbb{E}(|V(H)|) \\
& =p^{4} c r(G)-p^{2} m+3 p n \\
& =p^{4}\left(\operatorname{cr}(G)-\frac{m^{3}}{64 n^{2}}\right)
\end{aligned}
$$

Thus $\operatorname{cr}(G) \geq \frac{m^{3}}{64 n^{2}}$ as desired.
Theorem 14.9 (Szemerédi, Trotter) Let P be a collection of points in \mathbb{R}^{2} and let L be a collection of lines in \mathbb{R}^{2}. Then the number of incidences between P and L is at most $4\left(|P|^{\frac{2}{3}}|L|^{\frac{2}{3}}+|P|+|L|\right)$.

Proof: Let q be the number of incidences between P and L. Removing a line from L which does not contain a point in P only improves the bound, so we may assume that every line contains at least one point. Construct a graph G drawn in the plane by declaring each point in P to be a vertex, and treating each segment of a line between two consecutive points in P to be an edge. Now we have $|V(G)|=|P|,|E(G)|=q-|L|$, and the number of crossings is at most $|L|^{2}$. If $|E(G)| \leq 4|V(G)|$ then we have $q \leq 4|P|+|L|$ and we are finished.

Otherwise, by the previous theorem we find $|L|^{2} \geq c r(G) \geq \frac{(q-\mid L)^{3}}{64|P|^{2}}$ so $4|P|^{\frac{2}{3}}|L|^{\frac{2}{3}} \geq q-|L|$ and this completes the proof.

Sum sets \& Product sets: If A, B are subsets of \mathbb{R}, then we let $A+B=\{a+b$: $a \in A$ and $b \in B\}$ and $A \cdot B=\{a b: a \in A$ and $b \in B\}$.

Theorem 14.10 (Elekes) Let A be a finite subset of \mathbb{R}. Then $|A+A| \cdot|A \cdot A| \geq \frac{1}{64}|A|^{\frac{5}{2}}$.
Proof: Let $P=(A+A) \times(A \cdot A) \subseteq \mathbb{R}^{2}$ and note that $|A|^{2} \leq|P| \leq|A|^{4}$. For every $a, b \in A$ let $\ell_{a, b}$ be the line $\{(x, y): y=a(x-b)\}$ and let $L=\left\{\ell_{a, b}: a, b \in A\right\}$. If $\ell_{a, b} \in L$, then for every $c \in A$ the line L is incident with the point $(a+c, c-b) \in P$, so L is incident with $\geq|A|$ points. Thus, by the Szemerédi Trotter theorem we have

$$
\begin{aligned}
|A|^{3} & =|A| \cdot|L| \\
& \leq 4\left(|A|^{\frac{4}{3}}|P|^{\frac{2}{3}}+|P|+|A|^{2}\right) \\
& \leq 16|A|^{\frac{4}{3}}|P|^{\frac{2}{3}} .
\end{aligned}
$$

Rearranging we get $\frac{1}{64}|A|^{\frac{5}{2}} \leq|P|$ which completes the proof.

