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I-ntroduétion

| The DMX 1800 is a high- speed mlcroplogram-

- mable signal processor marketed by Digital Music -

Systems, Inc. [Wallraff 1979). It is designed torbe
interfaced to and controlled by a Digital Equipment

because of its computational speed (up to five mil-

lion instructions per second}, it can be programmed

to provide polyphonic real-time synthesis or digital
signal processing. The software package that can be

" purchased along with the machine, called Music-

" 1000, resembles Music 11 (Vercoe 1980} and is a
general-purpose synthesis and ‘score-processing lan-
guage. Although Music-1000 performs scores in real
time, a considerable time is required for preprocess-

 ing [compiling} the score and orchestra. Moreover,

' scores are entered and modified through a text edi-

or and no higher-level compositional programs are -

_ avaﬂable within the system.

The PODX system, on the other hand, is a collec-
tion of compositional programs that exploit the in-
teractive potential of the DMX-1000. Each program
implements a model of interactive composition
that allows the user to design'sounds and/or struc:
tures with immediate aural feedback of the syn- =
thesized results within the real-time limits of the
DMX-1000. A range of compositional procedures is
available and is constantly being expanded and up-
graded as the éxperience of a group of composer
users suggests new directions. Although the prin-
cipal synthesis model in use at present is frequency
modulation (EM) (Chowning 1973}, the system is
currently expanding to include waveshaping and ad-
ditive synthesis. The mlcmprogrammablhty of the
DMX-1000 ensures that any number of synthesis al-
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"gorithms, presently known or about to appear in

the future, can be introduced and reﬁned within the
basw Stmcture of the system.

3 ng co _ Interactive Composition
© Corporation {DEC) PDP-11 or LSI-11 computer, and - = - o

Computer music_co'mpoéit'i-on systems can be clas-
sified most generally by where they fall alonga
continuum between computer-realized composition
and automated systems. In computer-realized com-
position the machine processes a score and realizes
the sotind result without having participated in the
‘actual ¢compositional process. In automated sys-
teras most, if not all, of the compositional process
is carried out by programmed algorithms. Music V
types of programs {Mathews 1969] tend to be of the |
former category, and programs such as Koenig's -
Project 1" and 2 tend to be of the latter (Koenig
1970a, 1970b). This ) range of programs can also be
characterized in terms of the concepts of generahty

~ and strength (Truax 1980). Systems for computer-
“realized: composition achieve their generality of

output with a corresponding loss of efficiency [or

“strength) by which that output may be achieved. In

such a system, it usually takes about as Iong to gen-
erate a simple result as it does a complex one, since
general methods are used for both. Ini-addition, to

 achi¢ve a wide range of output, the user must fur-
nish a great deal of data describing it, since few au-
_ ‘tomated procedures are available. In an automated

composition system, user input is low and the range

" of output narrow since highly specialized and auto-

mated procedures are used to generate the result.
Neither kind of system encourages very much user

~ interaction. [n a completely automated system, the
“user only initiates the process and aceepts or rejects

the output; further modification must be done
manually. In a system for computer-realized com-
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position, the amount of data required of the user
and the typically long calculation times discourage
_much interaction.’ ' o :
Between these two extremes lie what may be
called computer-assisted types of composition,
which are characterizéd by a high degree of user
interaction. Such systems attempt to combine both
the powerfulness of the automated approach and
the open-endedness of the general synthesis systerm.
- Specialized procedures are used to speed up the pro-
: cess, but they are designed so as not to restrict the
generality of the output. Because such a system
does not imply that the user comes with 3 com-
pletely specified composition result in mind, nor
that such a result can be completely generated by
the system itself, the system needs to furnish the
user with the best possible representations of the
_current compositionai state. This is accomplished
through data listings, graphics, and, most impor-
tantly, through sounding results. Such feedback
usually influences, if not actually determines, what
the user does next. ' S
A decade ago severe hardware and software fe-
strictions determined how mu h sound could be
delivered to the user of an interactive system in real
time or close approximations to it.In the early ver-
sions of the author’s POD programs (Truax 19733,
1973b), only a monophonic line of sound could be
generated by software in real time. A later poly-
phonig vetsion of the program became available
~ [Truax 1978), but not in real time; instead, 4 digital
magnetic tape was used to store the calculated
sound-pressure function {with a typical 10:1 turn-
around time) and play it back later. The advent of
hardware synthesizers over the last several years has
sparked renewed interest in the question of real-
time synthesis and offered some hope to the design-
ers of interactive systems. But because such devices
implement a specific synthesis model {or models),
they achieve their strength with a correspopding
toss of generality. Generality may be lost within
the details of the design choices involved in im--
plementing the synthesis algorithm, or-more ob-
viously, it may be lost because-of the particular
choice of algerithm. Therefore, the advéent of a
completely microprogrammable machine such as
the DMX-1000, although not as powerful as any

30

* particular hardware synthesizer, is a unique answer -

to the problem of how to optimize an interactive

system of composition without losing the gener-

ality of possible output. o : B
However, there are both advantages and disadvan- -

- tages to an interactive system, such as the following:

Interactive systems must he custom-designed for
a part_icu]ar,hardware configuration and op- .
timized for specific musical tasks; such soft<
ware takes time to develop and isnot easy to
adapt to another system. S

Interactive systems benefit the novice user by
providing a readily accessible environmient
with good learning potential, but such acces- -
sibility requires a great deal of documentation .
and added program strategies so that mistakes

 are not overly penalized. . -

An interactive system best serves its users wheén
it can expand to accommodate their musical
needs {which frequently increase and change
direction as specialized strategies suggest new
possibilities], but such expansion requizes a

 resident programimer to implement the neces-
sary changes. R . ,

Interactive systems work best when the user has -
frequent {“on demand’’) access to sound syn-
thesis; only a dedicated single-user system

" gnarantees such access, ind a multiple-user-
based intéractive system may have technical
problems providing its full synthesis capability
1o all system users. o :

The PODX é_yst‘em has been designed to operat

. within a pedagogical as well as a production en-

vironment, namely the contemporary music pro-

_gram in the Centre for the Arts 'a't_Simph Fraser
University {Truax 1982b), where a laboratory in-

structor is available to work with users. Moreover,
it runs on a DEC LSI-11/23 under the RT-11 operat-
ing system in a single-user environment. It is pri-
marily designed for studio compositional work, and
can be used in conjunction with the facilities of the
Electronic Music Studio or totally independently as
required. Finally, it'is designed to operate with a sig-
nificant research component in the sense of encour-
aging advanced stizdents to develop new algorithms
and design other system developments. Although
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no programmer is on staff as such, the authoer has
functioned in that capacity to develop all of the
software described here,

Types of Interaction

Three interaction methods that the USeT encounters
in working with various programs in the PODX sys-
- tem can be identified as foltows:

I. Typing on the terminal’s keyboard activates
- “specific data to be written directly into the
“memory of the DMX-1000 while it is run--
, ning a particular algerithm. :
9. The user starts and stops a host computer

' program to play back a score; the program - '

interacts with the DMX-1000 by schedul-
ing and initiating events, by updating en-
velope breakpoints, and by interrupting
currently sounding events to make room
for mew events to start when all available
- voices are in use. In this mode; the program
also reports event starts and the current .
time back to the user, but allows no user
control of the performance. ' _
‘3. One or more scores are performed, as in

(2], but the user has control of performance .

'variables via terminal keyboard input, such
as starting and stopping scores, changing

the speed of performarice, and transposing .
octaves, E : o

All three interactive modes are made possible be-

cause the DMX-1000 allows the host computer to -
“update either the PDMX-1000 data memory or its

program memory between program cycles, which

normally means once each sample period. When

such updating is under direct user control, as in the

first mode outlined above, the effect is similar to
the type of interaction found in an analog studio,
namely that one hears the sound change imme-

diately in response to a given action. In other words,

the sound does not stop while the new input is cal-
‘culated. This type of interaction works best with

the testing of continuous sounds, or what might be |

called oscillator mode. A parameter such as fre-
‘quency of amplitude can be adjusted while the -

oscill'at.or_c_onltirflues to function. A typical input for-
mat for this kind of control might be a line of data
such as the following:

Inc Frequency Amplitude ‘Ramp Inc¢
1 100 256 -1

The cursor {shown here as an underline} points to
one number, and the position of the cursor can be .

‘moved to the left or right by the left or right arrow

keys respectively. The first number is the size of the
increment, and when the up or down arrow key is '
depressed, this ihcrement isadded or subtracted re-
spectively to the mumber currently pointed to by

the cursor. The keyboard controller prog_ram multi-
plies this number by an appropriate scaler and -
writes the result directly into the DMX-1000 data
memory where it is used in the next program cycle

* to affect the sound. Since the arrow keys produce a

repetitive command when held down, a continuous
knob-type control can be obtained, with the addi- -
tional variable that if the increment step is larger
than one, a rapid series of discrete steps can be
heard in the parameter. In the above example, the -
ramp increment indicates the size of amplitude step
in an attack or decay of the _oscillatoi: {e.g., asmall -
ramp increment produces a slow attack]. A program

. convention such as moving the cursor to the far left

or right to reinitialize an attack or produce a decay ™

" can be included.

For DMX-1000 instruments with multiple voices,
a matrix of values, such as those in Table 1, can be
placed on the screen. The same kind of keyboard
control of each parameter can be achieved with the -
addition of a convention that some key, such as_
“line feed,” is used to move the cursor to another

line of the matrix, that is, to another oscillator.

Table 1 gives the example of a thirteen-voice ad-
ditive synthesis instrument where the user has indi-
cated the frequency of the fundamental and the.
spread of the harmonics: In this case the spread is
one, namely each harmonic is represented {e.g., a
spread of two would produce all the odd harmon-
ics). The amplitude, frequency, and ramp increment
of each component are separately adjustable; the .
attack and decay of each component can be ini-
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Table 1. Data displayed on _the screen for a thirteen-
voice additive synthesis instrument. The cursor { )
points to the carrent parameter being modified.

Inc Frequency Amplitude ~ Ramp Inc
i 1300 [ 1
1 1200 3 2
1 1100 5 1
1 1000 ) !
1 900 0 0
1 800 10 2
T . 700 - 7 -3
5 600 12 4
1 so0 .20 6
1 400 ’ 25 8

o1 300 40 7
1 : 200 45 9
1 100 60 10

tialized with the cursor control already described.
The attack and decay of the entire group of oscil-

lators can be effectuated with specially designated.

keys such as S{tart] and E(nd}.- .
These examples are taken from the WAVEX pro-

gratm, which is mainly concermed with creating and

testing waveforms stored in a user waveform library.
A varicty of synthesis algorithms using these wave-
forms is available within the program, and each has
the kind of single or multiple voice testing just
outlined, The value of such testing 1s mainly ped-
agogical, although the composer may also test out
some basic acoustic properties of material that will
 be worked with later in the format of the stored

-sound object. o

In the PODX system, & sound objéct 18 a set of

synthesis parameters that describe the envelope(s)
_ and timbral characteristics of a sound within a
given model such as FM [see Buxton 1978). Although
the sound may be tested at various frequencies and
maximum amplitudes, those two parameters are not
stored with the object. Rather, the object 1s later as-
signed to an event in a score that has an amplitude
and frequency, as well as a specific start time and
duration. The mode of interaction involved in the
testing of sound objects i8 of the second type listed
above, where instead of a score being performed, it
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is only a single sound that is repeated {with a half-
second silence between sounds) until-in-terrupted '
by the user. The user specifies the sound-object
parameters, hears it, changes a parameter, rehears
it, and so on, with the option of saving any given
version of it for later compositional use. Anl alter-
pative test mode allows the user to play the object
in either monophonic or polyphonic mode from the
keys of the terminal, each key producing a different
pitch and others, such as the integers 1 to 9, caus- '

ing octave tr_anspositions. ,

The program that controls the DMX-1000 for this
operation uses a typical cioqk—interrup't-'d;iven ap-
preach. For instance, with the FM sound obiect, the’

" dlock interrupt is set at I msec. The carrier and
- modulating frequencies and waveforms are pre-

loaded into the DMX-1000 and the envelope data
for both the carrier and modulating components are
precalculated in terms of individual ramp segments.

- The modulation index envelope i5 a linear ramp

with a variable start value, and when the elapsed
number of interrupts equals the duration of the -
ramp segment 1 milliseconds, the prograin initi-
ates the next ramp segment. Intermediate positions
along the ramp are calculated by the DMX-1000 al-
gorithm. The amplitude envelope for the carrier is
specified in centiseconds, and therefore on every
tenth interrupt the program checks whether a new
segment of that envelope’is 0 be initiated. This
envelope is logarithmic according to a table lookup
of logarithmic amplitude factors, and a double-
precision ramp value 18 used for accuracy. Arbitrary
waveforms can be assigned to both the carrier and
modulator, S '

From the user’s point of view, a sound abject is
displayed as a sct of data on the screen, including a
visual representation of the two envelopes, as in
Fig. 1. The modulation index envelope {indicated by
dots) may be entered in numerical form, or else
with graphic input. The latter kind of specifica-
tion, within the capabilities of the ASCH character
screen, involves using the arrow keys to move the
cursor around the screen on which the amplitude
envelope 15 displayed, along with a horizontal time
line and a vertical percentage scale. Envelope points
are plotied by hitting the X key, and envelope input
:s terminated by hitting the E key. The stored enve-
lope can be displayed and edited in a similar manner.
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is percentage of the maxi-
mum modulation index,
and the horizontal scale is
in centiseconds.

" Fig. 1. Graphic representa-
ion of EM object with am-
plitizde envelope (¥} and
modulation index enve-
Iope [.J: The vertical scale
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‘Scote Performance

The second interactive mode listed above (playing a
score] is not interactive from the user’s point of
- view in the same way as the first, that is, it does not
involve the user writing directly to the DMX-1000.
Instead, the user-specified score and sound object
set are available as a source of data that can be pre-
‘caleulated as a linked list arranged in chronological
" order according to the event start times. Note that
the envelope data for all oscillators need not be
chronologically ordered because once each envelope
is initiated, it proceeds independently of all others.
‘The format of the linked list might take the form of
Table 2. ' SR

What is needed to perform the score is a scheduler

program that handles the timing of event starts and
stops, envelope breakpoints, and possible strategies
‘when all available oscillators are in use. Three pro-
gram levels are operating in such a scheduler:

The DMX-1000 microcoded multiple-voice in- -
strument reads its current values from the
DMX-1000 data memory. ' ‘

A foreground operation in the host computer is-

" interrupt driven at a given clock rate (e.g.,
1 KHz]. For each voice, it checks whether the

90 100

DMX oscillator is on, whether it is off but
counting down till the instant when the next
event is to start, or off entirely. If the oscillator
is sounding, a further check is made as to
‘whether it is time to update any envelope
seégments. After the last envelope segment is -
finished, it indicates that the oscillator is off
and is available to be rescheduled for a new
. event. o L . -
A background operation in the host computer

" checks whether any voices in the DMX-1000

" instrument are free to be preloaded with data
for a new event. When such data is loaded, a
countdown time (in centiseconds) is set to al-
low the foreground operation to initiate it. In
addition, the background operation compares
the current time to the scheduled start time of
the next event, and when the difference be-
comes zero and the event is still not preloaded '
[because no voice is available), it initiates a pro-

“cedure to interrupt an existing event to make
way for it. Finally, it checks whether events
have been started and increments a countér on
the screen, as well as a timer when each second:
has elapsed. :

The DMX-1000 is limited'in the number of voices
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Table 2. Linked data list for each event in FM score
Base address + 0  Start time
: ' 3 Carrier sample
increment
4 Modulator sample
. incrément
6  Waveform no.offset
g Address of next event
dara. ,
Amplitude env. data
Modulation index env.
data . '

e

)
U1

it, can produce by the nurber of DMX- 1000 instruc- -
 late a nuch larger number by interrupting sounds

tions those voices require compared to the maxi-
mum number that can be computed in one sample
“period (256). An effective scheduler for an inter-
active program must therefore implement a strategy
to deal with cases where the user’s score requires
more voices than can de produced. For instance, i
six voices of monophonic £M can be produced at
" one tirne [as in PODX] and the user score requests 2
seventh to start while the six are all sounding, what
can or should be done? One option is to stop the
synthesis and report the “gyerflow,” as happens in -
Music-1000. However, the problem of reducing the
required score such that it “fits” will probably di-
vert the user from the compositional problem at -
hand. Another option would be to delay the seventh
eventuntil a voice is free to produce’it, but this
strategy distorts the time Structure of the score and
possibly confuses the user who might not know
‘how to interpret the results. The solution imposed
by PODX is to interrupt an existing event to make .
way for the new event, with the following rules, -
similar to those suggested by Kaplan {1981). The,
event that is closest to being finished is chosen to
be interrupted but only if it is in its decay portion.
The rationale is that an event that is past its steady
state will be the least poticeable if itis terminated
early {particularly if masked by five othet sounds},
whereas if itds cut during its steady state of attack
portien, even if ramped to zero, the effect may be
too aurally drastic. If none of the sounding events
“has reached its decay portion, the scheduler waits
until one does before interrupting it, thereby estab-
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7 lishing a trade-off between acoustic distortion and

distortion of the time structure. ‘
Another justification for the strategy of the
scheduler in cutting certain events is that in an in-

teractive composition environment, the sounding -

output need only be an adequate Tepresentation of

~ the structure being worked on, and 1ot necessarily

its final and best realization. Small transients pro-

“duced when sounds are terminated seem acceptable

o our users becauise they do not overly detract
from the perception of the hasic time structure

‘being performed. In an interactive context, the . -

qumber of voices that can’be simul_taneously pro-
duced by ‘the synthesizer may be less important
‘than the ability of a controlling program to simu-

and preserving the intended time st'ruqture..?l"he :
role of real-time sound synthesis in an interactive .

syster is to provide adequate feedback to the user

that allows further compositional choices 1o be
made, hot necessarily to generate the final result

~ immediately. Non-real-time sound pressure calcula-

tion can always be relied upon for such results once
all of the formative compositional decisions have
been made and interaction time 1s not a factor. .

~ Two further remarks about scheduling strategies
with the DMX-1000 can be made. The first 1s that
the program executed by the DMX-1000 can also

- be modified as easily as the data in its memory,
- even whilé a performance is beingffexé.cuted. When

changing one instruction causes the program to
switch between two types of operations, such as

“changing a ramp from aftack to decay, or switching

wavetables, or in Stereo mode, from left channel
leading to right channel leading, such 4 change can
be easily made by the scheduling progiam at the
start, or even during, the sound. Secondly, to pre-
vent possible collisions between requésts to the
DMX-1000 from the background opetration {preload-
ing data) and the foreground operation {updating en-
velopes), it is possible, and highly desirable, for the
background operation to check whether the fore-
ground operation is within a certain time, say

7 msec, of making such a request. Since preloading
has lesser priority, it can wait antil the high pri-
ority foreground traffic reaches a low point before
attempting to carry out its gperations. :
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User-Controlled Performance .

A further exténsion of score performance is pos-
sible, as described by mode 3 above (performing

. several scores], when the background program
monitors the keyboard for user commmands that al-
ter its operation. Although the user is not writing
directly into the DMX-1000’s memory, as in the
first mode, a similar type of command can change

. the behavior of the scheduling program. The idea

‘behind our program CONDUC is similar to the
CONDUCT program described by Buxton {1980],
only simpler. From one to six scores are precal-
culated as linked data lists. Although the events
within each score are fixed, the question of which -
event is to be performed next depends on how the
user ipitiates each score and modifies its speed,

- Separate bookkeeping is maintained for the start
time (and address) of the next event in each file, and

" # is the job of the scheduler to scan all such files to-

ascertain which event starts next. :
" The user controls the performance by manipulat-
" ‘ing an artay such as that shown in Table 3. Perfor- -
mance of a file is started by incremienting the “start

" éwitch” from O to 1, and is stopped by returning it

'to 0. Similarly, the “repeat switch allows the score
to cycle back to the beginning when it reaches the

- end. For simultaneous statts, a “synch switch” can
be set; all files with this switch set can be started

" and stopped with the S and E keys respectively. Two
interpretive variables are included within this

 model, namely a “speed factor” that is initialized at

956 for ease of program calculation, and an “octave

~ ‘transposition factor,” initialized at 5. Changes in

* the speed factor allow each entiy delay to be scaled,

shorter or longer, and changes in the octave trans-

* position factor multiply or divide frequencies by 2

or its powers. The program involved essentially

* adds a simultaneous fourth software layer to the

three mentioned above, but the ability of even a mi- -

croprocessor such as the LSI-11/23 to handle such
- opérations in real time attests to the fact that off-
~ loading sound sample calculation to the DMX-1000
allows the host computer, as interface, to interact’ -
- effectively with the user’s commands. Different
types of interactive control can be tested and op-
timized, and these could well include real-time gen-

~ Table 3. Sample pérformanc.e control data for_ the

CONDUC program

Filename Start/StOﬁ Cycle Speed Octave Syne .

TESTI 0 0 256 5 0
CTESTL . 1 1 256 4 0
TEST2 - 1 0 218 5 1
TEST3 1 1 256 . .5 1
TEST4 i 1 256 3 0

eration of the compositional result as well as its.
interpretation. -

The Basic Compositional System

As indicated already, the PODX system is com-
prised of a set of programs that include both general
and specialized compositional strategies. The most .
general part of the system i5 a set of programs that
handle what are called merge files or PODY7 files.
These files contain a control block that includes a
header describing its size, the number of events,
objects, envelopes, voices and so on, plus a user-

_specified “file comment.” In addition, the controk
~ block contains all of the sound objects and spectral

envelopes (i.e., moduiation indéx_envdopes for FMJ,

_up to a maximum of 160 objects and 31 envelopes..

Eollowing the control block(s) is the score data;
cach event is specified by entry delay and duration

. yalues in centiseconds, a maximum amplitade

(on an arbitrary scale of 1 to 60 representing log-
arithmic increments), a sound object number, anda
frequency. An additional voice number tagged to
each event is useful either for identification during
systematic or conditional editing [see below). The
voice number can also be used as an'indicator of

"gpatial position in a stercophonit performance. Al

though this score format was originally designed for
FM synthesis, it is general enough to be applied to -

“score other synthesis methods, namely waveshaping

and additive synthesis, The basic compositional
system involves the following set of programs de-
signed to handle the creation, testing, and perfor- .
mance of merge files:
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WAVEX: for creating, displaying, and testing wave-
forms stored in the user's waveform library;
" these waveforms may be used as part of the ‘
sound object. : ,
POD7X: for creating, interactively testing, and

storing sotnd objects; for performing COMPOSi-

tional files monaurally of in binaural steteo; or
for testing out a file with an alternate set of
sound objects.

PDFILX: for copying, editing, listing, and._péxfoi'mf .

ing all types of compositional files; or tor the
-~ creation of “dummy” files with default values’
or those derived from another user file; editing
includes both event-by-event editing and “sys-
tematic” editing whereby basic compositional
selection procedures {e.g., constant, linear,
exponential, sequerice, aleatoric, aleatoric se-
lection from a group of values, 1/f selection,
tendency masks) and operators (e.g., linear or
percentage change, random change, inversion, -
time-dependent percentage change] are avail-
able; edited files may be performed at any time.
MERGE: for mixing two files in their score for-

" mat into a third file; the second file can be
offset from the start time'of the first by any
amount; a choral effect variant can be atito-

‘matically constructed from any file with user
choice of number of voices, range of entry de-
lays, and percentage of frequency variation.
Score mixing can be performed itératively, or
else up to 10 files, each with its own offset, can
be specified and mixed in one operation.

L CONDUC: for performing several scores; as de-

“ gcribed above, CONDUC is a real-time version
*. of MERGE in which the user performs between
“one and six files by controlling when they start
and stop, by asking them to repeat when fin-
ished, and by controlling a speed factor and the
octave transposition. o

- As can be seen from this description, the three

-~ levels at which compositional decisions can be
made are those of the sound object, the score events,

- and the combination of scores. Each level can be
tested interactively and modified. Sound objects and
score events can be specified manually, that is,
parameter by parameter, or else can be generated as
a variant of an existing object or score, or specified

by the application of some systematic selection pro-
cedure, ranging from deterministic to stochastic. -
A particularly powerful aspect of the composition-
by-editing approach in the basic system is the intro-
duction of conditiondl editing. The condition 1s ex-
pressed in terms of a choesen parameter having its

values in somie range according to the predicates
“requal to,” “not equal to,” “less than or gqual to,”

and “greater than of equal t0.” Byxton {1981) has

‘described a similar notion, ramely context in score
editing. One'can specify, for instance, that a certain
editing operation applies to all events whose dura-

. tion values are less than or equal to 1 sec, o 10 fre-

quencies higher than a certain value in hertz. In an.

interdctive system, COmMpOSErs often judge the type

of modification that a given structur¢ needs in terms
¢ a systematic specification of the events t0 which

- the operation applies. Note that the operator in-

volved (e.g., percentage or random variation) can
apply to the same parameter referred to in the con-
ditional, for example, all frequencies in a certain
range are to be varied randomly ‘within a certain
percentage range. By adding the possibility of mul- -
tiple conditions fup to five}, one can €xpress quite
complex properties of a group of events, for ex-
ample, for frequencies above 200 Hz and less than -
400 Hz whose dirations are shorter than 0.5 sec,
and so on. ' -

) Sp'eciaiizeu'i: Compositional Programs

The PODX system ineludes specialized composi-
tional programs that implement specific com- _
positional strategies of a more powerful nature.
Whereas the basic set of programs described above
allows systematic selection of data and other opera-.
tions on that data, the specialized programs provide
a framework for exploring specific compositional -
problems. The files generated by the use of such

- programs can be subsequently used in all of the

other, more general cnes. At present, three such
specialized programs have been developed:
PODGX: Historically, this is the original com:-
" positional program {Truax 1977} that utilizes
the Poisson distribution for calculating fre-
quency/time points wifchin atendency mask.
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Sound objects are mapped onto those events
 through various seleetion methods, and the per-
formance is controlled by various “performance
: _variables” that interpret the score.
 PDMSKX: A program developed originally for
composing one layer of the author’s Arras
(Truax 1982a}. It calculates the entry delays
- and durations of the score events hased on how
" they fit within a tendency mask. A frequency
grid in hertz or percentage frequency change is
specified by the uset to produce a vertical den-
 sityofevents. . ' - :
PLOTX: A program for caleulating timbral tra-

* jectories {Truax 1983]. The user specifies a two-

" dimensional trajectory on the display screen

and generates scores that allow timbres to be
systematically related to that trajectory in a va-
riety of ways. ' :
Since density is a major variable within the - -
POI6X program for determining a stochastic time
structure, and simultaneous layers of sounds are oI
ganized by the other two programs mentioned, the

need for a real-time polyphonic sound generation fa-

cility is obvious. The incorporation of the DMX-
1000 into these programs (as indicated by the letter
X in their names| has given the users added incen-
tive t explore the compositional divections that.
' each facilitates. Although 2 full polyphonic reali-
zation may require norn-real-time synthesis cal-
culation, even a limited form of real-time sound
 {currently six voices of FM i nonaural mode and. -
five in binaural stereo} is very. useful for the ex-
plotatory stages of a composer’s work. Having such

synthesis available may also encourage more experi- -

mentation since it can be done quickly and @fﬁ- 7
ciently. In addition, a new compositional direction
may require alternate synthesis procedures, as with
PLOTX, which needs linear amplitude envelopes
for its realization. The microprogrammability of the
DMX-1000 aids such new developments.’ '
 The DMX-1000 is also used in the non-real-time
synthesis facility (POD?7] that mixes its calculated
sound pressure functions on disk and transfers them

" to digital ma gnetic tape. The completed tape 18

played back via the dircct-memory-access (DMA)

~ interface to the DMX-1000 where the samples are

~ converted with its 16-bit digital-to-analog convert-

~ers {DACs). Tﬁe technique of data transfer is a stan-

dard multiple buffer approach where samples are

read from magtape into memory while a parallel op- '

eration tranéfer:s_ them out to the DMX-1000. The
limiting speed factor is the speed of the tape (45 ips), -
and the resulting sampling rate is 32 KHz tor mon--

- aural mode, and half that per channel of stereo.

Since the full calculating potential of the DMX-

1000 is not being used in such a transfer, recent

program developments have added optional “post-
processing™ of the stored data, including digital re-
verberation and filtering. R
Real-time digital signal processing is well within
the capabilities of the DMX, either with Music-
1000 or with custom-designed software with simi-

_lar interactive potential to that described here. The
"digital defay and analog-to-digital converter {ADC)

units marketed by Digital Music Systems are
specifically designed for such work; although this
hardware is Dot included in our present system, we
have begun to develop some software in this area
using ather converters and the L§I-11's own mem-
ory for operations with digital delay.

© Conclusion

The advent of digita] hardware designed for sound
synthesis and signal processing is important not
only for live performance instruments but also for

the development and use of interactive composition

systems to provide the aural féedback of composi-

" tional results. With suitable programming, various -

types of interaction with such a device can be im- -

plemented where the host computer performs 2

large amount of data intérpretation and generation,
~as well as complex scheduling operations. With

syntliesis handled by hardware, the host computer
can function as an “intelligent” interface between

 the user and the synthesizer. Therefore, such de-
" vices can. be used both to facilitate the compo-
“sitional process and to investigate new formis of
_composer-machine interaction. '

Although more hardware synthesizers are becom-
ing available, very few at present are microprogram- -
mabte like the DMX:1000. For any compositional

facility that is intended to be open-ended and/or re-
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search-oriented, this characteristic is of the greatest

importance. Current synthesis procedures can be
refined and custom designed for any particular dp-
plication, and as new procedures are suggested, they
can be easily 1mp1emented and integrated within an
~ interactive testing facility. It seems unfortunate
that the concept of microprogrammability isnot
more widely used in computer music system devel-
opments since its flexibility is ideally suited to a
field that is rapidly expanding.
© - The PODX system is the author’s ongomg and
'constantly developing series of programs that ex-
ploits the interactive potential of the DMX-1000
within the context of interactive studio COmMposi-
tion. The software is available free of charge to
noncommercial studios. It is written entirely ii
FORTRAN and Macro 11 Assembler, plus DMX-
1000 microcode, and assumes the RT-11 operating
- systems. One hopes that the availability of a variety
of alternative software packages will encourage the
musical usefulness of the DMX-1000.
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