A primer on finite probability spaces

Finite Probability Space: A set Ω equipped with a function $\mathbb{P}: \Omega \rightarrow \mathbb{R}^{+}$with the property that $\sum_{x \in \Omega} \mathbb{P}(x)=1$. We consider $\mathbb{P}(x)$ to be the probability that $x \in \Omega$ occurs.

Event: An event is a subset $A \subseteq \Omega$, and the probability that A occurs is $\mathbb{P}(A)=\sum_{x \in A} \mathbb{P}(x)$.
Random Variable: A random variable is simply a function $X: \Omega \rightarrow \mathbb{R}$.
Expected Value: If X is a random variable, then the expected value of X is defined to be $\mathbb{E}(X)=\sum_{x \in \Omega} \mathbb{P}(x) X(x)$.

Example: Consider a random experiment where a fair coin is tossed two times. To model this experiment, we let $\Omega=\{H H, H T, T H, T T\}$ be the set of possible outcomes and we set $\mathbb{P}(x)=\frac{1}{4}$ for each $x \in \Omega$ since each of these possibilities occurs with probability $\frac{1}{4}$. If A is the event "At least one Heads appears", then $A=\{H H, H T, T H\}$ and we have $\mathbb{P}(A)=\frac{3}{4}$. If we set X to be the random variable "number of Heads which appear", then $X(H H)=2$, $X(H T)=X(T H)=1$ and $X(T T)=0$ so $\mathbb{E}(X)=1$.

Observation 1 If X is a random variable with expected value t, then there exists $y \in \Omega$ with $X(y) \geq t$ and $z \in \Omega$ with $X(z) \leq t$.

Proof: Choose $y \in \Omega$ with $X(y)$ maximum and $z \in \Omega$ with $Y(z)$ minimum. Then we have

$$
\begin{aligned}
t & =\mathbb{E}(X)=\sum_{x \in X} \mathbb{P}(x) X(x) \leq \sum_{x \in X} \mathbb{P}(x) X(y)=X(y) \\
t & =\mathbb{E}(X)=\sum_{x \in X} \mathbb{P}(x) X(x) \geq \sum_{x \in X} \mathbb{P}(x) X(z)=X(z) .
\end{aligned}
$$

Observation 2 If X and Y are random variables, then $\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y)$.
Proof:

$$
\begin{aligned}
\mathbb{E}(X+Y) & =\sum_{x \in \Omega} \mathbb{P}(x)(X(x)+Y(x)) \\
& =\sum_{x \in \Omega} \mathbb{P}(x) X(x)+\sum_{x \in \Omega} \mathbb{P}(x) Y(x) \\
& =\mathbb{E}(X)+\mathbb{E}(Y)
\end{aligned}
$$

Indicator random variable: A random variable X is called an indicator random variable if it takes the value 1 on a subset $A \subseteq \Omega$ and the value 0 on $\Omega \backslash A$. Note that in this case $\mathbb{E}(X)=\mathbb{P}(A)$.

Proposition 3 If σ is a permutation of $\{1,2, \ldots, n\}$ chosen uniformly at random, then the expected number of fixed points of σ is $1(i \in\{1,2, \ldots, n\}$ is a fixed point if $\sigma(i)=i)$.

Proof: Let X be the number of fixed points in σ, and for every $i \in\{1,2, \ldots, n\}$ let X_{i} be the indicator random variable which has the value 1 if $\sigma(i)=i$ and 0 otherwise. It is immediate that $\mathbb{E}\left(X_{i}\right)=\mathbb{P}(\sigma(i)=i)=\frac{1}{n}$ so by linearity of expectation we have

$$
\mathbb{E}(X)=\sum_{i=1}^{n} \mathbb{E}\left(X_{i}\right)=n \frac{1}{n}=1
$$

Theorem 4 (Markov) If X is a random variable which is always nonnegative, then $\mathbb{P}(X \geq$ t) $\leq \frac{1}{t} \mathbb{E}(X)$.

Proof: Using Ω for our probability space we have

$$
\begin{aligned}
\mathbb{E}(X) & =\sum_{x \in \Omega} \mathbb{P}(x) X(x) \\
& \leq \sum_{x \in \Omega: X(x) \geq t} \mathbb{P}(x) X(x) \\
& \leq t \sum_{x \in \Omega: X(x) \geq t} \mathbb{P}(x) \\
& \leq t \mathbb{P}(X \geq t)
\end{aligned}
$$

as desired.

