
14 The Probabilistic Method

Probabilistic Graph Theory

Theorem 14.1 (Szele) For every positive integer n, there exists a tournament on n vertices

with at least n!2−(n−1) Hamiltonian paths.

Proof: Construct a tournament by randomly orienting each edge of Kn in each direction

independently with probability 1
2
. For any permutation σ of the vertices, let Xσ be the

indicator random variable which has value 1 if σ is the vertex sequence of a Hamiltonian path,

and 0 otherwise. Let X be the random variable which is the total number of Hamiltonain

paths. Then X =
∑

Xσ and we have

E(X) =
∑

σ

E(Xσ) = n!2−(n−1).

Thus, there must exist at least one tournament on n vertices which has ≥ n!2−(n−1) Hamil-

tonain paths as claimed. ¤

Theorem 14.2 Every graph G has a bipartite subgraph H for which |E(H)| ≥ 1
2
|E(G)|.

Proof: Choose a random subset S ⊆ V (G) by independently choosing each vertex to be in S

with probability 1
2
. Let H be the subgraph of G containing all of the vertices, and all edges

with exactly one end in S. For every edge e, let Xe be the indicator random variable with

value 1 if e ∈ E(H) and 0 otherwise. If e = uv, then e will be in H if u ∈ S and v 6∈ S or if

u 6∈ S and v ∈ S, so E(Xe) = P(e ∈ E(H)) = 1
2

and we find

E(|E(H)|) =
∑

e∈E(G)

E(Xe) = 1
2
|E(G)|.

Thus, there must exist at least one bipartite subgraph H with |E(H)| ≥ 1
2
|E(G)|. ¤

Theorem 14.3 (Erdös) If
(

n
t

)
< 2(t

2)−1, then R(t, t) > n. In particular, R(t, t) > 2
t
2 for

t ≥ 3.

Proof: Construct a random red/blue colouring of the edges of Kn by colouring each edge

independently either red or blue with probability 1
2
. For any fixed set S of t vertices, let



2

AS be the event that the induced subgraph on S is monochromatic (either all its edges are

red or all its edges are blue). Now P(AR) = 21−(t
2) so the probability that at least one of

the events AS occurs is at most
(

n
t

)
21−(t

2) < 1. Therefore, with positive probability, none of

the AS events occur, so there is a red/blue edge-colouring without a monochromatic Kt and

R(t, t) ≥ n. If t ≥ 3 then setting n = b2 t
2 c we have

(
n

t

)
21−(t

2) =
n(n− 1) . . . (n− t + 1)

t!
21− t(t−1)

2 <
21+ t

2

t!
· nt

2
t2

2

< 1

This completes the proof. ¤

Theorem 14.4 Every loopless graph G satisfies

α(G) ≥
∑

v∈V (G)

1

deg(v) + 1
.

Proof: Choose an ordering v1, v2, . . . , vn of V (G) uniformly at random. Let S be the set

of all vertices which appear before all of their neighbors in our ordering. Observe that S

is an independent set. Now, for each vertex v, let Xv be the indicator random variable

which has value 1 if v ∈ S and 0 otherwise. Then E(Xv) = P(v ∈ S) = 1
deg(v)+1

so

E(|S|) =
∑

v∈V (G) E(Xv) =
∑

v∈V (G)
1

deg(v)+1
and we conclude that there must exist at least

one ordering for which the set S is an independent set with the required size. ¤

Dominating Set: If G is a graph, a set of vertices S ⊆ V (G) is a dominating set if every

vertex is either in S or has a neighbor in S.

Theorem 14.5 (Alon) Let G be a simple n-vertex graph with minimum degree δ. Then G

has a dominating set of size at most n 1+ln(δ+1)
δ+1

.

Proof: Choose a subset S ⊆ V (G) by selecting each vertex to be in S independently with

probability p where p = ln(δ+1)
δ+1

. Note that E(|S|) = pn. Let T be the set of vertices which

are not in S and have no neighbor in S, and observe that S ∪ T is a dominating set. For

every vertex v, let Xv be the indicator random variable which has value 1 if x ∈ T and 0
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otherwise. Note that E(Xv) = P(v ∈ T ) ≤ (1− p)δ+1. Thus we have

E(|S ∪ T |) = E(|S|) + E(|T |)
= pn +

∑

v∈V (G)

Xv

≤ pn + n(1− p)δ+1

= n ln(δ+1)
δ+1

+ n
(
1− ln(δ+1)

δ+1

)δ+1

≤ n 1+ln(δ+1)
δ+1

.

Here the last inequality follows from (1 + a
m

)m ≤ ea which is an easy consequence of the

Taylor expansion of ea. Since there must exist a set S ∪ T with size at most the expected

value, this completes the proof. ¤

Theorem 14.6 (Erdös) For every g, k there exists a graph with chromatic number ≥ k and

no cycle of length ≤ g.

Proof: For typographical reasons, we set θ = 1
2g

. Now, let n ≥ 5 be an integer large enough

so that 2g
√

n ≤ n
2

and nθ

6 ln n+2
≥ k and set p = n−1+θ. Form a random graph on n vertices

by choosing each possible edge to occur independently with probability p. Let G be the

resulting graph, and let X be the number of cycles of G with length ≤ g. Now we have

E(X) =

g∑
i=3

n(n− 1) . . . (n− i + 1)

2i
pi

≤
g∑

i=3

nipi

≤ g
√

n

So, by Markov’s inequality, we have P(X ≥ n
2
) ≤ P(X ≥ 2g

√
n) ≤ 1

2g
√

n
E(X) ≤ 1

2
. Thus,

X ≤ n
2

with probability ≥ 1
2
. Set t = d3

p
ln ne. Then (using the identity 1− p < e−p for the
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third inequality) we find

P(α(G) ≥ t) ≤
(

n

t

)
(1− p)(

t
2)

≤ nt(1− p)
t(t−1)

2

≤ (
ne−p(t−1)/2

)t

≤ (
ne−p(3/2p) ln n

)t

=
(

1√
n

)t

≤ 1√
n

< 1
2

Since P(X ≤ n
2
) ≥ 1

2
and P(α(G) < t) > 1

2
there is a specific G with n vertices for which

X ≤ n
2

and α(G) < t. Form the graph H from G by removing from G a vertex from each

cycle of length ≤ g. Then H has no cycles of length ≤ g, |V (H)| ≥ n
2
, and α(H) ≤ α(G) ≤ t

so we have

χ(H) ≥ |V (H)|
α(H)

≥ n
2t

≥ n
(6/p) ln n+2

≥ n
6n1−θ ln n+2

≥ nθ

6 ln n+2

≥ k

So H satisfies the theorem. ¤

Crossing Number and Applications

Crossing Number: The crossing number of a graph G, denoted cr(G), is the minimum

number of crossings in a drawing of G in the plane with the property that edges only meet

vertices at their endpoints and exactly two edges cross at each crossing point.

Lemma 14.7 If G = (V, E) is simple, then cr(G) ≥ |E| − 3|V |.
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Proof: We proceed by induction on |E|. As a base, note that the result is trivial when

|E| ≤ 1. For the inductive step, consider a drawing of G in the plane with a minimum

number of crossings. If there are no crossings, then the formula follows from Lemma ??.

Otherwise, choose an edge e which is crossed, and consider the graph G − e. By keeping

the same drawing (except for the deleted edge e) we find that cr(G) ≥ cr(G− e) + 1. Now,

by induction we have cr(G − e) ≥ |E \ {e}| − |V | = |E| − 1 − |V | and combining these

inequalities yields the desired result. ¤

Theorem 14.8 If G = (V, E) is simple, then cr(G) ≥ |E|3
64|V |2 .

Proof: Let |V | = n and |E| = m and fix a drawing of G in the plane with a minimum number

of crossings. Set p = 4n
m

(note that this is ≤ 1) and choose a random subset S of vertices by

selecting each vertex to be in S independently with probability p. Let H = G[S] and let X

be the random variable which counts the number of crossings of H in the induced drawing.

By the previous lemma, we have that X ≥ |E(H)| − 3|V (H)| so we find

0 ≤ E(X − |E(H)|+ 3|V (H)|)
= E(X)− E(|E(H)|) + 3E(|V (H)|)
= p4cr(G)− p2m + 3pn

= p4

(
cr(G)− m3

64n2

)
.

Thus cr(G) ≥ m3

64n2 as desired. ¤

Theorem 14.9 (Szemerédi, Trotter) Let P be a collection of points in R2 and let L be

a collection of lines in R2. Then the number of incidences between P and L is at most

4
(
|P | 23 |L| 23 + |P |+ |L|

)
.

Proof: Let q be the number of incidences between P and L. Removing a line from L which

does not contain a point in P only improves the bound, so we may assume that every line

contains at least one point. Construct a graph G drawn in the plane by declaring each point

in P to be a vertex, and treating each segment of a line between two consecutive points in

P to be an edge. Now we have |V (G)| = |P |, |E(G)| = q− |L|, and the number of crossings

is at most |L|2. If |E(G)| ≤ 4|V (G)| then we have q ≤ 4|P | + |L| and we are finished.



6

Otherwise, by the previous theorem we find |L|2 ≥ cr(G) ≥ (q−|L|)3
64|P |2 so 4|P | 23 |L| 23 ≥ q − |L|

and this completes the proof. ¤

Sum sets & Product sets: If A,B are subsets of R, then we let A + B = {a + b :

a ∈ A and b ∈ B} and A ·B = {ab : a ∈ A and b ∈ B}.

Theorem 14.10 (Elekes) Let A be a finite subset of R. Then |A + A| · |A · A| ≥ 1
64
|A| 52 .

Proof: Let P = (A + A)× (A ·A) ⊆ R2 and note that |A|2 ≤ |P | ≤ |A|4. For every a, b ∈ A

let `a,b be the line {(x, y) : y = a(x − b)} and let L = {`a,b : a, b ∈ A}. If `a,b ∈ L, then for

every c ∈ A the line L is incident with the point (a + c, c − b) ∈ P , so L is incident with

≥ |A| points. Thus, by the Szemerédi Trotter theorem we have

|A|3 = |A| · |L|
≤ 4

(
|A| 43 |P | 23 + |P |+ |A|2

)

≤ 16|A| 43 |P | 23 .

Rearranging we get 1
64
|A| 52 ≤ |P | which completes the proof. ¤


