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Let S = (C[Xl, ce ,Xd].
Consider polynomials f,f,...,f, € S.
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These generate an ideal / in S.

They also define an affine scheme X c C9.

v

Basic idea: we deform X by perturbing the f;.
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Example I: An A; Singularity

» Take d =3, f = x> + y? — 2°.
» Perturb this with a parameter t to get f = x> +y? -2 -t

» This cuts out a scheme X € C3 x C with a natural projection
map 7 : X — C.

» The fiber over 0 is just X. The fiber over t # 0 is smooth.

IIXXX
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» These equations cut out a line x = y = z in C3.
> Now perturb:

A=x—y+t
h=x—z+t
h=y—z+t
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> Now perturb:
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Example II: A Line in C3

> Taked:3, f;]_:X—.yv fz:x—z, f3:y_z
» These equations cut out a line x = y = z in C3.
> Now perturb:

h=x—y+t
fg:x—z—i-t
%:yfert

» Something is fishy! The fiber over t # 0 is a point!

Problem: the relation f» — fi = f3 doesn't lift to a relation among
the f;.
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Lifting Relations

Consider the start of a free resolution of S/I:

yon R oygm F g S/l 0.
Here, F is a matrix whose columns are just the f;.
Consider a ring of deformation parameters T = C[ty, ..., t¢] and
set S=5S®T.

Let F: S™ — S be a perturbation of F.

Definition N

The relations R lift with respect to F subject to equations
gi,-.-,8k € T if there exists a R : §" — S§™ restricting to R such

that o
Im (F : R) c (g)
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» Take d = 4 and consider the matrix

F= ( X1X3 — X22 + txo  XoXg — x32 — tXa X1Xa — XoX3 ) .

> A relation matrix is given by

X4 X3
R = X2 X1
—X3 —X2

» We can perturb F to F.



Example IlI: Lifting Relations

Take d = 4 and consider the matrix

v

F= ( X1X3 — X22 + txo  XoXg — x32 — tXa X1Xa — XoX3 ) .

v

A relation matrix is given by

X4 X3
R = X2 X1
—Xx3 —Xxo+t

We can perturb F to F.
A lifting of R is given by R.

v

v
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Deformations of Affine Schemes

Definition

A deformation of X C CY over Z = Spec(T/(g;)) consists of a_
perturbation F of F such that the relations lift with respect to F,
subject to the equations g;.

» F defines a scheme X CC9 x Zand amap 7: X — Z.

» X is the total space, Z the base space of the deformation.

Example
For hypersurfaces, arbitrary perturbations are allowed.
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Induced Deformations

» Consider a deformation of X.

» We can induce other deformations of X by applying changes
of coordinates to the variables x; and substituting in new
deformation parameters for the t;.

Example

» Consider the deformation given by f=x2+ y2 -2 —t.

» Can we induce the deformation given by x? + y? — z% — sz?
> Yes! Substitute t = —%52 and take the change of coordinates

z (z+ 1s).
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Versal Deformations

Definition
A deformation of X is called (formally) versal if any (infinitesimal)
deformation of X may be induced from it.

» If dim Sing X = 0 and we allow F and R to contain formal
power series, then X has a formally versal deformation.

Q: How can we compute a versal deformation of X?
A: Using Macaulay?2 and the package VersalDeformations.
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Basic Features of the Package VersalDeformations

Input: A matrix F containing the equations of X.
Output:

» A basis for T, the space of deformations over Spec C[t]/t°.

> A basis for T2, which contains obstructions to lifting
deformations.

» A formally versal deformation of X (more details later).

Basic approach: iteratively lift deformations in T)1< to larger and
larger base spaces.
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Computational Example I: Our A; Singularity

» F=(x2+y?2-2%).
» Any first order deformation can be induced from
F+ti-1=(x2+y?>—22+1t ) with t2 =0.
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Output of Command “versalDeformation”

The command “versalDeformation” outputs four lists FL, RL, GL,
and CL where

» FLis a list of matrices whose sum is the perturbation matrix
F of a versal deformation.

» RL is a list of matrices whose sum is a lifting R of R.

» GL is a list of matrices whose sum G contains the equations
cutting out the versal base space.

These matrices solve the “deformation equation”
(F-R"+C-G=0

where C is the sum of the list CL.
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Computational Example |I: The Cone over the Rational
Normal Curve of Deg. 3

Take
_ 2 2
F = ( X1X3 — Xj XoXa — X3 X1X4 — X2X3 ) .
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X1X3 — X22
XoX4 — X‘%
X3X5 — XL%

Take F to be the transpose of
X1X4 — X2X3

XoX5 — X3X4
X1X5 — X2X5



Computational Example |I: The Cone over the Rational
Normal Curve of Deg. 4

X1X3 — X22
XoX4 — X§
X3X5 — XL%

Take F to be the transpose of
X1X4 — X2X3

XoX5 — X3X4
X1X5 — X2X5

» The base space has two components, C3 and C meeting in a

/
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Total Spaces Over the Components

The components come from two ways of writing the equations of
X:

X: X X X,
K 1 2 3 4 ) <1
X2+S1 X3+ X4+5S53 X
X1 X2 X3

rk| x x3+s3 xa <1
X3 X4 X5
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Further Features of the Package VersalDeformations

» Can calculate T}, T2, and normal modules for projective X
in good situations.

» Can calculate versal deformations for projective X.
» Can calculate local (multigraded) Hilbert schemes.

» Can lift deformations in given tangent direction to a
one-parameter family.
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A Toric Fano Threefold (cont.)

The versal base space of X has three components. X admits
smoothings to three different kinds of Fano threefolds.

Similar calculations + lots of hard work can be used to classify all
smoothings of Gorenstein Fano toric threefolds of degree < 12.
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First Order Deformations

Definition
Let T)1< be the set of isomorphism classes of deformations of X
with base space Spec C[t]/t2.

T)1< may be computed as the cokernel of

J: 5% = Homs(1,S/1) c (S/1)™

where J is the Jacobian matrix (g)f’) )
i/ j

If dim Sing(X) = 0, then dim¢ T§ < occ.
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» Choose ¢; € Hom(S™,S) i =1,..., e which represent a basis
of T)1<.
» Set T =Clty,...,t| with maximal ideal m = (t1,. .., te).

Let F1: S™ — S be the perturbation of F = FO defined by
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e
FL=F'+> tig;.
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The relations R lift with respect to F1 subject to m? to some
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First Order Deformations (cont.)

» Choose ¢; € Hom(S™,S) i =1,..., e which represent a basis
of T)1<.

» Set T =Clty,...,t| with maximal ideal m = (t1,. .., te).

> Let F1: 5™ — S be the perturbation of F = FO defined by

e
FL=F'+> tig;.
i=1

» The relations R lift with respect to F1 subject to m? to some
R': S" — S™. This can be computed using matrix quotients
in Macaulay?2.
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The Deformation Equation, Part |

» Goal: lift this deformation to a “larger” base space.
» Given FI=1 € Hom(5™, S), R"~1 € Hom(5",5™), we would
like to find F' and R' such that
1. FiI=F-! mod m', R"=R~1 mod m':
2. FF.R'=0 mod m/tl.

In general, this is not possible!!!
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The Deformation Equation, Part Il

» If dim Sing(X) = 0, there is a finite dimensional C-vector
space T)2< containing obstructions to lifting F', R'.

» Choose V € Hom(S',S™) such that its columns represent a
basis of T3.

> It is possible to inductively construct F/, R, G'~2 ¢ Hom(g,
S"), C'=2 € Hom(S', S™) solving

(FIRY +C2G62=0 mod m'*,

such that:
1. FI,R',G'=2,C'=? reduce to F'=1, R"~1, G'~3, C'~3 modulo
m';
2. G'=2 and C'~2 vanish for i < 2;
3. C%is of the form V - D, where D € Hom(S9,5%) is a
diagonal matrix.



Q>



The perturbation lim;_,~ F' gives a formally versal deformation
over the base space cut out by the rows of lim;_,., G'~2.



	Deformation Basics
	Computing Versal Deformations

