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Recognizing negative and speculative information is
highly relevant for sentiment analysis. This paper pres-
ents a machine-learning approach to automatically
detect this kind of information in the review domain. The
resulting system works in two steps: in the first pass,
negation/speculation cues are identified, and in the
second phase the full scope of these cues is determined.
The system is trained and evaluated on the Simon
Fraser University Review corpus, which is extensively
used in opinion mining. The results show how the pro-
posed method outstrips the baseline by as much as
roughly 20% in the negation cue detection and around
13% in the scope recognition, both in terms of F1. In
speculation, the performance obtained in the cue pre-
diction phase is close to that obtained by a human rater
carrying out the same task. In the scope detection, the
results are also promising and represent a substantial
improvement on the baseline (up by roughly 10%). A
detailed error analysis is also provided. The extrinsic
evaluation shows that the correct identification of cues
and scopes is vital for the task of sentiment analysis.

Introduction

Detecting negative information is essential in most text-
mining tasks such as sentiment analysis because negation is
one of the most common linguistic means to change polarity.
The literature on sentiment analysis and opinion mining in
particular has emphasized the need for robust approaches to
negation detection, and for rules and heuristics for assessing
the impact of negation on evaluative words and phrases, that

is, those that convey the author’s opinion toward an object,
a person, or another opinion. Many authors (e.g., Benamara,
Chardon, Mathieu, Popescu, & Asher, 2012; Wiegand,
Balahur, Roth, Klakow, & Montoyo, 2010) have shown that
this common linguistic construction is highly relevant to
sentiment analysis, and that different types of negation have
subtle effects on sentiment. In addition, they argue that the
automatic study of opinions requires fine-grained linguistic
analysis techniques as well as substantial effort in order to
extract features for either machine-learning or rule-based
systems, so that negation can be appropriately incorporated.

Distinguishing between objective and subjective facts is
also crucial for sentiment analysis since speculation tends to
correlate with subjectivity. Authors such as Pang and Lee
(2004) show that subjectivity detection in the review domain
helps to improve polarity classification.

This paper tackles this problem by developing a system
to automatically detect both negation and speculation infor-
mation in review texts, which could help to improve the
effectiveness of opinion-mining systems. It works in two
phases: in the first pass, the cues are identified and, in the
second stage, the full scope (i.e., words in the sentence
affected by the keyword) of these cues is determined. The
system is trained and evaluated on the Simon Fraser Univer-
sity (SFU) Review corpus (Konstantinova et al., 2012;
Taboada, 2008), which is extensively used in opinion mining
and consists of 400 product reviews from the website
Epinions.com. We are not aware of other approaches that
perform the task using this corpus as a learning source and
for evaluation purposes.

Applying a support vector machine (SVM) classifier, the
proposed method surpasses the baseline by as much as about
20% in the negation cue detection and about 13% in the
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scope recognition, both in terms of F1. To the best of our
knowledge, this is the first system that addresses speculation
in the review domain. The results achieved in the speculation
cue detection are close to those obtained by a human rater
performing the same task. In the scope detection phase, the
results are also promising and they represent a substantial
improvement on the baseline (up by roughly 10%). In addi-
tion, the extrinsic evaluation demonstrates that the proposed
system could improve results in sentiment analysis.

The rest of the paper is organized as follows. First, the
most relevant related research is outlined. Second, the pro-
posed machine-learning negation and speculation detection
system is presented. The evaluation framework is then
detailed and the results are provided and discussed. An error
analysis is provided, and the potential of the developed
method for addressing sentiment analysis is also shown. The
paper finishes with conclusions and future directions.

Related Work

Initial proposals, such as the ones by Polanyi and Zaenen
(2006), suggested that a negative item reverses the polarity
of the word or phrase it accompanies. This is the approach
taken in quite a few papers (Choi & Cardie, 2008; Moilanen
& Pulman, 2007; Wilson, Wiebe, & Hoffmann, 2005), also
referred to as switch negation (Saurí, 2008). By way of
illustration, if the word good carried a positive polarity of
+3, then not good would be assigned −3. However, there are
a number of subtleties related to negation that need to be
taken into account. One is the fact that there are negators,
including not, none, nobody, never, and nothing, and other
words, such as without or lack (verb and noun), which have
an equivalent effect, some of which might occur at a signifi-
cant distance from the lexical item which they affect. Thus,
for adjectives and adverbs, negation is fairly local, although
it is sometimes necessary to include, as part of the scope of
negation, determiners, copulas, and certain verbs, as we see
in Example (1), where negation occurs at a distance from the
negated item, that is, from the item in the scope of negation.
This includes negation raising, as in (1d), where the negation
and the negated element are in different clauses.

(1a) Nobody gives a good performance in this movie
(nobody negates good).

(1b) Out of every one of the 14 tracks, none of them
approach being weak and are all stellar (none negates weak).

(1c) Just a V-5 engine, nothing spectacular. (nothing
negates spectacular).

(1d) I don’t think it’s very good (don’t negates very
good).

Parsing the text would naturally be the best way to
adequately deal with negation, so that the scope of the nega-
tion can be appropriately identified. This requires, however,
a highly accurate and sufficiently deep parser.

Other approaches to negation address the complexities of
negative statements by not simply reversing the polarity of
the word or phrase in question, but by shifting it. This
reflects the fact that negative statements are often not the

opposite of the corresponding positive (Horn, 1989). The
switch negation method seems to work well in certain cases
(Choi & Cardie, 2008), but it has been shown to perform
poorly in others (Liu & Seneff, 2009). Consider the
Taboada, Brooke, Tofiloski, Voll, and Stede’s (2011)
approach, where words are classified in a −5 to +5 scale.
Negation of excellent, which is an adjective with a positive
value of +5, would result in not excellent, which intuitively
is not necessarily extremely negative, that is, not a −5 word.
In fact, not excellent seems more positive than not good,
which in Taboada et al.’s dictionary would be assigned a −3.
To capture these pragmatic intuitions, another method of
negation is proposed, a polarity shift or shift negation (Saurí,
2008; Taboada et al., 2011). Instead of changing the sign, the
word’s value is shifted toward the opposite polarity by a
fixed amount.

Benamara et al. (2012), in the context of sentiment analy-
sis in French, distinguish between different types of nega-
tion: negative operators (not, no more, without, or their
French equivalents), negative quantifiers (nobody, nothing,
never), and lexical negations (lack, absence, deficiency).
They show that each type has different effects on both the
polarity and the strength of the negation. Specifically, they
found that negation always changes the polarity, but that the
strength of an opinion expression in the scope of negation is
not greater than that of the opinion expression alone. Fur-
thermore, opinions in the scope of multiple negatives have a
higher strength than if in the scope of a single negative.
Therefore, dealing with negation requires going beyond
polarity reversal, since simply reversing the polarity of sen-
timent upon the appearance of negation may result in inac-
curate interpretation of sentiment expressions. Liu and
Seneff (2009) put forward a linear additive model that treats
negations as modifying adverbs because they also play an
important role in determining the degree of the orientation
level. For example, very good and good certainly express
different degrees of positive sentiment and not bad does not
express the opposite meaning of bad, which would be highly
positive. For that reason, the authors propose an approach to
extracting adverb-adjective-noun phrases based on clause
structure obtained by parsing sentences into a hierarchical
representation. They also provide a robust general solution
for modeling the contribution of adverbials and negation to
the score for degree of sentiment.

Yessenalina and Cardie (2011) represent each word as a
matrix and combine words using iterated matrix multiplica-
tion, which allows for modeling both additive (for nega-
tions) and multiplicative (for intensifiers) semantic effects.
Similar to other authors, they consider that negation affects
both the polarity and the strength of an opinion expression.

For their part, Zirn, Niepert, Stuckenschmidt, and Strube
(2011) affirm that in the problem of determining the polarity
of a text, in most of the cases it is not only necessary to
derive the polarity of a text as a whole, but also to extract
negative and positive utterances on a more fine-grained
level. To address this issue, they developed a fully automatic
framework combining multiple sentiment lexicons,
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discourse relations, and neighborhood information (specifi-
cally, the polarity of the neighboring segment and the rela-
tion between segments because this can help to determine
the polarity out of context). Their experiments show that the
use of structural features improves the accuracy of polarity
predictions, achieving accuracy scores of up to 69%, which
significantly outperforms the baseline (51.60%). Polanyi
and van der Berg (2011) also discuss the application of the
Linguistic Discourse Model (Polanyi, 1986) to sentiment
analysis at the discourse level. They focus on movie reviews,
because they are characterized by shifting contexts of sen-
timent source and target. Their approach enables aggrega-
tion of different units, based on the type of discourse relation
holding between the units. For instance, two units of positive
polarity in a coordination relation will join to result in a
positive larger unit. A contrast relation, on the other hand,
would have to take into account potential different polarities
in each of its component units.

Identifying speculative information is also crucial for
sentiment analysis because hedging is a linguistic expres-
sion that tends to correlate with subjectivity (Montoyo,
Martínez-Barco, & Balahur, 2012). As Saurí and
Pustejovsky (2009) explain, the same situation can be pre-
sented as an unquestionable fact in the world, a mere pos-
sibility, or a counterfact according to different sources. For
example, in (2a) the author is presenting the information as
corresponding to a fact in the world. On the other hand, the
author of (2b) is characterizing the information only as a
mere possibility.

(2a) The US Soccer Team plays against Spain in October.
(2b) The US Soccer Team may play against Spain in

October.
Pang and Lee (2004) propose to employ a subjectivity

detector before classifying the polarity. This detector deter-
mines whether each sentence is subjective, discarding the
objective ones and creating an extract that should better
represent a review’s subjective content. The results show
how subjectivity detection in the review domain helps to
improve polarity classification. Wilson et al. (2005) suggest
that identification of speculation in reviews can be used for
opinion mining since it provides a measure of the reliability
of the opinion contained. Recently, authors such as
Benamara et al. (2012) have studied the effect of speculation
on opinion expressions according to their type (i.e., buletic,
epistemic, and deontic). They highlight that, as occurs in
negation, each of these types has a specific effect on the
opinion expression in its scope and this information should
be used as features in a machine-learning setting for
sentence-level opinion classification.

As a result of all these studies, and due to the clear need
to take into consideration negation and speculation, many
authors have developed negation/speculation detection
systems that help to improve the performance in natural
language processing tasks such as sentiment analysis. A
great deal of the work in this regard has been done in
the biomedical domain because of the availability of the
BioScope corpus, a collection of clinical documents, full

papers, and abstracts annotated for negation, speculation,
and their scope (Szarvas, Vincze, Farkas, & Csirik, 2008).
These approaches evolve from rule-based techniques to
machine-learning ones.

Among the rule-based studies, the one developed by
Chapman, Bridewell, Hanbury, Cooper, and Buchanan
(2001) stands out. Their algorithm, NegEx, determines
whether a finding or disease mentioned within narrative
medical reports is present or absent. Although the algorithm
is described by the authors themselves as simple, it has
proven to be powerful in negation detection in discharge
summaries. The reported results of NegEx show a positive
predictive value (PPV or precision) of 84.5%, sensitivity (or
recall) of 77.8%, and a specificity of 94.5%. However, when
NegEx is applied to a set of documents from a different
domain than that for which it was conceived, the overall
precision is lower by about 20 percentage points (Mitchell,
2004). Other interesting research based on regular expres-
sions is the work of Mutalik, Deshpande, and Nadkarni
(2001), Elkin et al. (2005), Huang and Lowe (2007), and
Apostolova, Tomuro, and Demner-Fushman (2011).

However, most work in the field of negation/speculation
detection is based on machine-learning approaches, a
notable example of which is the research conducted by
Morante and Daelemans (2009b). Their system consists of
four classifiers. Three classifiers predict whether a token is
the first token, the last token, or neither in the scope
sequence. A fourth classifier uses these predictions to deter-
mine the scope classes. It shows a high performance in all
the subcollections of the BioScope corpus: For clinical
documents, the F-score of negation detection is 84.2%, and
70.75% of scopes are correctly identified. For full papers,
the F-score is 70.94%, and 41% of scopes are correctly
predicted. In the case of abstracts, the F-score is 82.60%,
and the percent of scopes correctly classified is 66.07%.
They port the system initially designed for negation detec-
tion to speculation (Morante & Daelemans, 2009a), showing
that the same scope-finding approach can be applied to both
negation and hedging. In this case, the F-score of specula-
tion detection for clinical documents is 38.16%, while
26.21% of scopes are correctly identified. For papers, the
F-score is 59.66%, and 35.92% of scopes are correctly pre-
dicted. The F-score for abstracts is 78.54%, and the percent-
age of scopes correctly classified is 65.55%.

Another recent work is that developed by Agarwal and
Yu (2010), who detect negation/speculation cue phrases and
their scope in clinical notes and biological literature from
the BioScope corpus using conditional random fields (CRF)
as a machine-learning algorithm. However, due to the fact
that the corpus partitions and the evaluation measures are
different, this system is not comparable with those previ-
ously described.

An interesting approach to scope learning for negation is
that presented by Zhu, Li, Wang, and Zhou (2010). They
formulate it as a simplified shallow semantic parsing
problem by regarding the cue as the predicate and mapping
its scope into several constituents as the arguments of the
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cue. The results show that this kind of system together with
an accurate cue classifier could be appropriate for tackling
the task.

Drawing on the BioScope corpus, Velldal, Øvrelid, Read,
and Oepen (2012) combine manually crafted rules with
machine-learning techniques. Dependency rules are used for
all cases where they do not have an available Head-driven
Phrase Structure Grammar (HPSG) parser. For the cases
where they do, the scope predicted by these rules is included
as a feature in a constituent ranker model that automatically
learns a discriminative ranking function by choosing sub-
trees from HPSG-based constituent structures. Although the
results obtained by this system can be considered as the state
of the art, the combination of novel features together with
the classification algorithm chosen in the system developed
by Cruz Díaz, Maña López, Vázquez, and Álvarez (2012)
improves the results to date for the subcollection of clinical
documents.

Finally, Zou, Zhou, and Zhu (2013) propose a novel
approach for tree kernel-based scope detection by using the
structured syntactic parse information. In addition, they
explore a way of selecting compatible attributes for different
parts of speech (POS) since features have imbalanced effi-
ciency for scope classification, which is normally affected
by the POS. For negation, evaluation on the BioScope
corpus reports an F-score of 76.90% in the case of the
abstracts subcollection, 61.19% for papers, and 85.31% for
clinical documents. For speculation, the system yields
F-score values of 84.21% for abstracts, 67.24% for papers,
and 72.92% for clinical texts in the scope detection phase
(using in all cases as cues those that appear annotated as
such in the corpus).

In contrast to the biomedical domain, the impact of
negation/speculation detection on sentiment analysis has not
been sufficiently investigated, perhaps because standard
corpora of reasonable size annotated with this kind of infor-
mation have become available only recently. However, there
are a few approaches like the system described by Jia, Yu,
and Meng (2009). They propose a rule-based system that
uses information derived from a parse tree. This algorithm
computes a candidate scope, which is then pruned by remov-
ing those words that do not belong to the scope. Heuristic
rules are used to detect the boundaries of the candidate
scope. These rules include the use of delimiters (i.e., unam-
biguous words such as because) and conditional word
delimiters (i.e., ambiguous words like for). There are also
defined situations in which a negation cue does not have an
associated scope. The authors evaluate the effectiveness of
their approach on polarity determination. The first set of
experiments involves the accuracy of computing the polarity
of a sentence, while the second means the ranking of posi-
tively and negatively opinionated documents in the TREC
blogosphere collection (Macdonald & Ounis, 2006). In both
cases, their system outperforms the other approaches
described in the literature. Councill, McDonald, and
Velikovich (2010) define a system that can identify exactly
the scope of negation in free text. The cues are detected

using a lexicon (i.e., a dictionary of 35 negation keywords).
A CRF is employed to predict the scope. This classifier
incorporates, among others, features from dependency
syntax. The approach is trained and evaluated on a product
review corpus. It yields an 80.0% F-score and correctly
identifies 39.8% of scopes. The authors conclude that, as
they expected, performance is improved dramatically by
introducing negation scope detection (29.5% for positive
sentiment and 11.4% for negative sentiment, both in terms of
F-score). Dadvar, Hauff, and de Jong (2011) investigate the
problem of determining the polarity of sentiment in movie
reviews when negation words occur in the sentence. The
authors also observe significant improvement in the classi-
fication of the documents after applying negation detection.

In this vein, Lapponi, Read, and Ovrelid (2012) present a
state-of-the-art system for negation detection. The heart of
the system is the application of CRF models for sequence
labeling which makes use of a rich of lexical and syntactic
features, together with a fine-grained set of labels that
capture the scopal behavior of tokens. At the same time, they
demonstrate that the choice of representation has a signifi-
cant effect on the performance.

The annotated corpus used by Councill et al. (2010) and
Lapponi et al. (2012) is rather small in size, containing only
2,111 sentences in total. A large-scale corpus is needed for
training statistical algorithms to identify these aspects of the
language so the use of a bigger annotated corpus such as the
SFU Review corpus (which contains 17,263 sentences)
could enable the improvement of negation recognition in
this domain. In addition, although it has proven that specu-
lation has an effect on the opinion expression and it should
be taken into account (Benamara et al., 2012; Pang & Lee,
2004; Wiebe, Wilson, & Cardie, 2005), there is, as far as we
are aware, no work on detecting the speculation in the
review domain. However, the annotation of the SFU Review
corpus with speculative information will make it possible to
tackle this problem efficiently.

This paper fills these gaps through the development of a
system that makes use of machine-learning techniques to
identify both negation and speculation cues and their scope.
This system is also novel in that it uses the SFU Review
corpus as a learning source and for evaluation purposes. As
a result, the proposed system will help to improve the effec-
tiveness of sentiment analysis and opinion-mining tasks.

Method

The identification of negation and speculation cues and
the determination of their scope are modeled as two con-
secutive classification tasks (see Figure 1). They are imple-
mented using supervised machine-learning methods trained
on the SFU Review corpus (Konstantinova et al., 2012).1

In the first phase, when the cues are detected, a classi-
fier predicts whether each word in a sentence is the first

1See http://www.sfu.ca/∼mtaboada/research/SFU_Review_Corpus
.html
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one of a cue (B), inside a cue (I), or outside of it (O) using
a BIO representation. This allows the classifier to find mul-
tiword cues (MWCs), which represent, in the SFU Review
corpus, 25.80% of the total number of cues in negation and
2.81% in the case of the speculation. For example, in sen-
tence (3), the token ca is assigned to the B class; n’t is
tagged as I, and the rest of the tokens in the sentence are
tagged as O class.

(3) Murphy Lee raps about him and how women can’t
get enough of him.

In the second step, another classifier decides, at the sen-
tence level, which words are affected by the cues identified
in the previous phase. This means determining, for every
sentence that has cues, whether the other words in the sen-
tence are inside (IS) or outside (O) the scope of the cue. This
process is repeated as many times as there are cues in the
sentence. In example (3) the classifier tags the words enough
of him as IS class, whereas it assigns the class O to the rest
of tokens.

The classifiers are trained using a support vector machine
(SVM) as implemented in LIBSVM (Chang & Lin, 2011),
since it has proved to be powerful in text classification tasks
where it often achieves the best performance (Sebastiani,
2002). As kernel, the Radial Basic Function (RBF) is used
because previous work (e.g., Cruz Díaz et al., 2012) shows

its effectiveness in this task. In addition, the classifier is
parameterized optimizing the parameters gamma and cost
using the values recommended by Hsu, Chang, and Lin
(2003).

This is a classification problem of imbalanced data sets
in which the classification algorithms are biased toward the
majority class. To solve this issue, an algorithmic level
solution has been considered, that is, cost sensitive learn-
ing (CSL) (Kumar & Sheshadri, 2012). The purpose of
CSL is usually to build a model with total minimum mis-
classification costs. This approach applies different cost
matrices that describe the cost for misclassifying
examples; the cost of misclassifying a minority-class
example is substantially greater than the cost of mis-
classifying a majority-class example (He & Garcia, 2009;
He & Ma, 2013). As authors such as Cao, Zaiane and Zhao
(2014) explain, assigning distinct costs to the training
examples seems to be the most effective approach to
class-imbalanced data problems. The cost-sensitive SVM
algorithm (CS-SVM) incorporated in the LIBSVM
package has been added as an additional benchmark using
the weight parameter to control the skew of the SVM opti-
mization (i.e., classes with a higher weight will count
more).

There have also been experiments with a Naïve Bayes
algorithm implemented in Weka (Witten & Frank, 2005), but
as shown in the Results, it produces lower results.

Text Collection

The system presented in this paper uses the SFU
Review corpus (Taboada, 2008), as a learning source and
for evaluation purposes. This corpus is extensively used in
opinion mining (Martınez-Cámara, Martın-Valdivia,
Molina-González, & Urena-López, 2013; Rushdi Saleh,
Martín-Valdivia, Montejo-Ráez, & Ureña-López, 2011;
Taboada et al., 2011) and consists of 400 documents (50 of
each type) of movie, book, and consumer product reviews
from the website Epinions.com. The corpus has several
annotated versions (e.g., for appraisal and rhetorical rela-
tions), including one where all 400 documents are anno-
tated at the token level with negative and speculative cues,
and at the sentence level with their linguistic scope
(Konstantinova et al., 2012). The annotation indicates the
boundaries of the scope and the cues, as shown in (4)
below. In the annotation, scopes are extended to the largest
syntactic unit possible and the cues are never included in
the scope.

(4) Why <cue ID=“0”type=“speculation”>would
</cue><xcope ID=“2”> anyone want to buy this car
</xcope> ?

In addition, there are cues without any associated scope.
In negation, the number of cues without scope is 192 (5.44%
of the total of cues), whereas in speculation there are 248
cues whose scope is not indicated (4.62% of the total of
cues).

FIG. 1. System architecture.
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Table 1 summarizes the main characteristics of the SFU
Review corpus. As the third column shows, the number of
sentences of the corpus is 17,263. It is of considerable size,
especially compared to the only other available corpus in the
review domain described in Councill et al. (2010), which
contains 2,111 sentences in total. Furthermore, the corpus by
Councill et al. was annotated only for negation, but not
speculation. The SFU Review corpus is also larger than
other corpora of different domains like the ConanDoyle-neg
corpus (consisting of 4,423 sentences annotated with nega-
tion cues and their scope) and comparable in size to Bio-
Scope, which contains slightly more than 20,000 annotated
sentences altogether. Another well-known corpus in this
domain is the FactBank (Saurí & Pustejovsky, 2009). It
consists of 208 documents from newswire and broadcast
news reports annotated with factual information. However,
the annotation was done at the event level so it cannot be
compared to the SFU Review corpus.

In the case of negation, out of the total number of 17,263
sentences, 18% contained negation cues,2 as shown in
Table 2. However, this proportion varies slightly depending
on the domain. Negation is even more relevant in this corpus
than in others like the BioScope corpus where 13% of the
sentences contain negations. This highlights the importance
of negation resolution to sentiment analysis.

In the case of speculation, as Table 3 shows, 22.7% of all
sentences are speculative.3 This proportion is higher than the
negative sentences because of the nature of the corpus,

2The most frequent negation cues are not (40.23%) and no (14.85%).
They constitute more than 55% of the total frequency of all the negation
cues found in the corpus.

3If (16.34%), or (15.30%), and can (14.27%) are some of the most
frequent speculation cues. They do not represent the majority of speculation
cases since the number of occurrences of each cue was equally distributed
across all the documents.

TABLE 1. Statistics about the SFU Review corpus.

#Documents #Sentences #Words
Avg. length documents

(in sentences)
Avg. length documents

(in words)
Avg. length sentences

(in words)

Books 50 1,596 32,908 31.92 658.16 20.62
Cars 50 3,027 58,481 60.54 1,169.62 19.32
Computers 50 3,036 51,668 60.72 1,033.36 17.02
Cookware 50 1,504 27,323 30.08 546.46 18.17
Hotels 50 2,129 40,344 42.58 806.88 18.95
Movies 50 1,802 38,507 36.04 770.14 21.37
Music 50 3,110 54,058 62.2 1,081.16 17.38
Phones 50 1,059 18,828 21.18 376.56 17.78
Total 400 17,263 322,117 43.16 805.29 18.66

Avg. = average.

TABLE 2. Negation statistics in the SFU Review corpus.

Books Cars Computers Cookware Hotels Movies Music Phones Total

#Negation sentences 362 517 522 320 347 427 418 206 3,119
%Negation sentences 22.7 17.1 17.2 21.3 16.3 23.7 13.4 19.5 18.1
#Negation cues 406 576 590 376 387 490 470 232 3,527
#Words in scope 2,139 2,939 3,106 1,944 2,038 2,537 3,019 1,146 18,868
#Scope 387 545 570 355 370 445 440 221 3,333
Avg. length scope 5.53 5.39 5.45 5.48 5.51 5.70 6.86 5.19 5.66
#Words scope left 12 20 17 20 21 9 8 7 114
#Scope left 6 3 6 3 6 3 2 2 31
Avg. length scope to the left 2 6.67 2.83 6.67 3.50 3.00 4.00 0 3.68
#Words scope right 2,127 2,919 3,089 1,924 2,017 2,528 3,011 1,139 18,754
#Scope right 383 542 568 352 367 442 438 221 3,313
Avg. length scope to the right 5.55 5.39 5.44 5.47 5.50 5.72 6.87 5.15 5.66
% Scope to the left 1.55 0.55 1.05 0.85 1.62 0.67 0.45 0.90 0.93
% Scope to the right 98.97 99.45 99.65 99.15 99.19 99.33 99.55 100.00 99.40

Avg. = average.
Avg. length of scope is shown in number of words.
A word is counted as many times as it appears in scope.
There are scopes which extend to the left and the right of the cue, so we count them twice (once as #Scope left and again as #Scope right).
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where speculation is widely used to express opinions. By
comparison, less than 20% of the sentences in the BioScope
corpus are speculative.

Attributes

All tokens that appear in the collection of documents
used for the experimentation are represented by a set of
features that are different in each of the two phases into
which the task is divided. It has been started by building a
pool of baseline features for the classifier based on experi-
ence and previous work such as Morante and Daelemans
(2009b) and Cruz Díaz et al. (2012) (i.e., lemma and POS of
the token in focus as well as whether it is at the beginning or
end of the sentence for the cue detection; lemma and POS of
the cue, token in focus, and one token on both the left and
right of the token in focus in the scope detection). As fea-
tures have an imbalanced classification, a greedy forward
procedure to obtain the final feature set was followed. It
consists of adding a specialized new feature outside the
basic set and removing a feature inside it, one by one, in
order to check how each feature contributes to improving the
performance. This procedure is repeated until no feature is
added or removed, or the performance does not improve.

In the cue detection phase, instances represent all tokens
in the corpus. As many authors such as Øvrelid, Velldal, and
Oepen (2010) suggest, syntactic features seem unnecessary,
since cues depend on the token itself and not the context.
Therefore, lexical information is the key in this phase, which
is why token-specific features have been used; these are
detailed in Table 4.

Feature selection experiments reveal that the most infor-
mative features in this phase are the lemma of the token,
followed by the lemmas of the neighboring words in the case
of negation. For speculation, the most important information
is the lemma of the token and its POS.

In the scope detection phase, an instance represents a pair
of a cue and a token from the sentence. This means that all

tokens in a sentence are paired with all negation or specu-
lation cues that occur in the sentence. Table 5 includes the
features that directly relate to the characteristics of cues or
tokens and their context used in this phase.

Besides the feature set listed previously, syntactic fea-
tures between the token in focus and cues are explored in the
classifier because previous research has shown that highly
accurate extraction of syntactic structure is beneficial for the
scope detection task. For example, Szarvas et al. (2008)
point out that the scope of a keyword can be determined on
the basis of syntax (e.g., the syntactic path from the token to
the cue, its dependency relation, etc.), and Huang and Lowe

4http://nlp.stanford.edu/software/tagger.shtml

TABLE 3. Speculation statistics in the SFU Review corpus.

Books Cars Computers Cookware Hotels Movies Music Phones Total

#Speculation sentences 275 788 704 411 505 469 470 290 3,912
%Speculation sentences 17.2 26.0 23.2 27.3 23.7 26.0 15.1 27.4 22.7
#Speculation cues 370 1,068 944 583 695 648 643 408 5,359
#Words in scope 2,791 7,738 6,567 4,048 4,582 4,770 5,433 2,889 38,818
#Scope 360 1,036 919 545 655 615 608 387 5,125
Avg. length scope 7.75 7.47 7.15 7.43 7.00 7.76 8.94 7.47 7.57
#Words scope left 217 554 462 505 407 315 341 149 2,950
#Scope left 66 191 153 120 128 97 88 56 899
Avg. length scope to the left 3 0.00 3.02 0.00 0.00 3.25 3.88 2.66 3.28
#Words scope right 2,574 7,184 6,105 3,543 4,175 4,455 5,092 2,740 35,868
#Scope right 359 1,036 917 544 655 611 605 387 5,114
Avg. length scope to the right 7.17 6.93 6.66 6.51 6.37 7.29 8.42 7.08 7.01
% Scope to the left 18.33 18.44 16.65 22.02 19.54 15.77 14.47 14.47 17.54
% Scope to the right 99.72 100.00 99.78 99.82 100.00 99.35 99.51 100.00 99.79

Note. Same notes as in Table 2 apply.

TABLE 4. Features in the cue detection phase.

Feature name Description

Token-level features
Lemmai Lemma of token in focus
POSi Part-of-speech of token in focus
Begin sentencei Boolean tag to indicate if the token is the first

token in the sentence
End sentencei Boolean tag to indicate if the token is the last

token in the sentence

Contextual features
Lemmai−1 Lemma of tokeni−1

POSi−1 Part-of-speech of tokeni−1

Begin sentencei−1 Boolean tag to indicate if tokeni−1 is the first token
in the sentence

End sentencei−1 Boolean tag to indicate if tokeni−1 is the last token
in the sentence

Lemmai+1 Lemma of tokeni+1

POSi+1 Part-of-speech of tokeni+1

Begin sentencei+1 Boolean tag to indicate if tokeni+1 is the first token
in the sentence

End sentencei+1 Boolean tag to indicate if tokeni+1 is the last token
in the sentence

Note. Part-of-speech tags are returned by the Stanford POS tagger.4
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(2007) note that structure information stored in parse trees
helps to identify the scope of negative hedge cues. Both
constituent and dependency syntactic features have been
shown to be effective in scope detection (Özgür & Radev,
2009). In 1965, Gaifman proved that dependency and con-
stituency grammars are strongly equivalent. More recently,
other authors such as Ballesteros Martínez (2010) also
affirmed that both type of analysis are equivalents. In fact, an
automatic method to transform a constituent tree into a
dependency one exists (Gelbukh, Torres, & Calvo, 2005).
Dependency representations were opted for because they are
more compact than constituent structures since the number
of nodes is constrained by the number of tokens of the
sentence. This kind of information can be provided by Malt-
parser (Nivre, Hall, & Nilsson, 2006), a data-driven depen-
dency parser.

Drawing upon the research so far which examines the
relationship between cues and tokens by dependency arcs in
the negation and speculation scope detection task (Councill
et al., 2010; Lapponi et al., 2012; Zou et al., 2013), the final
rows of Table 5 show the proposal for an operational set of
syntactic features.

Figure 2 is an illustration of the corresponding depen-
dency tree of the sentence “The Xterra is no exception.” In
this example, if the token the is taken to be the token in focus

to determine whether it is inside the scope of the cue no, then
the features POS first head and POS second head have the
value NNP and NN, respectively. The cue is an ancestor of
the token, so the token is not an ancestor of the cue. The
short path is formed by the dependencies det nsubj det and
the number of the nodes that must be traversed from one
node to another is 3, since we take into account the cue and
the token itself. The critical path in this case is the same as
the short path. In addition, the concept of dependency graph
path used in Lapponi et al. (2012) and first introduced by
Gildea and Jurafsky (2002) was employed as a feature. It
represents the shortest path traversed from the token in focus
to the cue, encoding both the dependency relations and the
direction of the arc being traversed. For instance, as

TABLE 5. Features in the scope detection phase.

Feature name Description

About the cue
Lemma Lemma of the cue
POS Part-of-speech of the cue
About the paired token
Lemma Lemma of paired token
POS Part-of-speech of paired token
Location Location of the paired token in relation to the cue (before, inside, or after the cue)

Tokens between the cue and the token in focus
Distance Distance in number of tokens between the cue and the token in focus
Chain-POS Chain of part-of-speech tags between the cue and the token in focus
Chain-Types Chain of types between the cue and the token in focus
Other features
Lemmai−1 Lemma of token to the left of token in focus
Lemmai+1 Lemma of token to the right of token in focus
POSi−1 Part-of-speech of token to the left of token focus
POSi+1 Part-of-speech of token to the right of token focus
Place cue Place of the cue in the sentence (position of the cue divided by the number of tokens in the sentence)
Place token Place of the token in focus in the sentence (position of the token in focus divided by the number of tokens in the sentence)

Dependency syntactic features
Dependency relation Kind of dependency relation between the token in focus and the cue
Dependency direction If the token in focus is head or dependent
POS first head Part-of-speech of the first order syntactic head of token in focus
POS second head Part-of-speech of the second order syntactic head of token in focus
Token ancestor cue Whether the token in focus is ancestor of the cue
Cue ancestor token Whether the cue is ancestor of the token in focus
Short path Dependency syntactic shortest path from the token in focus to the cue
Dependency graph path Dependency syntactic shortest path from the token in focus to the cue encoding both the dependency relations and the

direction of the arc that is traversed
Critical path Dependency syntactic shortest path from the cue to the token in focus
Number nodes Number of dependency relations that must be traversed in the short path

Note. Part-of-speech tags are returned by the Stanford POS tagger (See footnote 4).

FIG. 2. Example dependency graph.
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described in Figure 2, (5) shows the dependency graph path
between the (token in focus) and no (cue).

(5) det ↑ nsubj ↓ det.
Finally, feature selection experiments show that the most

informative features for both negation and speculation in
this phase are the chain of part-of-speech tags between the
cue and the token in focus, followed by the dependency
graph path, critical path, and short path.

Evaluation Measures

The standard measures precision (P), recall (R), and their
harmonic mean F1-score (Rijsbergen, 1979) are used to
assess the performance in terms of both cue and scope detec-
tion, since this is the evaluation scheme followed by all the
authors in this task (e.g., Councill et al., 2010; Lapponi
et al., 2012; Morante & Daelemans, 2009a, 2009b) and
employed in the different shared tasks and competitions
related to this topic (e.g., the CoNLL-2010 Shared Task
[Farkas, Vincze, Móra, Csirik, & Szarvas, 2010] or the SEM
2012 Shared Task [Morante & Blanco, 2012]). In addition,
F1-score is a well-established metric suited to imbalanced
data sets (He & Ma, 2013).

Precision accounts for the reliability of the system’s pre-
dictions, recall is indicative of the system’s robustness,
while F1-score quantifies its overall performance.

In the cue detection task, a token is correctly identified if
its position has been accurately determined to be at the
beginning, inside, or outside the cue. Precision and recall
can be calculated as follows:

P
tokens correctly negated by the system

tokens negated by the sys
= #

# ttem

R
tokens correctly negated by the system

tokens negated in the tes
= #

# tt collection

In the task of detecting the scope, a token is correctly clas-
sified if it is properly identified as being inside or outside the
scope of each of the cues that appear in the sentence. In this
case, precision and recall are computed as follows:

P

tokens belonging to some scope correctly
detected by the system=

#

# ttokens belonging to some scope
detected by the system

R

tokens belonging to some scope correctly
detected by the system=

#

# ttokens belonging to some scope in
the test collection

In both cases, F
PR

P R
1

2=
+

.

Although the F1-score is very popular and suitable for
dealing with the class-imbalance problem, it is focused on
the positive class only. Therefore, the Geometric Mean

(G-mean) has been used as an additional measure since it
takes into account the relative balance of the classifier’s
performance on both the positive and the negative classes
(He & Ma, 2013). It is a good indicator of overall perfor-
mance (Cao et al., 2014), and has been employed by several
researchers for evaluating classifiers on imbalanced data sets
(Akbani, Kwek, & Japkowicz, 2004; Barua, Islam, Yao, &
Murase, 2014).

G-mean is calculated as √ sensitivity*specificity, where
sensitivity = R and specificity corresponds to the proportion
of negative examples that are detected by the system.

In the scope detection task, and following previous
research, the percentage of scopes correctly classified has
been also measured. Specifically, two different definitions
are adopted, which have been used by other authors for the
same task. First, the measure proposed by Morante and
Daelemans (2009a, 2009b) has been employed, where a
scope is correct if all the tokens in the sentence have been
correctly classified as inside or outside the scope of the cue
(percentage of correct scopes, henceforth PCS). It can be
considered a strict way to evaluate scope resolution systems.
Second, the more relaxed approach put forward by Councill
et al. (2010) in which the percentage of correct scopes is
calculated as the number of correct spans divided by the
number of true spans (percentage of correct relaxed scopes,
from now on PCRS) has been applied. Therefore, in this
case, a scope is correct simply if the tokens in the scope have
been correctly classified as inside of it.

The evaluation in terms of precision and recall measures
considers a token as a unit, whereas the evaluation in terms
of PCS and PCRS regards a scope as a unit. It should be
noted that negation and speculation detection are evaluated
separately.

Finally, a two-tailed sign test applied to the token-level
predictions was used with the aim of assessing the statistical
significance of differences in performance. This is the sim-
plest nonparametric test for matched or paired data that, in
this case, will compare the differences in the prediction of
two given classifiers. A significance level of α = 0.05 was
assumed.

Results

The results reported in this section were obtained by
employing 10-fold cross-validation. For each fold, a
document-level partitioning of the data was used, randomly
selecting as well as balancing the number of documents in
each of these folds.

As detailed in the Method section, experiments were
undertaken with Naïve Bayes and SVM classifiers. Simple
baselines models were also used in both phases to compare
the results. The following sections detail the results for the
cue and scope detection tasks.

Cue Detection Results

Table 6 shows the results for negation and speculation
cue detection.
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A simple postprocessing algorithm was applied to the
output of the classifier in order to reduce the cases of failure
to detect the most common type of multiword cues (MWCs)
that appears in the SFU Review corpus (i.e., MWCs formed
by two words, the last one being n’t or not). The postpro-
cessing algorithm works as follows: If a word is identified at
the beginning of a cue and the following word is identified as
being outside it but the word is n’t or not, the algorithm
changes the type of this final word to being inside the cue. In
addition, if a token is classified as being inside of a cue and
its predecessor word is classified as outside, it changes the
class of this final token to the start of a cue. Figure 3 shows
the pseudocode of this algorithm.

This postprocessing is very effective in negation because
the percentage of MWCs is 25.80%. In speculation, 2.81%
of MWCs cause the algorithm not to be effective in this case.

Although the results obtained in the speculation detection
task are by and large slightly higher than those achieved in
negation detection, all the algorithms performed satisfacto-
rily. In addition, no large differences were observed between
performing the cross-validation randomly or in a stratified
way.

Baseline results are shown in the third row of Table 6. It
has been created by tagging as cue the most frequent nega-
tion and speculation expressions that appear in the training
data set (i.e., those that cover more than 50% of the total
number of cues). To achieve the baseline, the two most
frequent expressions for negation (i.e., no and not) and the
four most frequent expressions for speculation (i.e., if, or,
can, and would) are used because in this case the most

frequent expressions are not concentrated in a small number
of cues as occurs for negation.

This baseline proves to be competitive in precision where
it actually outperforms all the other systems. In terms of F1,
the results are improvable for both negation (69.34%) and
speculation (70.26%). Furthermore, the results yielded by
the baseline in the negation detection are comparable with
those obtained by Naïve Bayes (the latter achieves an F1 of
68.92% using the random-selection option and 69.34% in
the stratified way, both after applying postprocessing). In the
case of speculation, as shown in the last column, Naïve
Bayes shows a slight improvement on the baseline (73.34%
or 73.52%, depending on the way the documents are
selected in the cross-validation), this difference being
statistically significant according to a two-tailed sign-test
(p = .0009). In terms of G-mean, Naïve Bayes also outstrips
the baseline by about 10% (both in negation and specula-
tion). However, these two approaches appear to have some-
what different strengths and weaknesses. The Naïve Bayes
classifier shows higher recall, whereas, as mentioned before,
the baseline is stronger in terms of precision.

The best F1 and G-mean for both negation and specula-
tion is obtained by the SVM classifier. The cost-sensitive
learning applied to SVM slightly improves the results in
terms of G-mean. However, it does not happen the same in
terms of F1 (the measure used for all the authors in this task
to assess the performance of their systems). This is due to
different factors. First, the precision shown by the cost-
sensitive learning approach is low since the classifier intro-
duces many false-positive errors trying to minimize the cost

TABLE 6. Results for detecting negation and speculation cues: Averaged 10-fold cross-validation results for the baseline algorithm and both Naïve Bayes
and SVM classifiers on the SFU Review corpus training data. Results are shown in terms of Precision, Recall, F1, and G-mean (%).

Model

Negation Speculation

Prec Rec F1 G-mean Prec Rec F1 G-mean

Stratified Baseline 93.54 55.08 69.34 74.20 91.54 57.00 70.26 75.46
Naïve Bayes 63.26 (65.91) 68.95 (73.15) 65.98 (69.34) 82.54 (85.33) 72.05 75.05 73.52 86.42
SVM RBF 82.44 (89.64) 93.22 (95.63) 87.50 (89.64) 96.44 (97.69) 90.73 93.97 92.32 96.86
CS-SVM 80.40 97.86 88.28 98.79 88.03 96.36 92.00 98.05

Random Naïve Bayes 63.22 (65.65) 68.72 (72.52) 65.86 (68.92) 82.71 (84.99) 72.03 74.69 73.34 86.21
SVM RBF 82.67 (84.30) 93.47 (95.52) 87.74 (89.56) 96.57 (97.63) 90.74 94.06 92.37 96.90
CS-SVM 80.49 97.84 88.32 98.78 88.06 96.37 92.03 98.06

SVM = Support Vector Machine; RBF = Radial Basic Function kernel; Prec = Precision; Rec = Recall; CS = Cost-Sensitive Learning.
In parentheses, results obtained after applying the postprocessing algorithm.
Results obtained by CS-SVM after applying the postprocessing algorithm are not shown because they are the same as without applying it. The same occurs
with all the speculation detection approaches.
Note that “Random” means the #documents in each fold of the cross-validation are randomly selected, whereas in “Stratified” the #documents is the same
in all the folds.

FIG. 3. Cue detection postprocessing algorithm pseudocode.
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function (the cost for misclassifying any example belonging
to the majority class is small). Next, the postprocessing
algorithm is not effective in negation detection because most
errors are derived from the fact that the classifier identifies as
cues words ones that are not annotated as such in the corpus
(false-positive errors) and not as a result of an incorrect
classification of MWCs. Finally, an SVM classifier without
any modifications seems sufficient to solve this problem
since it performs well with moderately imbalanced data
(Akbani et al., 2004), as is the case here.

In speculation, the results obtained by the SVM classifier
represent a substantial improvement on the baseline (up by
roughly 22%). It also outstrips the Naïve Bayes results by
20% in terms of F1 and 10% according to G-mean (see
Figure 4). As shown by the two-tailed sign test, these differ-
ences (p = 9.33E-17 compared to the baseline; p = 1.69E-14 if it
is compared to Naïve Bayes) are significant. The interanno-
tator agreement rates may offer some further perspective on
the results discussed here. When creating the SFU corpus, a
first annotator annotated the whole corpus. Another expert
annotator worked with 10% of the documents from the origi-
nal collection (randomly selected), annotating them accord-
ing to the guidelines used by the first annotator. The
agreement rate between the second annotator and the chief
annotator is 89.12% and 89% in F1 and kappa measures,
respectively. This suggests that the results could be compared
with those obtained by an annotator doing the same task.

Negation detection is more complicated. Although the
most frequent negation cues are concentrated in a small
number of expressions (no and not represent 55.03% of the
total number of cues), what makes negation detection diffi-
cult is the large number of MWCs present in the corpus
(25.80%). This does not occur in speculation, where the
percentage of MWCs is just 2.81%. The results improve
with postprocessing, nearing those obtained when identify-
ing speculation. A two-tailed sign-test shows that there is a
statistically significant difference between the SVM results
before and after applying the postprocessing algorithm
(p = .0013).

Overall, the results for negation are competitive. In fact,
the SVM classifier outperforms the baseline results by as
much as about 20% both in terms of F1 and G-mean and
independently of the way in which the cross-validation is

done. These differences are deemed significant (p = 4.47
E-13

).
Comparing with Naïve Bayes, the proposed method out-
strips it by up 20% in terms of F1 and 12% in terms of
G-mean as can be seen in Figure 4. The differences are also
significant (p = 1.33E-14). In addition, the interannotator
agreement rates for negation cues (F1 of 92.79% and kappa
value of 92.7%) in the SFU Review corpus are close to those
obtained by a human rater performing the same task.

Finally, it is worth noting that a factor that may have
slightly deflated the results, as authors like Velldal et al.
(2012) point out, is the use of a document-level rather than
a sentence-level partitioning of the data for cross-validation
since the latter favors that the number of cues in each fold is
more balanced, facilitating, therefore, the detection.

Scope Detection Results

This section presents the results of the scope detection for
both the gold standard cues as well as the predicted ones.
First, in order to isolate the performance of the scope rec-
ognition, the set of cues that appear annotated as such in the
SFU Review corpus was used. Next, to measure the perfor-
mance of the whole system the best scope detection
approach was assessed using the cues identified by the clas-
sifier in the previous phase.

Tables 7–9 detail the results for the gold standard cues. In
general, they show how difficult the task of identifying the
scope is compared to the task of recognizing the cues. In
addition, in contrast to cue detection, the results for specu-
lation are lower than those obtained by negation. This can be
explained by the fact that speculation leads to a text with a
greater degree of complexity (e.g., the number of scopes is
higher, the average length of the scopes in number of words
is longer, as shown in Tables 2 and 3).

Different sets of features were used for both Naïve Bayes
and SVM, which aim to show how syntactic information
improves the classifier performance. First, a basic configura-
tion consisting of the lemma and POS of the cue, token in
focus, and one token on both to the left and right of the token
in focus. Next, fine-grained features related to the cue, the
token itself, and the context were added. The last configura-
tion also includes the set of syntactic attributes described in
Table 5.

In addition, the results were compared with a baseline.
This was proposed as a result of the analysis carried out by

FIG. 4. Comparison of the results obtained by the different approaches in
the cue detection task in terms of F1 and G-mean (%). [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

TABLE 7. Results for detecting negation and speculation scopes with
gold standard cues: Averaged 10-fold cross-validation results for the
baseline algorithm on the SFU Review corpus training data. Results are
shown in terms of Precision, Recall, F1, G-mean, PCS, and PCRS (%).

Precision Recall F1 G-M PCS PCRS

Negation 78.80 66.21 71.96 80.92 23.07 58.03
Speculation 71.77 65.68 68.59 79.75 13.86 45.49

G-M = G-mean; PCS = Percentage of Correct Scopes (all the tokens in
the sentence have been correctly classified); PCRS = Percentage of Correct
Relaxed Scopes (all the tokens in the scope have been correctly classified).
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Hogenboom, van Iterson, Heerschop, Frasincar, and
Kaymak (2011) on a set of English movie review sentences.
In that study, the authors show that the best approach to
determining the scope of a negation cue is to consider a fixed
window length of words following the negation keyword. In
the SFU review corpus, the proportion of scopes to the left of
the negation cues is virtually nonexistent (0.93%). In con-
trast, 99.40% of the scopes extend to the right of the cue with
an average length of 5.66 words. Therefore, the baseline was
created by tagging as scope five words to the right of the cue.
In the case of speculation, almost all of the scopes are to the
right of the cue (99.79%), with their average length being
7.01 words. The proportion of scopes to the left of the cue is
higher than in negation (7.01%), with an average length of
3.28 words. However, the baseline just includes seven words
to the right of the cue as inside the scope, since adding
information about the left scopes, as Hogenboom et al.
(2011) affirm, produces lower results.

This baseline, as shown in the fourth column of Table 7,
achieves a promising performance value in terms of F1

(71.96% for negation and 68.59% for speculation) and
G-mean (80.92% and 79.75% for negation and speculation,
respectively). In fact, these values are higher than those
obtained by the Naïve Bayes and the SVM classifiers with
the baseline configuration (see Tables 8 and 9). In the case of
speculation, the result is even higher than the best perfor-
mance obtained by Naïve Bayes (68.59% vs. 50.49% in

terms of F1 and 79.75% vs. 78.34% according to G-mean).
This is due to the high precision yielded by the baseline.
Almost the same occurs in terms of PCS and PCRS, where
the baseline shows better performance than the two
approaches with the basic set of attributes. However, as the
final columns of Table 7 show, these results are subject to
upgrading, for both negation (PCS = 23.07%; PCRS =
58.03%) and speculation (PCS = 13.86%; PCRS = 45.49%).
This fact highlights that a simple configuration is not enough
to detect the scope and that it is necessary to include more
sophisticated features to successfully address the problem.

As explained in the Method section, Naïve Bayes is not
the most suitable classifier to use for the task since its results
are not satisfactory, and even lower than the baseline in some
cases. For both negation and speculation, the best F1 and
PCS are achieved using the contextual configuration (see
Table 8). However, the best PCRS (77.71% for negation,
64.30% for speculation) and G-mean (89.23% in negation,
78.34 in speculation) are obtained after adding syntactic
information. This results from the fact that they are related to
the recall. Conversely, F1 as well as PCS are affected by the
precision (i.e., a higher precision, higher F1 or PCS). There-
fore, in this case, contextual information seems to enhance
the precision, whereas syntactic information improves the
recall.

The classifier that best fits the data is SVM. The best
results, as Table 9 shows, are obtained by adding syntactic

TABLE 8. Results for detecting negation and speculation scopes with gold standard cues: Averaged 10-fold cross-validation results for Naïve Bayes
classifier on the SFU Review corpus training data. Results are shown in terms of Precision, Recall, F1, G-mean, PCS, and PCRS (%).

Configuration (features)

Random Stratified

Prec Rec F1 G-M PCS PCRS Prec Rec F1 G-M PCS PCRS

Negation Baseline 47.56 43.12 45.23 64.70 8.02 33.22 47.48 41.22 44.13 63.30 7.93 31.89
Contextual 76.60 77.79 77.19 87.55 41.13 73.15 76.51 78.33 77.41 87.85 40.60 74.17
Dependency syntactic 72.35 80.53 76.22 88.88 38.95 71.78 72.58 81.14 76.62 89.23 38.30 77.71

Speculation Baseline 28.00 35.06 31.14 55.93 3.04 18.90 28.56 34.23 31.14 55.43 2.70 18.43
Contextual 37.96 66.14 48.24 75.90 19.20 59.76 39.41 70.23 50.49 78.20 19.33 61.00
Dependency syntactic 35.84 68.27 47.09 76.35 18.28 56.57 36.64 72.08 48.67 78.34 18.52 64.30

Prec = Precision; Rec = Recall; G-M = G-mean; PCS = Percentage of Correct Scopes (all the tokens in the sentence have been correctly classified);
PCRS = Percentage of Correct Relaxed Scopes (all the tokens in the scope have been correctly classified).

TABLE 9. Results for detecting negation and speculation scopes with gold standard cues: Averaged 10-fold cross-validation results for SVM classifier on
the SFU Review corpus training data. Results are shown in terms of Precision, Recall, F1, G-mean, PCS, and PCRS (%).

Configuration (features)

Random Stratified

Prec Rec F1 G-M PCS PCRS Prec Rec F1 G-M PCS PCRS

Negation Baseline 59.79 38.20 46.62 61.32 10,88 29,08 59.52 37.86 46.28 61.04 10.88 28.94
Contextual 84.02 80.61 82.28 89.36 53.58 77.43 83.29 80.38 81.81 89.21 52.90 77.17
Dependency syntactic 85.92 81.67 83.74 90.05 57.64 78.84 85.91 81.87 83.84 90.11 57.86 79.13
Dependency syntactic CS 85.59 82.28 83.91 90.32 58.23 80.14 85.56 82.64 84.07 90.42 58.69 80.26

Speculation Baseline 49.49 36.75 41.18 59.25 4,62 19,20 49.29 36.04 41.64 58.69 4.29 19.91
Contextual 77.79 75.97 76.87 86.11 39.61 68.10 77.41 75.69 76.54 85.84 37.86 66.71
Dependency syntactic 79.47 77.01 78.22 86.70 43.04 69.62 79.91 77.32 78.59 86.90 43.90 69.69
Dependency syntactic CS 79.07 77.77 78.41 87.09 43.40 71.17 79.98 77.80 78.88 87.14 43.94 71.43

Note. Same notes as in Table 8 apply. CS = Cost-Sensitive Learning. Optimized values of the parameters c and g: c = 32; g = 0.03125.
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information and applying cost-sensitive learning (CS-SVM)
to solve the imbalanced data set problem. This algorithmic-
level solution is effective in this case because the classes are
highly imbalanced. However, although the improvement
introduced by CS-SVM is substantial in many cases, it
cannot be considered statistically significant, as revealed by
the two-tailed sign test (in negation, p = .56, .55, .50, and .35
for F1, G-mean, PCS, and PCRS, respectively; in specula-
tion, p = .54 for F1, p = .56 for G-mean, p = .68 for PCS and
p = .10 in the case of PCRS). This configuration is favored
by the stratified cross-validation whose results are slightly
higher than those achieved in the random way. As the two-
tailed sign test shows, the difference between them is not yet
statistically significant (p > .05 in all cases).

In negation, the system yields an F1 of 84.07% as well as
G-mean, PCS, and PCRS values of 90.42%, 57.86%, and
79.13%, respectively. This means that the use of syntactic
features (together with an algorithmic level solution to
tackle the imbalanced data set problem) significantly
improves the basic configuration by more than 40% in terms
of F1 and PCS, 30% according to G-mean, and the double in
terms of PCSR. In addition, the configuration based on con-
textual features is also significantly enhanced, as shown by
the two-tailed sign test (p < .05 in all cases). This improve-
ment is higher in terms of percentage of correct scopes
identified, where adding syntactic information exceeds it by
almost 6%. Under this measure, there is also a significant
difference if CS-SVM is compared with both the baseline
(p = 3.06E-17) and the Naïve Bayes classifier (p = 2.82E-10) as
Figure 5 shows. Derived from the figure, considerable dif-
ferences can also be observed between CS-SVM and the
other approaches in terms of PCRS and F1.

In speculation, as mentioned before, the results are lower
than those obtained in negation. In terms of F1 (78.88%) and
G-mean (87.14%), there is an improvement on the baseline
(by roughly 10 percentage points in F1 and 7% according to
G-mean). This proportion is higher if we compare it to Naïve
Bayes (almost 28% comparing F1 value and 9% in G-mean).
In terms of PCSR (71.43%) and, especially, in PCS

(43.94%), the results could be improved. However,
CS-SVM outperforms the baseline and the Naïve Bayes
classifier by more than 24 percentage points in terms of
PCS, a difference statistically significant (p = 1.58E-12

compared to the baseline; p = 2.46E-15 compared to Naïve
Bayes). According to the PCRS measure, the CS-SVM clas-
sifier substantially outstrips the baseline results by more
than 25% as well as obtaining about 7% more than the Naïve
Bayes classifier. All these differences in performance are
displayed graphically in Figure 6.

Interannotator agreement for negation and speculation
(81.88% and 70.20% in F1 measure, respectively) reveal the
difficulty of the task. At the same time, the results stress that
scope is an issue of the cue, the context, and the syntactic
structure of the sentence taken together.

Finally, Table 10 shows the results of the whole system,
i.e., using as cues those detected by the SVM classifier in the
previous phase. These cues have been predicted applying the
postprocessing step. To identify the scope, the CS-SVM
classifier with contextual and dependency syntactic features
was used since it is the configuration that yields the best
result using the gold standard cues.

In general, the results are lower due to the errors that the
classifier introduces in the cue detection and which are accu-
mulated in the scope recognition phase. In negation, the
system performance drops by between 4% and 10% depend-
ing on the measure (about 9% in F1, 4% in G-mean, 7% in
PCS, and 10% in PCRS). This difference is lower in specu-
lation, where the results fall by 3% in terms of PCS and
about 5% with regard to F1, G-mean, and PCRS measures. It
can be explained by the good performance achieved by the
classifier in the speculation cue detection (F1 values of
92.32% in the random way and 92.37% in the stratified one)
which is comparable to those obtained by an annotator doing
the same task. This suggests that when a cue is correctly
predicted, its scope is also properly identified.

The results are promising and the system is portable.
They are higher than the baseline results, especially in terms

FIG. 5. Comparison of the results obtained by the different approaches in
the negation scope detection task in terms of F1, G-mean, PCS, and PCRS
(%). [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

FIG. 6. Comparison of the results obtained by the different approaches in
the speculation scope detection task in terms of F1, G-mean, PCS, and
PCRS (%). [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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of PCS, where the system outstrips it by about 28% both in
negation and speculation. This is relevant since PCS is a
scope-based measure and not a token-based measure such as
F1. In speculation, the performance (according to F1 and
G-mean) is even higher than those shown by the Naïve
Bayes classifier, while in negation, this approach only
exceeds it in terms of PCS.

Lastly, no significant differences were observed between
randomly selecting and balancing the number of documents
in each of the cross-validation folders.

Note that, as in the cue identification phase, the
document-level partitioning of the data for cross-validation
could have slightly deflated the results of the scope
detection.

Comparison with previous works is not easy because they
use different experimental settings, collections of docu-
ments, evaluation measures, etc. In addition, the results pre-
sented here cannot be directly contrasted with previous
research since, to the best of our knowledge, there is no work
related to recognizing negation and/or speculation using the
SFU Review corpus. This is also a novel approach to detect-
ing speculation in the review domain. However, there are
some works that focus on automatically identifying the
negation and its scope in this domain (Councill et al., 2010;
Lapponi et al., 2012). Although these systems take different
approaches and use different documents for training and
testing (as explained in the Related Work section), which
makes direct comparison not possible, this could give an
indication as to how good the results detailed in this paper
are in relation to others in the same task and domain.

As detailed in Table 11, Lapponi et al. obtained a PCRS
value of 67.85% using the gold standard cues and 48.53%
using the predicted ones. On their part, Councill et al. only
specify the results by the whole system, which achieved
39.80% in terms of PCRS. The best configuration achieved
in this paper yields 80.26% for the gold standard cues and

69.69% for the predicted ones. This highlights, once again,
the difficulty of the task and shows that the results obtained
by our system are in line with the results of other authors in
the same task and domain.

Error Analysis

An analysis of the type of errors encountered in the SFU
Review corpus system is detailed in this section. In the cue
detection task, the analysis was done on the SVM approach
(using the random cross-validation for speculation and the
stratified one for negation, applying in this last case post-
processing), which performs best. The errors are summa-
rized in Table 12 and are mainly due to the ambiguity that
characterizes this type of document. In addition, many of
them are related to the incorrect classification of MWCs.

Errors could be divided into two different categories:
false-negative errors (FN) and false-positive ones (FP). In
the first type of error, the system does not identify as cues
words that are marked as such in the collection of docu-
ments. In negation, a total of 99 (41.4%) of them are the
result of an incorrect classification of MWCs like does n’t or
are not where the system only annotates part of the cue (85
of them are corrected by the postprocessing algorithm). In
41 cases (17.15%) for negation and 121 (38.05%) for specu-
lation, errors are words that appear annotated as cues in just
a few instances in the corpus, so distinguishing the different
usages from each other can sometimes be difficult, even for

TABLE 10. Results for detecting negation and speculation scopes with predicted cues: Averaged 10-fold cross-validation results for the CS-SVM classifier
on the SFU Review corpus training data. Results are shown in terms of Precision, Recall, F1, G-mean, PCS, and PCRS (%).

Random Stratified

Prec Rec F1 G-M PCS PCRS Prec Rec F1 G-M PCS PCRS

Negation 72.09 76.72 74.33 86.77 51.33 69.58 72.06 76.98 74.43 86.86 51.49 69.69
Speculation 78.36 70.32 74.12 82.88 40.47 65.45 79.14 70.36 74.49 82.94 40.99 65.77

Note. Same notes as in Table 9 apply.

TABLE 11. Performance of negation scope detection of the proposed
system and the approaches developed by Councill and Lapponi in terms of
PCRS with gold standard cues and the predicted ones (%).

Gold-standard cues Predicted cues

Councill et al. – 39.80
Lapponi et al. 67.85 48.53
Our system 80.26 69.69

TABLE 12. Errors in the cue detection phase.

Negation Speculation

False negative errors
Incorrect classification of an MWC 99 –
Words annotated as cues in just a few instances 41 121
Words mostly annotated as the opposite type 38 29
Cues with low frequencies of occurrences 28 73
Unclassified 33 95
Total 239 318
False positive errors
Words that are cues in most of the cases 570 446
Incorrect classification of an MWC 75 23
Words mostly annotated as the opposite type 27 37
Unclassified 28 8
Total 700 514

MWC = multiword cue.
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a human. Another type of error is related to cues that appear
mainly annotated as the opposite type. Here, the classifier
fails in 38 (15.89%) cases for negation and 29 (9.11%) for
speculation. The last type of error is caused by cues with low
frequencies of occurrence in the corpus. Examining more
closely the distribution of these words, it can be seen that
they appear only once and are due to annotation errors
that arise out of spelling mistakes. Therefore, it is difficult
for the algorithm to learn from examples. This error appears
28 times (11.71%) in negation and 73 times (22.95%) in
speculation.

In the FP errors, the system recognizes as cues words that
do not appear annotated as such in the corpus because the
vast majority of these cases are due to the fact that the
system indentifies as cues some words that appear in
the corpus mostly classified as such (446 cases in specula-
tion and 570 in negation). In contrast, 75 times (10.71%) in
negation and 23 times (4.47%) in speculation, the system
identifies only part of an MWC. In negation, all of these
cases are corrected by the postprocessing algorithm. In
speculation, this cannot be resolved by the postprocessing
algorithm since almost all the MWCs consist of more than
two words. Finally, another type of error is introduced when
the classifier identifies a word as a negation/speculation cue
when it has the opposite type, simply because they mostly
appear as such in the corpus (i.e., the classifier tends to
annotate them as the majority class).

In the scope detection, errors come from the CS-SVM
approach (adding contextual and syntactic features and
doing the cross-validation in a stratified way for both
speculation and negation), which is the approach that
achieves the best results. The most frequent errors are
detailed in Figure 7 and described below where examples
that compare the correct scope annotation for a cue (Gold

Standard, henceforth GS) with the prediction made by the
system (System Detection, hereafter SD) are listed:

1. The scope of the cue is a consecutive block of words.
However, the system identifies not only the correct scope
but also identifies other separated words as belonging to
it. This is one of the most common mistakes made by the
classifier, which occurs in 27.65% of negation and
23.35% speculation.

I suggest [that if you are in doubt], you seek assistance. (GS)
I suggest [that if you are in doubt], you [seek assistance]. (SD)

2. As mentioned in the Text Collection section, 5.44% of the
total of negation cues and 4.62% of the total speculation
cues do not have an associated scope. In this case, the cue
belongs to this kind of keyword but the system incorrectly
predicts some words as inside the scope of it. This repre-
sents 8.27% of the total errors in negation and 6.47% in
speculation.

3. The beginning of the scope is correct, but the classifier
fails in that it extends the scope beyond its correct ending.
This mistake appears in 10.63% of the negation instances.
In speculation, it constitutes 8.65% of the total errors.

No [multitude of frilly thin spokes] or cross-mesh design here.
(GS)
No [multitude of frilly thin spokes or cross-mesh design here].
(SD)

4. This error is similar to the previous one. The beginning of
the scope is correct, but the system incorrectly reduces the
number of words in the scope to the right. In negation, this
type of failure represents 28.6%, whereas in speculation it
occurs 21.34% of the time.

The DVD-rom [could have been either a lite-on] or [a Samsung].
(GS)
The DVD-rom [could have been either a lite-on] or [a] Samsung.
(SD)

The gold standard annotation does not normally include the full
stop as inside the scope. However, there are some cases in which it
is included (maybe due to annotation errors). This fact sometimes
confuses the classifier so that its scope detection matches with the
gold standard except that the system does not include the full stop
when the annotation does.

5. Another type of error is introduced when the classifier
correctly identified the beginning and the ending of the
scope but it fails by omitting some words. It constitutes
11.84% of the total errors in negation and 6.97% in
speculation.

The computer never [recognized either cards]. (GS)
The computer never [recognized] either [cards]. (SD)

6. In the last type of error, the end of the scope detected by
the classifier is correct. However, it identifies the begin-
ning of the scope after the correct position. This kind of

FIG. 7. Errors in the scope detection phase.
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mistake hardly affects negation (it occurs in 0.67% of the
cases). In speculation, this error represents 6.97% of the
total.

And she ain’t [no rosellini]. (GS)
And she ain’t no [rosellini]. (SD)

A Case Study of Negation/Speculation for
Sentiment Analysis

As proposed by authors like Councill et al. (2010), it
could be useful to measure the practical impact of accurate
negation/speculation detection to check whether it helps to
improve the performance in sentiment analysis. Thus, an
extrinsic evaluation is carried out with the aim of investigat-
ing whether correct annotation of negation/speculation
improves the results of the Semantic Orientation CALcula-
tor (SO-CAL) system (Taboada, Voll, & Brooke, 2008;
Taboada et al., 2011), using the approach described here as
a recognizer for this kind of information, rather than the
search heuristics that SO-CAL is currently using.

SO-CAL is a lexicon-based system that extracts sentiment
from text. It uses dictionaries of words annotated with their
semantic orientation (polarity and strength) to compute the
sentiment polarity (positive or negative) of each document.
The SO-CAL system incorporates negation and speculation.
The negation approach consists of a backwards search to
determine whether the lexical item is next to a negator (nega-
tors are those included in a predefined list). If the item is
affected by the presence of negation, it is shifted by a fixed
amount (3 or 4 depending on the item’s POS) and multiplied
by 1.5. Speculation, which is defined as irrealis, is dealt with
in a crude way. The approach simply ignores the semantic
orientation of any item in the scope of an irrealis marker (i.e.,
within the same clause). That includes statements with ques-
tions at the end, with modals, and conditionals.

The effect of the negation/speculation detection system
on sentiment classification was evaluated in the SFU Review

corpus, employing 10-fold cross-validation. As previously
described, these results are compared to those obtained by
using the search heuristics implemented in the SO-CAL
system. A simple baseline model that involves not applying
any negation/speculation resolution was also considered.
This could show us more clearly the impact of introducing
the treatment of this kind of information. Table 13 shows the
results for all configurations.

As in the rest of the paper, a two-tailed sign test was used
with the aim of assessing the statistical significance of dif-
ferences in performance. For comparisons between the base-
line and the two other configurations, the Paired Observation
two-tailed test was employed. This statistical test is used
when two of the same measurements are taken from the
same subject, but under different experimental conditions,
i.e., to compare the performance of the SO-CAL system
before detecting negation and speculation to its performance
after identifying this kind of information. In both cases, a
significance level of α = 0.05 was assumed.

In general, the results show that the SO-CAL system is
biased towards positive polarity, with the F1-score for posi-
tive reviews higher than it is for the negative ones. This
difference is especially relevant in subcollections such as
Cookware, where the number of positive expressions far
exceeds the number of words that suggest a negative senti-
ment. However, these results are slightly balanced by intro-
ducing negation and speculation detection.

As expected, performance is improved by identifying this
kind of information. In fact, all configurations that incorpo-
rate negation and speculation resolution outperform the
baseline in terms of overall accuracy. Our proposed configu-
ration, as shown in the final columns of Table 13, achieves
the best performance, improving on the baseline by almost
10% and the search heuristics by about 5%. A two-tailed
sign test reveals that there is not a statistically significant
difference between the configuration proposed and the
search heuristics approach (p = .259). However, as shown by
the Paired-Observation two-tailed test, differences between

TABLE 13. Results of the SO-CAL sentiment classifier: Averaged 10-fold cross-validation results for SO-CAL including the neg/spe detector proposed,
SO-CAL without including neg/spe treatment, and SO-CAL including neg/spe search heuristics on the SFU Review corpus training data. Results are shown
in terms of F1 for positive and negative reviews. Overall accuracy is also shown (%).

Configuration

SO-CAL without neg/spe treatment SO-CAL SO-CAL with neg/spe detector integrated

Pos-F Neg-F Accuracy Pos-F Neg-F Accuracy Pos-F Neg-F Accuracy

Books 72.00 64.00 68.00 68.00 80.00 74.00 76.00 92.00 84.00
Cars 96.00 84.00 90.00 92.00 88.00 90.00 96.00 92.00 94.00
Computers 92.00 80.00 86.00 92.00 84.00 88.00 96.00 88.00 92.00
Cookware 92.00 32.00 62.00 84.00 48.00 66.00 92.00 56.00 74.00
Hotels 92.00 52.00 72.00 88.00 60.00 74.00 96.00 56.00 76.00
Movies 76.00 84.00 80.00 76.00 88.00 82.00 80.00 92.00 86.00
Music 84.00 68.00 76.00 80.00 72.00 76.00 84.00 76.00 80.00
Phones 88.00 52.00 70.00 84.00 72.00 78.00 84.00 72.00 78.00
Total 86.50 64.50 75.50 83.00 74.00 78.50 88.00 78.00 83.00
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the method described and the baseline are significant
(p = .0019), while those between the search heuristics
implemented in the SO-CAL system and the baseline are not
(p = .19).

In addition, for the positive reviews, only the proposed
approach outstrips the configuration that does not include
any treatment of negation/speculation (see second, fifth, and
eighth rows of Table 13). These results can be explained by
different factors. First, the detector presented in this paper
benefits from a wider list of cues (search heuristics in
SO-CAL include 14 different negation cues and 24 specu-
lation cues, whereas the SFU corpus contains 69 and 129
different negation and speculation cues, respectively). This
is crucial in speculation, where the number of occurrences of
each cue is equally distributed across all documents.
Second, the negation and speculation detection method pro-
posed shows a good performance value, which suggests that
when a cue is correctly predicted, its scope is also properly
identified. In the approach based on search heuristics, a cue
is identified only if it appears in the predefined list of cues,
without taking into consideration whether it is actually
acting as such. In addition, the scope is limited to certain
parts of the sentence but it usually goes beyond the distance
of words that the search heuristics method considers.

This illustrates that accurate detection of cues and scopes
is of paramount importance to the sentiment detection task
and, at the same time, it indicates that simplistic approaches
to negation and speculation are insufficient for sentiment
classification.

Finally, analyzing the cases in which the SO-CAL system
does not detect the polarity of the reviews correctly (using as
negation/speculation detector those described in this paper)
helps to gain insight into the role of negation and specula-
tion. Errors are mainly due to the fact that there many nega-
tive reviews which include a lot of positive expressions (in
many cases with a high positive value) and in which the
presence of negation/speculation is not very important.
Therefore, it is difficult for the system to change the polarity
of the review. The same occurs for positive reviews.

In addition, negation is not expressed by a cue in several
cases. This means that the writer uses a positive statement
followed by a conjunction and a negative one such as in it’s
fine but I prefer another model. This kind of expression is
prevalent in the data.

Conclusion

This paper discusses a machine-learning system that
automatically identifies negation and speculation cues and
their scope in review texts. The novelty of this work lies in
the fact that, to the best of our knowledge, this is the first
system trained and tested on the SFU Review corpus anno-
tated with negative and speculative information. In addition,
this is the first attempt to detect speculation in the review
domain. This is relevant since it could help to improve
polarity classification such as that shown by Pang and Lee
(2004).

The results reported in the cue detection task (92.37%
and 89.64% in terms of F1 for speculation and negation,
respectively) are encouraging. In the case of the speculation,
the results are comparable with those obtained by a human
annotator doing the same task. In the scope detection task,
the results are promising in terms of F1 (84.07% for negation
and 78.88% for speculation), G-mean (90.42% and 87.14%
for negation and speculation, respectively), and PCRS
(80.26% in negation and 71.43% in speculation) but subject
to improvement in terms of PCR (58.64% for negation and
43.94% for speculation).

The results show that, in line with comments by other
authors, lexical information is enough to automatically iden-
tify the cues, whereas, to effectively determine the scope of
a keyword, it is necessary to include syntactic features. An
extrinsic evaluation is carried out with the aim of investigat-
ing whether correct annotation of negation/speculation
improves the results of the SO-CAL system (Taboada et al.,
2008, 2011), using the approach described here as a recog-
nizer for this kind of information, rather than the search
heuristics that SO-CAL is currently using. The results
achieved demonstrate that accurate detection of cues and
scopes is of vital importance to the sentiment detection task.

Future research includes the improvement of the scope
detection results. Normally, the scope includes whole
chunks, that is, sequences of words that form syntactic
groups. Figure 8 shows an example where the cue is if and
the scope consists of the phrases were to open and a restau-
rant. Shallow processing (chunking) applied in the postpro-
cessing phase could help to correct the scope boundaries
predicted by the classifier in the cases where they don’t
include complete syntactic group of words.
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