chapter two

The commonness, and rarity,
of species'

In no environment, whether tropical or temperate, terrestrial or aquatic,
are all species equally common. Instead, it is universally the case that
some are very abundant, others only moderately common, and the
remainder—often the majority —rare. This pattern is repeated across
taxonomic groups (Figure 2.1). Indeed, the adoption, by egrly phytogeog-
raphers such as Tansley, of characteristic species to cla§31fy plant associ-
ations (Harper 1982), implicitly recognizes that certain .mem.bers of an
assemblage, by virtue of their abundance, help .deﬁn'e its 1.dent.1ty. .
Many people, as Chapter 1 observed, treat biological diversity, or bio-
diversity, as synonymous with species richne.:s.s. How?ver, the fact that
species abundances differ means that the additional d1mens1on of even-
ness can be used to help define and discriminate ecolf)gl.cal comx'numtls:S
(Figure 2.2). Evenness? is simply a measure of how similar species are in
their abundances. Thus, an assemblage in which most species are equall-
ly abundant is one that has high evenness. The obverse of evenness is
dominance, which, as the name implies, is the extent to which one ora
few species dominate the community. It is conventlopal to equate hlgh
diversity with high evenness (equivalent to low dominance} and a vari-
ety of measures have been devised to encapsulate these concepts (see
Chapter 4 for details).
The observation that species vary in abundance also prompted the dg-
velopment of species abundance models. Motomura’s (1932} geome':trw

1 After Preston {1948} . ' _
2 Lloyd and Ghelardi (1964} introduced the term “equitability” to mean the degree to which the rela

tive abundance distribution approaches the broken stick distribution. Jt is not asynonym for ev?’nness.
. S
Cotgreave and Harvey {1994) point out that the usual meaning of equitability is resonableness.
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Figure 2.1 Variation in the relative abundance of species in three natural assemblages.
{a) Relative abundance of larger mammals in 11 counties of southwestern Georgia and
northwestern Florida {from table 1, McKeever 1959). A total of 2,688 individuals were
collected during 31,145 trap nights. {b) Relative abundance (number of individuals} of
leeches collected from 87 lotic habitats in Colorado {from table 1, Herrmann 1970). (c)
Relative abundance of trees and shrubs found between 1,680and 1,920m in the central
Siskiyou Mountains in Oregon and California. Abundance represents the number of
stems {>1 cm diameter) in 5 ha. (Data from table 12, Whittaker 1960.}

series and Fisher’s (Fisher et al. 1943) logarithmic series represented the
first attempts to mathematically describe the relationship between the
number of species and the number of individuals in those species. Since
then a variety of distributions have been devised or borrowed from other
sources. Some of these models {discussed in detail below} are more suc-
cessful than others at describing species abundance distributions, but
none are universally applicable to all ecological assemblages. This is
because both species richness, and the degree of inequality in species
abundances, vary amongst assemblages. In some cases one or two species
dominate, with the remainder being infrequent or rare. In other situa-
tions species abundances are rather more equal, though never totally
uniform. A further complication arises from the fact that sampling may
provide an incomplete picture of the underlying species abundance dis-
tribution in the assemblage under investigation {see discussion below
and in Chapter 4). Yet, even with these constraints, species abundance
distributions have the power to shed light on the processes that deter-
mine the biological diversity of an assemblage. This stems from the
assumption that the abundance of a species, to some extent at least,
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Figure 2.2 A survey of fish diversity in Trinidad revealed two assemblages vyith equ}::lh
species richness but different evenness. (a) The abundance gf the §1ght species of fish in
the Innis River and Cat’s Hill River in Trinidad is shown using a linear scale. {b) The same
data are expressed as relative abundance and presented in the form of. a rapk/abundarice
plot. Note the logarithmic scale. The greater evenness of the Cat’s Hl‘ll River assemblage
is evident from the shallower slope in the rank/abundance plot. In this assemblage the.
most dominant species {Astyanax bimaculatus) comprised 28% of the t0t~a1 catch. This
contrasts with the less even Innis River in which the most dominant species .
{Hypostomus robinii) represented 76% of the sample. (Data from study described by

Phillip 1998.)

reflects its success at competing for limited resources (Figure 2.3). No as-
semblage has infinite resources. Rather, there are always one or more fac-
tors that set the upper limit to the number of individual's, and ultimately
species, that can be supported. Classic examples of limited resources are
the light reaching the floor of a tropical rain forest (Bazzaz & Pl‘CkCtt
1980}, nutrients in the soil (Grime 1973, 1979), and the space a\.'allab'le
for sessile organisms on rocky shores (Connell 1961). {The relationship
between productivity and patterns of abundance can be complex—
a point well articulated elsewhere (Huston 1994; Rosenzweig 1995;
Gaston & Blackburn 2000; Godfray & Lawton 2001).) In one of the most
comprehensive reviews of the subject to date, Tokeshi (1993) strongly
advocates the study of species abundance relationships. He argues that
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Figure 2.3 The relationship between niche apportionment and relative abundance. (a}
Niche space (represented as a pie diagram) being successively carved up by five species
each of which takes 0.6 of the remaining resources. Thus, species 1 pre-empts 0.6 of all
resources, species 2 takes 0.6 of whatis left {i.e., 0.6 of the remaining 0.4 which equals
0.24}and so on until all have been accommodated. {b} An illustration of the assumption
that this niche apportionment is reflected in the relative abundances of the five species.
This outcome is consistent with the geometric series when k= 0.6,

if biodiversity is accepted as something worth studying (Chapter 1), it
follows that species abundance patterns deserve equal and possibly even
greater attention. The goal of this chapter is to review the models pro-
posed to account for the distribution of species abundances in ecological
assemblages. It provides guidelines on the presentation and analysis of
species abundance data and concludes by discussing the concept of rar-
ity in the context of species abundance distributions. Some {though not
all) of the methods assume that abundance comes in discrete units called
individuals. In other cases abundance is assumed to be continuous (bio-
mass is an example). I touch on these matters as they arise and explore
the issue of different types of abundance measure further in Chapter 5.

Methods of plotting species abundance data

Comparative studies of diversity are often impeded by the variety of
methods used to display species abundance data. Different investigators
have visualized the species abundance distribution in different ways.
One of the best known and most informative methods is the rank/abun-
dance plot or dominance/diversity curve (Figure 2.4). In this species are
plotted in sequence from most to least abundant along the horizontal (or
x) axis. Their abundances are typically displayed in a log,, format (on the
y axis)—so that species whose abundances span several orders of magni-
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Figure 2.4 An example of arank/abundance or Whittaker plot. The y axis shows the
relative abundance of species [plotted using a log;, scale) while the x axis ragks each
species in order from most to least abundant. The three lines show the de.nsgles of .trees',
in relation to elevation, on quartz diorite in the central Siskiyou Mountains in California
and Oregon. Species richness decreases, and assemblages become less even (asindicated
by increasingly steeper slopes) at higher altitudes. (Data from table 12, Whittaker 1960.}

tude can be easily accommodated on the same graph. In addition, and in
order to facilitate comparison between different data sets or assem-
blages, proportional or percentage abundances are often us:ed. This sim-
ply means that the abundance of all species together is demgnat.ed as 1.0
or 100% and that the relative abundance of the each species is given as a
proportion or percentage of the total. Krebs (1999) recomrpepds that
these plots be termed Whittaker plots in celebration of their inventor
{Whittaker 1965).

One advantage of a rank/abundance plot is that contrasting patterns of
species richness are clearly displayed. Anotheris that when the.re arerel-
atively few species all the information concerning their relative ab}ln-
dances is clearly visible, whereas it would be inefficiently displayedin a
histogram format (Wilson 1991). Furthermore, rank/abundance plots
highlight differences in evenness amongst assemblages (Nee et al. 1992;
Tokeshi 1993; Smith & Wilson 1996} {Figure 2.5). However, if S (the num-
ber of species)is moderately large the logarithmic transforrnati.on of pro-
portional abundances can have the effect of de-emphasizing differences
inevenness. Rank/abundance plots are a particularly effective method of
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Figure 2.5 (a} Rank/abundance plots illustrating the typical shape of three well-known
species abundance models: geometric series, log normal, and broken stick. {b) Empirical
rank/abundance plots (after Whittaker 1970). The three assemblages are nestingbirdsina
deciduous forest, West Virginia, vascular plants in a deciduous cove forest in the Great
Smoky Mountains, Tennessee, and vascular plant species from subalpine fir forest, alsoin
the Great Smoky Mountains. Comparison with (a} suggests that the best descriptors of
these three assemblages are the broken stick, lognormal, and geometric series,
respectively —but see text for further discussion of this point. {Redrawn with kind
permission of Kluwer Academic Publishers from fig. 2.4, Magurran 1988.)

illustrating changes through succession or following an environmental
impact. Indeed, it is often recommended (see, for example, Krebs 1999)
that the first thing an investigator should do with species abundance
data is to plot them as a rank/abundance graph.

The shape of the rank/abundance plot is often used to infer which
species abundance model best describes the data. Steep plots signify
assemblages with high dominance, such as might be found in a geomet-
ric or log series distribution, while shallower slopes imply the higher
evenness consistent with a log normal or even a broken stick model (Fig-
ure 2.5; see also below for further discussion of species abundance mod-
els). However, as Wilson (1991) notes, the curves of the different models
have rarely been formally fitted to empirical data. Even Whittaker’s
(1970) well-known and widely reproduced log normal curve may have
been fitted by eye (Wilson 1991). Wilson {1991} provides methods for fit-
ting this and other models to rank/abundance {dominance/ diversity)
curves. These are discussed in the section (p. 43} on goodness of fit tests
below.
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Figure 2.6 k-dominance plots for breeding birds at “Neotoma” (table II, Preston 1960).
Censuses from 1923 and 1940 are compared. The latter plot is the more elevated,
indicating that this assemblage is less diverse.

There are further ways of presenting species abundance data in a
ranked format. For instance, the k-dominance plot {Lambshead et al.
1983; Platt et al. 1984) shows percentage cumulative abundance [y axis)
in relation to species rank or log species rank (x axis) {Figure 2.6}. Under
this plotting method more elevated curves represent the less diverse as-
semblages. Abundance/biomass comparison or ABC curves (Figure 2.7),
introduced by Warwick (1986}, are a variant of the method. Here k-
dominance plots are constructed separately using two measures of abun-
dance: the number of individuals and biomass. The relationship between
the resulting curves is then used to make inferences about the level of
disturbance, pollution-induced or otherwise, affecting the assemblage
(see Figure 5.8). The method was developed for benthic macrofauna and
continues to be a useful technique in this context (see, for example,
Kaiser et al. 2000}, though it has been relatively little explored in others.
ABC curves are revisited in Chapter 5 where their application in the
measurement of ecological diversity will be considered. The Q statistic
{Kempton & Taylor 1978; see also Chapter 4 and Figure 4.2) plots the
cumulative number of species (y axis) against log abundance (x axis).
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Figure 2.7 ABC curves showing expected k-dominance curves comparing biomass and
number of individuals or abundance in (a “unpolluted,” (b} “moderately polluted,” and {c}
“grossly polluted” conditions. Species are ranked from most to least important {in terms
of either number of individuals or biomass] along the (logged) x axis. Thez y axis displays
the cumulative abundance {as a percentage) of these species. In undisturbed assemblages
one or two species are dominant in terms of biomass. This has the effect of elevating the
biomass curve relative to the abundance {individuals) curve. In contrast, highly disturbed
assemblages are expected to have a few species with very large numbers of individuals,
but because these species are small bodied they do not dominate the biomass, In such
circumstances the abundance curve lies above the biomass curve. Intermediate
conditions are characterized by curves that overlap and may cross several times. See
Warwick {1986) for details, and Figure 5.8 which compares ABC curves for disturbed and
undisturbed fish assemblages in Trinidad. (Redrawn with permission from Clarke &
Warwick 2001a.)

Investigators of the broken stick model (for example, King 1964) often
show relative abundance of species, in a linear scale, on the y axis and
logged species sequences, in order from most abundant to least abun-
dant, on the x axis. In this format a broken stick distribution is manifest-

- ed as a straight line.

Other plotting methods are also popular. Advocates of the log series
model, for example, have conventionally favored a frequency distribu-
tion in which the number of species (y axis) is displayed in relation to the
number of individuals per species (Figure 2.8). A variant of this plot is
typically employed when the log normal is chosen. Here the abundance
classes on the x axis are presented on a log scale (Figure 2.9). This type of
graph is sometimes dubbed a “Preston plot” (Hubbell 2001} in recogni-
tion of Preston’s (1948) pioneering use of the log normal model. Each
plotting method emphasizes a different characteristic of the species
abundance data. In the conventional log series plot the eye is drawn to
the many rare species and to the fact that the mode of the graph falls
in the lowest abundance class (represented by a single individual. In
contrast, the log transformation of the x axis often has the effect of
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Figure 2.8 Frequency of species in relation to abundance. These graphs show the
relationship between the number of species and the number of individuals in two
assemblages: (a) freshwater algae in small ponds in northeastern Spain and {b} beetles
found in the River Thames, UK. In both cases the mode falls in the smallest class
(represented by a single individual). These graphs may be referred to as “Fisher” plots
following R. A. Fisher’s pioneering use of the log series model. {Redrawn with kind
permission of Kluwer Academic Publishers from fig. 2.3, Magurran 1988; based on data
from Williams 1964.)

shifting the mode to the right, thereby revealing a log normal pattern of
species abundance.

In 1975 May argued that plotting methods needed to be standardized to
facilitate the comparison of different data sets. In 1988 I concluded that
there had been little progress towards that goal (Magurran 1988). None
the less since that time the rank/abundance plot has gained in
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Figure 2.9 Frequency of species in relation to abundance. A “normal” bell-shaped curve of
species frequencies may be achieved by logging species abundances. Three log bases (2, 3,
and 10} have been used for this purpose. The choice of base is largely a matter of scale ~ it is
clearly inappropriate to use log,,, if the abundance of the most abundant species is <102 or
to adopt log, if it is >106. Less obviously, the selection of one base in preference to another
can determine whether a mode is present. This is a crucial consideration since the
presence of a mode is often used to infer “log normality” in a distribution. (The position of
the class boundaries can also affect the likelihood of detecting a mode, see text for further
details.) The figure illustrates three assemblages, each plotted using a different log base.

(a) Log,: diversity of ground vegetation in a deciduous woodland at Banagher, Northern
Ireland. This usage follows Preston {1948). Species abundances are expressed in terms

of doublings of the number of individuals. For example, successive classes could be <2
individuals, 34 individuals, 5-8 individuals, 9-16 individuals, and so on. It is
conventional to refer to these classes as octaves. (b} Log,: snakes in Panama. In this
example the upper bounds of the classes are 1, 4, 13, 40, 121, 364, and 1,093 individuals. (c)
Log,: British birds. Classes in log,, represent increases in order of magnitude: 1, 10, 100,
1,000, and so on. In all cases the y axis shows the number of species per class. These graphs
may be referred to as “Preston” plots. (Data in (b) and (¢} from Williams 1964; redrawn
with kind permission of Kluwer Academic Publishers from fig. 2.7, Magurran 1988.)

popularity (Krebs 1999). Perhaps standardization of methods is at last on
the horizon.

Species abundance models

It isnot simply plotting methods that have proliferated. A diverse range
of models has also been developed to describe species abundance data. In
essence there are two types. On one hand are the so-called statistical
models, such as the log series (Fisher et al. 1943), that were initially de-
vised as an empirical fit to observed data. The advantage of this type of
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model is that it enables the investigator to objectively compare different
assemblages. In some cases a parameter of the distribution, such as o in
the case of the log series, can be used as an index of diversity. Alterna-
tively, the goal may be to explain, rather than merely describe, the rela-
tive abundances of species in an assemblage. To do this it is necessary to
predict how available niche space might be divided amongst the con-
stituent species and then ask whether the observed species abundances
match this expectation. Of course, there are many different ways in
which resources might be subdivided amongst species and these biologi-
cal or theoretical models represent different scenarios of niche appor-
tionment. For example, Tokeshi’s (1990, 1993) dominance pre-emption
model envisages a situation where the niche space of the least abundant
species in an assemblage is invariably invaded by a colonizing species.
This contrasts with his dominance decay model in which the niche of
the most dominant (that is the most abundant) species is targeted. The
dominance pre-emption process generates a very uneven community in
which the status of the most abundant species is preserved while the
least abundant species lose resources and become progressively rarer
over time. In contrast, Tokeshi’s dominance decay model produces a
community more even than the well-known broken stick model. These
models are discussed in more detail below [see p. 50).

Although it is convenient to classify species abundance models as sta-
tistical or biological, in reality the distinction can be blurred (Table 2.1).
Several of the statistical models, notably the log series and log normal
(see below and p. 32}, have acquired biological explanations since their
original formulation. It is also important to remember that the fact that
a natural community displays a species abundance relationship in line
with the one predicted by a specific model does not in itself vindicate the
assumptions on which the model is based. The conclusion that must be
drawn in such cases is simply that the model cannot be rejected and that
additional investigation, possibly including experimental manipula-
tion, will be necessary for a fuller understanding of niche apportion-
ment. Sampling may mask the true form of the species abundance
distribution (Chapter 5). A further complication is that more than one
biological or statistical model may describe the assemblage in question.
This point is considered in detail on p. 43.

Statistical models

Logseries

Fisher’s logarithmic series model (Fisher et al. 1943) represented one of
the first attempts to describe mathematically the relationship between
the number of species and the number of individuals in those species.
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Table2.1 The classification of species abundance models (after Tokeshi 1993, 1999},

Type of model Model Reference
Statistical Log series Fisher etal. 1934
Log normal Preston 1948
Negative binomial Anscombe 1950
Bliss & Fisher 1953
Zipf-Mandelbrot Zipf 1949

Mandelbrot 1977
Mandelbrot 1982

Biological
Niche based Geometric series Motomura 1932
Particulate niche MacArthur 1957
Overlapping niche MacArthur 1957
Broken stick MacArthur 1957
MacArthur fraction Tokeshi 1990
Dominance pre-emption Tokeshi 1990
Random fraction Tokeshi 1990
Sugihara’s sequential breakage Sugihara 1980
Dominance decay Tokeshi 1990
Random assortment Tokeshi 1990
Compaosite Tokeshi 1990
Power fraction Tokeshi 1996
Non-niche based Dynamic model Hughes 1984, 1986
Other Neutral model Caswell 1976
Neutral model Hubbell 2001

Although originally used as a convenient fit to empirical data, its wide
application, especially in entomological research, has led to a thorough
examination of its properties (Taylor 1978), as well as speculation about
its biological meaning (see below). The log series model is straight-
forward to fit (Worked example 1). One of its parameters, o, has proved
an informative and robust diversity measure (Chapter 4).

The log series takes the form:

9 n

ox? ox? ox

a2t 3! n

with ax being the number of species predicted to have one individual,
ax?/2 those with two, and so on (Fisher et al. 1943; Poole 1974). Since 0 <
x<1,andboth ocand x are constants (for the purposes of fitting the model
toa specified data set), the expected number of species will be greatest in
the smallest abundance class (of one individual) and decline thereafter. It
should also be noted that the log series distribution, in contrast to many
othermodels, expects that species abundance data will come in the form
of numbers of individuals. The log series is therefore inappropriate if



30 Chapter 2
'I —
0.9 4
x 0.8 4
0.7
0.6

1 T T 1
1 10 100 1,000 10,000
N/S

Figure 2.10 Values of x in relation to N/S. See text for details.

biomass or some other noninteger measures of abundance is used.
Hayek and Buzas {1997) explain how to fit the model using occurrence
{frequency) data.

x is estimated from the iterative solution of:

/N =[(1-x)/x] - [-In{l-x)]

where Nis the total number of individuals.

In practice x is almost always >0.9 and never >1.0. If the ratio N/S >20
then x>0.99 {Poole 1974). Krebs {1999, p. 426) lists values of x for various
values of N/S. This relationship is illustrated in Figure 2.10.

Two parameters, o, the logseries index, and N, summarize the distrib-
ution completely, and are related by:

S=aln(l+N/a)

where o is an index of diversity. Indeed, since x often approximates to 1,
o. represents the number of extremely rare species, where only a single
individual is expected.

o has been widely used, and remains popular (Taylor 1978) despite the
vagaries of index fashion. It is also a robust measure, as well as one that
can be used even when the data do not conform to a log series distribu-
tion (see Chapter 4 for a discussion of o as a diversity measure).

The index may be obtained from the equation:

N(1-x)

o=

T
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with confidence limits set by:

0.693147a

[In(x/(1-x)-1)]"

var(a) =

as proposed by Anscombe (1950}. Note that 0.693147 =1n2. Both Hayek
and Buzas {1997} and Krebs {1999} provide more details. Hayek and Buzas
(1997} advise that this formula should not be used when N/S < 1.44 or
when x < 0.50. However, as such values are atypical, this restriction is
unlikely to be burdensome.

Asvalues of aare normally distributed, attaching confidence limits to
an estimate of a is simple (Hayek & Buzas 1997). The first step is to ob-
tain the standard error of a by taking the square root of the variance.
(Hayek and Buzas (1997) remind us that because we are dealing with the
sampling variance of a population value, taking the square root of the
variance produces the standard error rather than the standard deviation.)
This standard error can then be multiplied by 1.96 to yield 95% confi-
dence limits.

Alternatively, o can be deduced from values of S and N using the
nomograph provided by Southwood and Henderson (2000}, following
Williams (1964).

To fit the log series model itself one simply calculates the number of
species expected in each abundance class and, using a goodness of fit test
{see p. 43), compares this with the number of species actually observed
{see Worked example 1).

It should also be noted that the log series can arise as a sampling distrib-
ution. This will occur if sampling has been insufficient to fully unveil an
underlyinglognormal distribution {see Figure 2.14 for more explanation).

Although the log series was initially proposed as a statistical model,
thatis one making no assumptions about the manner in which speciesin
an assemblage share resources, its wide application prompted biologists
to consider the ecological processes that might underpin it. These are
most easily reviewed inrelation to the geometric series (discussed below
in the context of niche apportionment models), to which the log series is
closely related (May 1975). A geometric series distribution of species
abundances is predicted to occur when species arrive at an unsaturated
habitat at regular intervals of time, and occupy fractions of remaining
niche space. A log series pattern, by contrast, will result if the intervals
between the arrival of these species are random rather than regular
(Boswell & Patil 1971; May 1975). The logseries produces a slightly more
even distribution of species abundances than the geometric series,
though one less even than the log normal distribution {see below). The
small number of abundant species and the large proportion of “rare”
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species predicted by the log series imply that, as is the case with the geo-
metric series, it will be most applicable in situations where one or a few
factors dominate the ecology of an assemblage. Forinstance, I found that
the species abundances of ground flora in an Irish conifer woodland,
where light is limited, followed a log series distribution (Magurran 1988)
(Figure 2.11). In can be hard to distinguish between these models in
terms of their fit to empirical data. Thomas and Shattock (1986), for ex-
ample, showed that both the geometric series and the log series models
adequately described the species abundance patterns of filamentous
fungi on the grass Lolium perenne.

Lognormal

Distribution

The log normal distribution was first applied to abundance data by Pre-
stonin 1948 in his classic paper on the commonness and rarity of species.
Preston plotted species abundances using log, and termed the resulting
classes “octaves.” These octaves represent doublings in species abun-
dance (see, for example, Figure 2.9). It is not, however, necessary to use
log,; any log base is valid and log, and log, , are two common alternatives
(Figure 2.9). May (1975) provides a thorough and lucid discussion of the
model.
The distribution is traditionally written in the form:

S(R) = S, exp(-a?R?)

where S(R) = the number of species in the Rth octave {i.e., class) to the
right, and to the left, of the symmetric curve; S;=the number of species in
the modal octave; and a =({26%)"1/2=the inverse width of the distribution.

Empirical studies show that a is usually =0.2 (Whittaker 1972; May
1975). A further parameter of the log normal, y, emerges when a curve of
the number of individuals in each octave, the so-called individuals
curve, is superimposed on the species curve of the log normal (Figure
2.12). Tt is defined as:

Y=Ry /Ry, =In2/[2a(Ins,) ’]

where Ry, = the modal octave of the individuals curve; and R___ = the
octave in the species curve containing the most abundant species
{(May 1975).

In many cases the crest (or mode) of the individuals curve (R, coin-
cides with the upper tail of the-species curve (R to give Y=~ 1. (This

max)
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Figure 2.11 Rank/abundance plot of ground vegetation in an Irish conifer plantation. The
slope of the graph is indicative of a log series distribution. The inset shows the cumulative
observed {solid line} and expected {dotted line) number of species in relation to abundance
class {in octaves) for the same data set. The congruence between the observed and
expected distributions confirms that the data do indeed follow a log series {D=0.06,
P>0.05, Kolmogorov-Smirnow test; sce Worked example 1).
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Figure 2.12 Features of the lognormal distribution. The striped curve {species curve}
shows the distribution of species amongst classes. If these classes are in log, - that is
doublings in numbers of individuals - they are referred to as octaves (see Figure 2.9). Since
the distribution is symmetric, classes in the same position on either side of the mode are
expected to have equal numbers of species. For this reason it is conventional to term the
modal class 0 and torefer to classes to the right of the mode as 1, 2, 3, etc. and those on

its left hand side as —1, -2, -3, etc. R,  marks the position of the least abundant species
while R, shows the expected position of the most abundant species. (R, =—R;..) The
number of species in each class is S(R}. In this example the number of species in the modal
class Sy} would be 18. The species curve can be superimposed by the individuals curve
{hatched) representing the number of individuals present in each class. The class with the
most individuals {in other words the one in which the mode of the individuals curve
occurs] is termed Ry. A lognormal distribution is described as canonical when R, and

R ,.x coincide to give the value y=1 (where y=R,/R_ ). (Redrawn with kind permission
of Kluwer Academic Publishers from fig. 2.12, Magurran 1988; after May 1975.)

simply means that there are more individuals in class R___than in any
other class; it is an empirical rule that holds true for many different data
sets.) In such log normals, described by Preston {1962} as “canonical”
(Preston’s canonical hypothesis), the standard deviation is constrained
between narrow limits (resulting in a = 0.2). In other words, the standard
deviation (s.d.) of species abundances in reasonably large assemblages
(S > 100), when these abundances are expressed in a log, scale, is around
4. Nee et al. {1992, 1993) show why this makes biological sense. They
note that, given a log normal distribution, 99% of species would be ex-
pected to occur within +3 s.d. of the mean. Thus, should the standard de-
viation be 4, the range of abundances will be 224. This can be illustrated
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as follows. The 6 s.d. needed to encompass 99% of species are multiplied
by the value of the standard deviation {4) to give 24, and because a log,
scale is being used to measure abundance, the range of these abundances
is 22*. Since the abundance of the least abundant species is 1, the most
abundant will have 16,777,216 individuals. This number is plausible for
many taxa. On the other hand, larger standard deviations generate upper
limits of abundance that are unlikely to be met. If, for example, the stan-
dard deviation is 7.5, the most abundant species would have 3.5+ 103 in-
dividuals, an improbable tally for most vertebrates at least. If high levels
of abundance can genuinely be achieved, as seems to be the case for taxa
such as diatoms (Hutchinson 1967; Nee et al. 1992, and the standard de-
viation remains around 4 (Sugihara 1980), the implication is that the
abundance of the least abundant species is also considerable. It is rela-
tively easy to explain why the standard deviation will rarely be much
greater than 4, but what prevents it from being considerably less? Why
are the most abundant species not just twice, or even 10 times as abun-
dant as the rarer ones? Nee et al’s {1992) answer is that basic differences
in biology between species, including niche requirements and trophic
level, inevitably generate substantial differences in abundance.

Statistical and biological explanations for the log normal

The majority of large assemblages studied by ecologists appear to follow
a log normal pattern of species abundance (May 1975; Sugihara 1980;
Gaston & Blackburn 2000; Longino et al. 2002} and many of these log
normal distributions can be described as canonical. Such pervasive pat-
terns invariably prompt a search for ecological explanations. May {1975},
however, notes that many other large data sets, such as the distribution
of human populations in the world, as well as of wealth within countries
such as the USA, are log normal in character. He attributes the near
ubiquity of the log normal, and the prevalence of its canonical form, to
the mathematical properties of large data sets. May (1975) points out that
the log normal is a consequence of the central limit theorem, which
states that when alarge number of factors act to determine the amount of
a variable, random variation in those factors will result in the variable
being normally distributed. This effect becomes more pronounced as
the number of determining factors increases. In the case of log normal
distributions of species abundance data, the variable is the number of
individuals per species [standardized by a log transformation) and the de-
termining factors are all the processes that govern community ecology
{but see also Pielou 1975; Gaston & Blackburn 2000). Speciose assem-
blages (with S > 200) are particularly likely to be canonical (Ugland &
Gray 1982). Ugland and Gray {1982) have also argued that ecological
processes need not be invoked to explain the canonical log normal.
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Others have none the less advocated a stronger biological underpin-
ning. Sugihara {1980) argued that many natural assemblages, including
those of birds, moths, gastropods, plants, and diatoms, fit the canonical
hypothesis too well for it to be a statistical artifact. Following Pielou
{1975), Sugihara {1980} developed a model in which niche space is se-
quentially split into S pieces. A split occurs each time a new species in-
vades the assemblage and competes for existing resources. During each
invasion an existing niche is targeted at random. This means that all
niches, irrespective of their size, are equally likely to be selected for divi-
sion (in other niche-based models such as MacArthur’s broken stick and
Tokeshi’s power fraction the probability that a niche will be selected for
splitting is some function of its size; see p. 55). If a niche is broken at ran-
dom the larger of the two fragments will represent between 50% and
100% of its original size. On average, then (after many such divisions),
the larger of the new niches will be 75% of the old one. Sugihara repre-
sented this by assuminga 75% :25% split at each division. The outcome
resembles a canonical log normal distribution.

This approach treats the log normal distribution as one of niche appor-
tionment—that is a biological model —rather than the statistical model
it was initially conceived as. Indeed Tokeshi (1999) notes that Sugihara’s
model can be viewed as a special case of the random fraction model
(described below), albeit with some important distinctions (see Tokeshi
{1996, 1999) for details, and a critique of some of Sugihara’s assump-
tions). Drozd and Novotny’s (2000} PowerNiche program can be used to
calculate expected species abundances.

Unveiling the distribution

In addition to the conceptual difficulty of deciding whether, and to what
extent, the log normal might encapsulate biological processes, investi-
gators face practical problems in fitting it to empirical data. Like its nor-
mal sibling, the log normal distribution is a symmetric, bell-shaped
curve. If, however, the data to which the curve is to be fitted derive from
a sample, the left-hand portion of the curve, representing the rare and
harder to sample species, may be obscured. Preston (1948) termed the
truncation point of the curve the veil line and argued that the smaller the
sample the further this veil line will be from the origin of the curve
(Figure 2.13). In many data sets only the portion of the curve to the right
of the mode is visible. It is only in large data collections, such as those
covering wide biogeographic areas or derived from long periods of inten-
sive sampling, that the full curve is likely to be revealed. Longino et al.’s
(2002) investigation of ant species at La Selva in Costa Rica provides
a good example. Some 1,904 samples were collected using various
methods. When these are plotted to represent successive doublings of
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Figure 2.13 The veil line. (a)In small samples, only the portion of the distribution to the
right of the mode may be apparent. However, as sample size increases the veil line is
predicted to move to the left revealing first the mode and eventually the entire
distribution. This effect is evident in (b). {b} Fish diversity in the Arabian Gulf. Samples of
fish were collected in an area of the Gulf adjacent to Bahrain. Abundance — the mean
number of individuals caught in 45 min trawling —is shown in log, classes {octaves). In
single samples, for instance one caught in May, only the right hand portion of the log
normal distribution is evident. Once the samples taken throughout May and June are
included the mode becomes apparent. The full log normal distribution is revealed when
data collected for the entire year are used. A similar effect can be seen in Figure 2.14.
{Redrawn with kind permission of Kluwer Academic Publishers from fig. 2.10, Magurran
1988.)
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sampling effort a log normal distribution is progressively unveiled (their
figure 4). Immense samples are no guarantee of an unveiled log normal,
however. Preston (1948) described two long-term data collections in his
original paper. The first of these, a sample of moths collected at Saska-
toon in Canada over 22 years, numbered 277 species and more than
87,000 individuals. Preston used the position of the veil line to predict
that it was only 72% complete. His second example, another collection
of moths, again spanning 22 years and consisting of 291 species and over
300,000 individuals, also had a veil line and was estimated to be 88%
complete. It is sometimes argued that such broadly based collections of
data contain such a multiplicity of assemblages as to render them eco-
logically uninterpretable. Wilson (1991 ) believes that because plant bio-
mass is so plastic, there is no lower limit to the abundance of a speciesin
acommunity and accordingly that the veil line is inapplicable to plants.

A fully unveiled distribution can be fitted, without complications,
using standard procedures. Partly veiled distributions are more problem-
atic. It is sensible not to attempt to fit a log normal to a truncated distrib-
ution unless the mode of this distribution is apparent. This seems
obvious advice until one realizes that a mode can be revealed orobscured
depending on which log base is used to construct the abundance classes
{Hughes 1986), or even by the precise manner in which boundaries
between the abundance classes are assigned {as noted by Colwell &
Coddington 1994). Providing the investigator is convinced that it is pru-
dent to proceed, a truncated log normal can be fitted using the approach
outlined by Pielou (1975}, following Cohen {1959, 1961). The species
abundances are logged (x = log,qn,) and a normal curve fitted, disregard-
ing the area to the left of the truncation point. The truncation point is as-
sumed to fall at—0.30103 or log,,0.5, thisbeing the lower boundary of the
class containing species for which only one individual was observed.
Table 1in Cohen(1961)(reproducedin Magurran (1988) and Krebs (1999))
provides 6, the function needed to estimate the mean and variance of the
truncated distribution. Once these values are calculated, the expected
frequencies of species in each abundance class can be obtained and com-
pared with observed frequencies using a goodness of fit test (see p. 43).
Krebs (1999) has written a PC Windows-based computer program3 that
fits a truncated log normal according to Pielou’s (1975} method. How-
ever, it can also be fitted using a spreadsheet [see Worked example 2 for
an example).

The area under the curve provides an estimate of S*, the total number
of species in the assemblage. (These estimates of S* should be treated
with extreme caution. More effective methods of estimating species

3 This program, and others relating to the methods described in Krebs {1999}, can be obtained from
www.exetersoftware.com.
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richness are described in the next chapter.) Further discussion of the
truncated log normal is provided by Slocomb et al. | 1977).

Strictly speaking, the continuous log normal described here {whether
truncated or not) should only be applied to continuous abundance data,
such as biomass or cover measures, rather than to discrete data, includ-
ing numbers of individuals. In practice, however, most people use the
continuous log normal when abundances have been measured as num-
bers of individuals since, for large sample sizes especially, these data are
effectively continuous.

An alternative method of fitting a log normal distribution to sample
data hasbeen discussed by Bulmer (1974) and Kempton and Taylor{1974)
and is referred to as either the Poisson log normal or the discrete log nor-
mal. It is assumed that the continuous log normal is represented by a se-
ries of discrete abundance classes which behave as compound Poisson
variates. The Poisson parameter A is distributed log normally. Although
the Poisson log normal presents greater computational difficulties than
the continuous lognormal, the greater availability of computer packages
capable of fitting it mean that, for many, this is not a serious impedi-
ment. The Poisson log normal also provides an estimate of S *, to which,
in contrast with the estimate generated by Pielou’s method, confidence
limits can be attached. Given the omnipresence of the log normal dis-
tribution this estimate of S$* appears to offer a promising method of
deducing overall species richness in incompletely sampled assemblages.
Unfortunately, as the next chapter shows, the confidence limits are often
so large that such estimates are meaningless.

Onemight also expect that o, the standard deviation, of the lognormal
distribution would be a useful measure of diversity. Although ¢ can
be treated as a measure of evenness it is an ineffective discriminator of
samples, and cannot be estimated accurately when sample size is small
{(Kempton & Taylor 1974). These criticisms do not, however, apply to the
ratio $*:o, referred to as A. There is a marked correlation between
the values of A and « calculated for the same data and both are good at
discriminating amongst samples and assemblages (Kempton & Taylor
1974; Taylor 1978). Further details are provided in Chapter 4.

In addition to statistical fits there are, of course, graphic methods for
deciding whether data are log normally distributed. The simplest of
these, already noted, is to examine a graph in which the species frequen-
cy is plotted against log abundance classes. {See, for example, Figures 2.9
and 2.13.) Alternatively, a “probability plot” (Gray 1979, 1981; Gray &
Mirza 1979)—in which abundance (in log, classes)is shown on the x axis
and cumulative frequency of species on the y axis—can be used to detect
the presence of a log normal distribution, as well as departures from it.
Log normal distributions appear as straight lines on such a graph and
the method has been used to assess the effects of pollution on marine
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(b) the many processes at work in ecology, it is arguably the most suitable
vehicle for comparing assemblages (May 1975). On the other hand,
Kempton and Taylor (1978) and Taylor (1978) favor the log series distrib-
ution because it accentuates the “median range” of commonness. This
property helps insure that « is a robust diversity index (see also Chapter
4), o

The contention that the log normal is the default distribution for large
and unperturbed communities has not gone unchallenged. Lambshead
and Platt (1985) argue that many classic data sets are not true samples,
but rather collections or amalgamations of nonreplicate samples. Fur-
thermore, they assert that the shape of the log normal distribution is in-
dependent of sample size, and conclude that “the lognormal . . .isnever
found in genuine ecological samples” and advocate the adoption of the
log series model instead. Tokeshi (1999) also questions the generality of
the log normal. Following Nee et al. (1991), he notes that many species-

—— Log series

~ ~ - Log normal

Number of species

256

rich assemblages are characterized by a high proportion of rare species.

Number of individuals Number of individuals These produce plots that are skewed to the left {Hubbe oster 1986;
Figure 2.14 The relationship between log series and log normal distributions. These three Gaston & Blackburn 2000; see also F igure 2.9). Tokeshi postulates that

graphs show: (a] the abundance of moths summed across 225 sites through Britain, (b} a such truncated distributions are in fact true representations of the un-

typical annual sample from a single rural site, and (¢} a sample from an impoverished derlying pattern of species abundance in diverse assemblages and that a

urban site. The dashed lines represent log normal distributions fitted to the data. Log symmetric log normal pattern will never emerge, irrespective of the in-

series distributions are indicated by continuous lines. These graphs demonstrate how . . . . .
small samples {in which the full log normal distribution is apparently veiled) are tensity with which the assemblage is sampled. Indeed, Tokeshi (1999)

described equally well by both the log series and (truncated) log normal. When the suggests that in future it may be hiecessary to turn to niche apportion-
complete log normal distribution is revealed the log series ceases to be a good fit. ment models in order to explain abundance patterns in these and other
(Redrawn with permission from Taylor 1978.) communities. Gaston and Blackburn (2000) also assert that large-scale

assemblages, including those that have been thoroughly surveyed (such

” as British birds), are often log lefr-skewed. They note that Tokeshi’s

benthic communities (Gray 1979). Since large natural assemblages are {1996) power fraction model and Hubbell’s (2001) neutral theory (both
typically log normal in character any departures from a log normal dis- ‘ discussed in more detail later in this chapter), along with Harte et al.’s
tribution ought to be indicative of disturbance. However, Tokeshi {1993) . [Harte & Kinzig 1997, Harte et al. 1999a) self-similarity model, produce
has criticized the method as being insensitive to changes in species rich- distributions with more rare species than the log normal would predict.
ness, and rather poor at discriminating species abundance distributions. Sugihara’s {1980) model also generates a log left-skewed distribution
Indeed, he notes that a geometric series distribution, the pattern typical- 3 (Nee etal. 1991). _

ly associated with a polluted or perturbed assemblage, also appears as a Peter Henderson and I (Magurran & Henderson 2003) offer a different
straight line of this type of graph. solution to this problem. We note that communities can be dissected

into two components: permanent members versus occasional species.
This partition requires either a long-term data series or good biological

Overlapping distributions i knowledge of the species themselves, The distribution of permanent.

Many datasets are described equally well by both the logseries and (trun- species typically resembles a log normal whereas occasional species tend
cated) log normal making it impossible to decide which model is more to follow a log series distribution of species abundance (Figure 2.15). The
appropriate. Figure 2.14 illustrates why the log series is sometimes : prominence of this log series distribution reflects the importance of
! regarded as a sampling distribution, which could, with greater effort, be / the migratory or infrequent component of the assemblage. Interestingly,

extended to reveal the underlying (unveiled) log normal. Since the log o the assumptions that Fisher ez al. (1943) made when they first applied the
normal describes more data sets than the logseries, and may encapsulate log series distribution to species abundance data anticipate this out-
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Figure 2.15 The pattern of abundance and persistence in a estuarine fish assemblage
(Bristol Channel, UK). The data are for a 21-year time series of monthly samples. (a)

The number of years in which each fish was observed, plotted against the maximum
abundance in any one year. A discontinuity {indicated by the vertical arrow} allows the
resident and migrant species to be defined as those present in >10 years and <10 years. (b}
The abundance distribution for all species. (¢} The abundance distribution of the resident
species. The frequency of each abundance class predicted by the log normal model is
shownas adot (X?'[G] =0.88, P=0.99). (d} The abundance of the occasional species; the
frequency of each abundance class predicted by a log series model is shown by a dot

(X?'[s] =4.24, P=0.39). [Redrawn with permission from Magurran & Henderson 2003.}

come. When these distributions are superimposed, a log left-skewed dis-
tribution is the result. Like Hubbell (2001)—but through a different line
of reasoning—we conclude that level of migration is the key to explain-
ing the characteristic left skew of log-transformed species abundance
distributions.

Other statistical models

The negative binomial model has many applications in ecology {South-
wood & Henderson 2000), including species richness estimation
(Coddington et al. 1991} but, as Pielou (1975) remarked, it is only rarely
fitted to species abundance data (one exception being Brian (1953)).
Given the plethora of competing models this alone seems sufficient rea-
son not to revive it. Yet, the negative binomial is of potential interest
since it comes from the same stable of models as the log series. {The log
series is in fact a limiting form of the negative binomial.) Pielou (1975)
provides more details, including a method of fitting the negative biono-
mial to observed data.

The Zipf-Mandelbrot model (Zipf 1949, 1965; Mandelbrot 1977, 1982,
Gray 1987}, on the other hand, has attracted more interest. Like the
Shannon diversity index (Chapter 4}, this approach has its roots in lin-

The commonness, and rarity, of species 43

guistics and information theory. It has been interpreted as reflecting a
successional process in which later colonists have more specific require-
ments and hence are rarer than the first species to arrive (Frontier 1985).
The model postulates a rigid sequence of colonists, with the same
species always present at the same point in the succession in similar
habitats. This prediction is patently not followed in the real world and
Tokeshi (1993) considers the model no more biological than the log nor-
mal or log series. None the less, the model has been successfully applied
in a number of studies (Reichelt & Bradbury 1984; Frontier 1985; Gray
1987; Barange & Campos 1991}, and continues to have application in
both terrestrial (Watkins & Wilson 1994; Wilson et al. 1996; Mouillot &
Lepetre 2000) and aquatic (Juhos & Voros 1998) systems. It has also been
used to test the performance of various diversity estimators (Mouillot &
Lepetre 1999).

Goodness of fit tests

The conventional method of fitting a deterministic model is to assign
the observed data to abundance classes. Classes based on log, are often
used. These represent doublings of abundance—2, 4, 8, 16, 32, etc., indi-
viduals—are intuitively meaningful, and typically produce a manage-
able number of classes. If abundance data are in the form of numbers of
individuals, adding 0.5 to the class boundaries means that species can be
allocated to abundance classes without ambiguity. The number of
species expected in each abundance class is calculated according to the
model used. (The model takes the observed values of S (number of
species)and N {total abundance} and then determines how these N indi-
viduals should be distributed amongst the S species.} A goodness of fit
test, often x2 but sometimes G (Sokal & Rohlf 1995}, is used to evaluate
the relationship between the observed and expected frequencies of
species in each abundance class. If P<0.05 the model can be rejected, that
is it not does adequately describe the pattern of species abundances. If P
>0.05, orideally P>>0.05, then a fit can be assumed.

There are drawbacks associated with using goodness of fit tests in this
way. Tests of empirical data typically involve a small number of abun-
dance classes, perhaps 10 or fewer. This restricts the degrees of freedom
(d.f.) available. These must then be reduced (by 1 in the case of the geo-
metric seriesand log series and by 3 for the truncated lognormal}to allow
for the parameters required by the model. The number of classes, and
thus the degrees of freedom, may need to be pruned further if the number
of species expected in a given class is small (<1). Recall that the formula
for 2 is [{observed ~ expected|?/expected] and that this calculation is
summed across the classes. If expected frequencies fall below 1, ¥ will
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return an unrealistically high value. To circumvent this problem the
user can sum the expected values in adjacent classes (and their observed
equivalents) and adjust the degrees of freedom as appropriate {see
Magurran {1988) for some examples). The more the degrees of freedom
are eroded, the harder it becomes to reject a model. This difficulty is
compounded by the fact that the differences between the models can lie
in the way they allocate species to two or three abundance classes.

One solution might be to use the whole ¥? distribution when compar-
ing fits of various models. For example, if goodness of fit tests gave values
of ¥2=10.5 {with 6 d.f.) for the truncated log normal, and ¥*>=2.8 (with 8
d.f.}for the logseries, it would be possible to make the statement that the
probability of the expected log normal being different from the observed
data is <90%, while the probability of the log series being different is
<10%. Both values are below the conventional level of 95% but the log
series clearly provides a better description of the data. However, Wilson
{1991} cautions that unless the models can be viewed as subsets of one
another, it would be invalid to conclude that one was a significantly bet-
ter fit. In principle it is possible to use a power test to determine whether
the sample size is sufficient to allow a particular species abundance
model to be rejected, but in practice this approach has been little used.

Tokeshi {1993} also notes that goodness of fit tests work most effec-
tively with large assemblages (S > 100}, but is concerned that such as-
semblages might not be ecologically coherent units. Instead of x? he
recommends the Kolmogorov-Smirnov goodness of fit (GOF] test (Siegel
1956; Sokal & Rohlf 1995). Like the % test it can be used to assess the
congruence between observed data and a theoretical expectation, and, in
contrast to the 2 test, it may be applied to very small samples. Indeed,
Tokeshi {1993) advocates adopting the Kolmogorov-Smirnov GOF test
{Sokal & Rohlf 1995) as the standard method of assessing the goodness of
fit of deterministic models. (He also suggests the Kolmogorov-Smirnov
two-sample test can be used to compare two data sets directly, indepen-
dently of any attempt to formally describe their abundance patterns—
see Worked example 3 and general recommendations below.)

Wilson (1991) provides methods for fitting rank/abundance data to
the log normal, geometric series, broken stick, and Zipf~Mandlebrot
models. These involve minimizing the deviance between the observed
and fitted rank/abundance plots. Once again the issue of goodness of fit
arises. Wilson (1991} reinforces the earlier observation {Frontier 1985;
Lambshead & Platt 1985; Hughes 1986; Magurran 1988) that a single
data set will often be equally well described by several models. Further-
more, he notes that if one model fits the data, and another does not, it is
not possible to conclude that the fit of the two is significantly different.
His solution is to use replicated observations, since these increase the
probability that the assemblage has been adequately described. (The
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same advice comes from Tokeshi (1993).) Wilson then recommends that
an objective test would be analysis of variance on the abundance model x
replicate table of deviances, with the model x replicate interaction
providing the error term. The deviances can be log transformed, if neces-
sary, to achieve normality. A multiple comparison test, for example
Duncan’s new multiple range test (see Sokal and Rohlf {1995) for further
examples), can then be used to infer which models are significantly
different from one another.

Biological (or theoretical) models

The search for biologically based models has a venerable tradition. Al-
though Motomura’s {1932) geometric series was initially proposed as a
statistical model, later investigators (see Tokeshi 1993, 1999 for a dis-
cussion) realized that it is a metaphor for the way colonists in an ecolog-
ical community might divide the available niche space between them.
R.H. MacArthur(1957)was the first to explicitly challenge the use of sta-
tistically based models and devised three niche apportionment models.
Two of these, the particulate niche and the overlapping niche, were con-
sidered unsatisfactory by MacArthur himself, but his third model, the
broken stick, has played a significant role in shaping the way ecologists
think about the diversity of ecological communities. The broken stick
model continues to have application today, often as a null hypothesis
against which other patterns of niche division can be tested. That was es-
sentially how things stood until Tokeski (1990, 1993, 1999) took another
look at niche apportionment models and devised a number of new ones,
including some that appear to offer considerable potential.

Biological models are based on the assumption that an ecological com-
munity has a property called niche space that is divided amongst the
species that live there. Although niche space is most easily visualized
in one or two dimensions, niches, as Hutchinson (1957) recognized, are
multidimensional. This need not, in itself, present a difficulty since
multidimensional space can be simplified to one dimension for the pur-
poses of modeling. Nor is it a problem that the components of niche
space (temperature, pH, food availability, etc.) will vary from one com-
munity to another. However, as Tokeshi {1993) notes, the distinction
between the fundamental and the realized niche (sensu Hutchinson) is
rarely made in investigations of biological diversity. Indeed, as he ob-
serves, most niche apportionment models are framed in terms of the fun-
damental niche even though the relative abundances of species will be
much more dependent on the magnitude of the realized niche. Since the
relative abundance of species, usually measured as either number of in-
dividuals or biomass {see p. 138), is used as a surrogate of niche size when
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testing the models, a potential difficulty arises. None the less, Tokeshi
suggests that this problem will not be too serious if the models are
viewed as pertaining to realized niches, or a combination of realized and
fundamental niches, rather than simply to fundamental ones.

A further concern is that niche-based models are too simplistic to de-
scribe the biological world we know. For instance, a new species arriving
in a community may affect the resources that a whole group of species
depend on rather than invading the niche of an individual species. A clas-
sic, and topical example, is the impact that the invasive water hyacinth
is having on the biodiversity of Lake Victoria.

There is another consequence of this preoccupation with the niche.
Since their inception, species abundance distributions have been used to
describe a variety of assemblages ranging from small, well-defined en-
sembles to large, heterogeneous groupings of species. Realized niches are
shaped by ecological interactions within a community and the relative
abundance of a species will reflect, to a greater or lesser extent, its suc-
cess in dealing with competitors, predators, and parasites. If the assem-
blage under study represents a functional ecological unit, that is one
where the component species interact with one another, then it is logi-
cally appropriate to apply a niche-based model to it. Tokeshi’s {1993)
view, that such models are most relevant to small ensembles of related
species sharing similar resources, narrows the definition of assemblage
further (see p. 14 for a discussion of the unit of study in investigations of
ecological diversity). It also implies that competition is the most signifi-
cant ecological interaction in these tightly defined domains.

The corollary of this is that the niche-based models may lose their
application in larger assemblages spanning a variety of trophic levels, or
where the species concerned no longer interact with one another, or
where they are subject to a range of abiotic conditions. In such cases sta-
tistical models may be required. This is not to say that such statistical
models are necessarily less valuable than the biological ones. A statisti-
cal model can provide an excellent description of the diversity of an as-
semblage and has many applications, for example in monitoring changes
in community structure following a perturbation. Nor are biological
models invariably inappropriate in species-rich assemblages. Tokeshi’s
(1996) power fraction model {see below) appears to have considerable
application in such contexts.

Ecological and evolutionary processes

Biological models are mechanistic, that is they attempt to relate the way
in which total niche space is divided amongst the species in an assem-
blage to the abundances of the species in question. Traditionally, niche
apportionment models have assumed a process of niche fragmentation
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(Tokeshi 1990), that is the subdivision of already occupied niches. How-
ever, niche filling is another mechanism by which additional species can
be accommodated. For example, a newly formed habitat such as an
island or lake will provide empty niche space for colonizing species
{MacArthur & Wilson 1967). As the diversity of an assemblage increases,
the distinction between niche fragmentation and niche filling may blur.
Moreover, evolutionary processes can mirror and reinforce ecological
ones. Witness the >500 species of cichlid fish that have evolved in Lake
Victoria in the last 100,000 years {Turner 1999; Verheyen et al. 2003).
Although the distinction between, and relative importance of, niche
filling and fragmentation warrants further investigation, Tokeshi
(1999] points out that niche apportionment models can be applied
to both processes.

Distinctions between deterministic and stochastic models

An important distinction needs to be made between deterministic and
stochastic models. Deterministic models assume that N individuals will
be distributed amongst the S species in the assemblage in a predeter-
mined way. For example, the log series model will always assign 12.96
species to the smallest abundance class (of one individual} in an assem-
blage with 52 species and 663 individuals overall. The geometric series is
the only deterministic niche apportionment model. Stochastic models,
on the other hand, recognize that replicate communities structured
according to the same set of rules will inevitably vary somewhat in terms
of the relative abundances of species found there. This makes biological
sense. For instance, 10 new islands, of identical size and distance
from the mainland and formed at the same time, would be predicted, on
the basis of MacArthur and Wilson’s (1967) theory of island biogeogra-
phy, to be colonized by similar numbers of species. None the less, the
relative abundances of those species would undoubtedly differ from
island to island. Stochastic models try to capture the random elements
inherent in natural processes (see also Figure 2.18). Perhaps not surpris-
ingly, they can be more challenging to fit than their deterministic
counterparts. From a practical standpoint it is necessary to know
whether a model is deterministic or stochastic to fit it to empirical data
(see below).

The variety of niche-based models can seem bewildering. Different
assumptions, in terms of the precise nature of niche apportionment,
produce subtly different models. For example, MacArthur’s broken stick
assumes that total niche space is divided simultaneously, whereas nich-
es in Tokeshi’s MacArthur fraction model are partitioned sequentially —
a more realistic ecological and evolutionary scenario. However, both
models predict the same species abundance distribution. The require-
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ment of replicated data adds further complexity to the testing of stochas-
tic models (see below). These complications may explain why niche
apportionment models, and in particular Tokeshi’s refinements of
them, have received relatively little attention over the past decade. Nev-
ertheless, these models are an important ecological tool and their poten-
tial in elucidating empirical patterns of diversity has only just begun to
be realized.

From a practical perspective it may be helpful to think of niche appor-
tionment models as being arranged along a continuum from low to high
evenness. The geometric series and dominance pre-emption models rep-
resent assemblages in which evenness is very low, that is ones in which a
few dominant species control most of the resources. The random assort-
ment, random fraction, power fraction, MacArthur fraction, and domi-
nance decay models apply to progressively more even assemblages
(Tokeshi 1999; see also p. 51 below).

Geometric series

Visualize a situation in which the dominant species “pre-empts” propor-
tion k of some limiting resource, the second most dominant species pre-
empting the same proportion k of the remainder, the third species taking
k of what is left and so on until all species (S) have been accommodated.
If this assumption is fulfilled and if the abundances of the species are
proportional to the amount of the resource they utilize, the resulting
pattern of species abundances will follow the geometric series {or niche
pre-emption hypothesis) (see Figure 2.3). In a geometric series the
abundances of species ranked from the most to least abundant will be
{Motomura 1932; May 1975):

n, = NC k(- k)™

Where n,=the total number of individuals in the ith species; N=the total
number of individuals; k = the proportion of the remaining niche space
occupied by each successively colonizing species (k is a constant}; and
C,=[1-{1-k)’] ! and is a constant that insures that Zn.= N.

Because the ratio of the abundance of each species to the abundance of
its predecessor is constant through the ranked list of species, the series
will appear as a straight line when plotted on a log abundance/species
rank graph {see Figure 2.4). Drawing this type of plot is one way of decid-
ing whether a datasetis consistent with the geometric series. Worked ex-
ample4explainshow tofit the series as well as offering some suggestions
about what to doif the points donotall fall on a straightline. A full math-
ematical treatment of the geometric series can be found in May (1975),
who also presents the species abundance distribution corresponding to
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Figure 2.16 Changes in the relative abundance of plant species in the Rothamsted Park
Grass Experiment over time. The grass has been subjected to continuous application of
nitrogen fertilizer since 1856. {Redrawn with permission from Tokeshi 1993.)

the rank/abundance series. As noted above (see also Tokeshi 1993}, the
geometric series is the only deterministic member of the group of niche-
based models.

Field data have shown that the geometric series pattern of species
abundance is found primarily in species-poor (and often harsh) environ-
ments, or in the very early stages of a succession (Whittaker 1965, 1972).
As succession proceeds, or as conditions ameliorate, other models may
provide a better description of the community. However, Tokeshi (1993)
observes that it is possible to relax the need for a very tight association
between the data and the model —in the way that would be required if
one were to formally fit the series—and to view it primarily as a descrip-
tive statistic. This means that the series can be fitted approximately
(using linear regression) and the slope of the regression adopted as a mea-
sure of evenness and used to track changes in community structure.
(Thisapproach wasindependently suggested by Nee et al. (1992); see also
Chapter 4 for an assessment of its utility as an evenness measure.)
Tokeshi (1993} illustrates this method in the context of the classic Park
Grass Experiment at Rothamsted (Brenchley 1958} and shows how effec-
tiveitisin encapsulating changesin diversity {Figure 2.16). This method
also overcomes the problem, so often encountered in comparative stud-
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ies of diversity, where no single model fits a range of communities.* It ob-
viates the need to estimate goodness of fit, a procedure fraught with diffi-
culties (see p. 43) or to make comparisons between deterministic
models, such as the geometric series, and stochastic ones, such as the
broken stick.

MacArthur’s broken stick model

The broken stick model, sometimes known as the random niche bound-
ary hypothesis, was proposed by MacArthurin 1957. He likened the sub-
division of niche space within a community to a stick broken randomly
and simultaneously into S pieces. It is a very uniform distribution—
perhaps the most uniform ever found in natural communities. A major
criticism of the model is that it may be derived from more than one hy-
pothesis {Pielou 1975). Nevertheless, since the existence of a broken
stick distribution provides evidence that an important ecological factor
is being shared more or less evenly between species, it has served to
shape ecological thinking on the processes that might underlie the
patterns observed (May 1975). The model may also be viewed as repre-
senting a group of S species of equal competitive ability jostling for
niche space (Tokeshi 1993).

Like the geometric series the broken stick model is conventionally
written in terms of rank order abundance. The number of individuals in
the ith most important species (n ) is obtained from the term (May 1975}:

Where n, = the abundance of the ith species; N = the total number of
individuals; and S =the total number of species.

Wilson {1991) provides a method of fitting a broken stick model to
rank/abundance data. Drozd and Novotny’s {2000) program can be used
to estimate the species abundances associated with the broken stick.

May {1975}, after Webb {1974), expresses the model in the form of a
conventional species abundance distribution:

S(m)=[s(s-1)/N]- (0~ n/NY*

The broken stick, like other niche apportionment models, predicts the
average species abundance distribution. Pielou {1975} likens this to

4 Likewise, it is often advocated that a parameter of the log series model, o, can be used as a measure of
diversity, even if the log series model does not perfectly describe the assemblage in question {Kempton
& Taylor 1976; see also Chapter 4).
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Table 2.2 A summary of Tokeshi’s models.

Model Selection of niche for division

Dominance pre-emption Smallest niche always chosen

Random fraction Niche chosen at random

Power fraction Niche chosen at weighted random

MacArthur fraction Probability that niche is chosen is proportional to its size
Dominance decay Largest niche always chosen

Random assortment No conventional niche apportionment assumed
Composite model Niches of the abundant species are apportioned according

to the dominance pre-emption, random/power fraction,
MacArthur fraction, or dominance decay models while
niches of rare species follow the random assortment model

drawing a card from a well-shuffled deck. If the cards are assigned values
ranging from 1 for an ace and 13 for a king, the average denomination of a
randomly chosen card will be 7. However, a single draw is no more likely
to produce a 7 than any other card. It is only after many repeated draws
that the “expected” average of 7 will be obtained. In a similar fashion the
equation on p. 50 is predicting the distribution of species abundances
across a number of replicate assemblages.

It is therefore inappropriate to fit the model to a single data set, even,
as I suggested previously (Magurran 1988) as a statistical as opposed to a
biological descriptor. Indeed, the broken stick can be tricky to fit to em-
pirical data (Tokeshi 1993). There are, none the less, afew tests of the bro-
ken stick in the literature. Wilson et al. {1996}, for example, found that
the evenness of species abundances in plant assemblages increased over
time. This was reflected in a relatively better fit by the broken stick
model to older assemblages, though the fit was still poor in absolute
terms.

Tokeshi’s models

Tokeshi {1990, 1996) developed several new niche apportionment
models: the dominance pre-emption, random fraction, power fraction,
MacArthur fraction, and dominance decay models {Table 2.2.). Each of
these makes the assumption that the fraction of niche space occupied by
a species is proportional to its abundance. Niche space is sequentially
divided amongst the species as they join the assemblage. In all cases
the models assume that the target niche —the one selected for division —
is divided at random. The differences between the models lie in the way
inwhich the target niche is selected. And the larger this niche is, relative
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to the others in the assemblage, the more even the resulting distribution
of species abundances will be. Evenness is thus lowest in the dominance
pre-emption model, and increases progressively with the random frac-
tion, power fraction, MacArthur fraction, and dominance decay models.
Tokeshi contrasted these niche apportionment models with two other
scenarios. The random assortment model represents a random collec-
tion of niches of arbitrary sizes (Tokeshi 1990). Finally, the composite
model assumes that more than one rule is required to account for the
structure of the assemblage —the abundances of common species are set
by niche apportionment whereas the abundances of the rare ones are de-
termined by random assortment. These models are reviewed below. In
some cases the distinctions between them are quite subtle and several
are probably impossible to separate in the field. I therefore draw the
reader’s attention to the random fraction model and {the related) power
fraction models as these have, in my opinion, the greatest application
to empirical data. The other models will, I suspect, be used primarily in
theoretical analyses of niche apportionment, or to create benchmark as-
semblages of high or low evenness against which natural assemblages
can be compared.

Dominance pre-emption model

Tokeshi’s dominance pre-emption model assumes that each species in
turn pre-empts more than half of the remaining niche space and is thus
dominant over all remaining species combined (Tokeshi 1990). The pro-
portion of available niche space occupied by each successively coloniz-
ing species is randomly assigned between 0.5 and 1. This model is
conceptually similarto the geometric series and will produce, over many
replications, a similar distribution of species abundances when k =0.75
[see the discussion of geometric series above). Although initially formu-
lated to describe a process of niche filling {Tokeshi 1990), this model can
also be applied to niche fragmentation (Tokeshi 1993, 1999). In the latter
case new colonists subdivide the niche of the least abundant species. The
geometric series and dominance pre-emption model depict the least
even communities likely to be found in nature. Figure 2.17 illustrates
the pattern of relative abundance produced by this and some of Tokeshi’s
other models.

Random fraction

Tokeshi’s random fraction model is an innovative model which has the
potential for wide application. It was conceived {Tokeshi 1990) as a se-
quential breakage model in which the available niche space is initially
divided, at random, into two pieces. One of these pieces is then selected
at random for the second division and this process continues until all
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Figure 2.17 Pattern of relative abundance exhibited by a selection of Tokeshi’s niche
apportionment models. (Redrawn with permission from Tokeshi 1999.)

species are accommodated (Figure 2.18). The model represents a situa-
tion in which a new colonist competes for the niche of a species already
in the community, and takes over a random proportion of this previ-
ously existing niche. Tokeshi {1999) subsequently pointed out that the
model can be extended to cover speciation events. This presupposes that
the probability of speciation isindependent of the size of a species’ niche.
There are conflicting opinions on how the abundance of a species, or
indeed the extent its range (both measures being surrogates for niche
size), affects the likelihood of speciation. Intuitively it might seem that
species with large range sizes are more likely to speciate than those with
small ones. Darwin {1859) was the first to make this prediction and, as
Gaston and Chown (1999) note, the idea continues to attract support
(see, for example, Rosenzweig 1995; Tokeshi 1999). This is because
largerranges appear to offer more opportunities for fragmentation or sub-
division by a barrier, thus facilitating allopatric speciation. However, it
has recently been argued {Gaston & Chown 1999) that it is in fact the
species with small to intermediate range sizes that are more likely to
speciate. Widely distributed species have good dispersal abilities (Mayr
1963} which enhance gene flow (Rice & Hostert 1993}, whereas species
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Figure 2.18 Illustration of Tokeshi’s random fraction model. In this model niche space
(represented as a pie digram) is initially split at random into two pieces to form (a). (Niches
that have been formed by the split are indicated by stippling.) One of these pieces
{outlined in bold}is chosen at random and then split at random (indicated by an arrow) to
form (b). The process is repeated [c and d) until S species have been accommodated. Every
time the model is rerun a slightly different pattern of niche allocation emerges. The one
illustrated here represents the average result (for S =5 species} after 250 runs.
Rank/abundance plots illustrate the relative species abundances produced following each

successive division.

with poor dispersal abilities will tend to form patchy populations and
thus have higher speciation rates (Gaston & Chown 1999). Although the
random fraction model is conceptually simple, Tokeshi (1990) and Fesl
(2002) found that it provided a good fit for a small community of fresh-
water chironomids.

Drozd and Novotny {2000 have created a freeware Microsoft Excel-
based program?® that can be used to model the distribution of species
abundances associated with the random fraction, power fraction, broken
stick, and other niche division processes.

Power fraction model

As noted above, the majority of niche apportionment models are logi-
cally appropriate for small assemblages of related and/or ecologically in-
teracting species. Tokeshi’s power fraction model {1996} is an exception
that is applicable to species-rich assemblages. Like the random fraction
model it envisages that niche space is initially subdivided at random.

5 http://www.entu.cas.cz/png/PowerNiche/.
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Box 2.1 The power fraction model

In Tokeshi's power fraction model, the
probability that a niche will be targeted by an
invading species is a function of its size when
that size has been raised to the power K. Kranges
between 0 and 1. Three scenarios are illustrated
below (Figure B2.1).

Imagine an assemblage of three species which
have abundances of 50, 25, and 25 units. Niche
size is assumed to reflect the abundance of a
species. Abundances (x) here are expressed as
percentages but they could equally well be
represented as proportions. These abundances
are first raised to the power K. When K=0, the
abundance of each of the species becomes 1.
This means that every species has an equal
probability of being selected for niche
subdivision. In this scenario, the power fraction
and the random fraction are identical, since the
(random) choice of a niche for subdivision is
made without regard to the size of that niche. A
value of K=0.5, on the other hand, is equivalent
to a square root transformation of abundance. In
other words, species A is now 1.41 times as likely
to be selected as either species B or C. In the final
scenario, K= 1 and the initial abundances are

unaffected and the niche of species A has double
the probability of being split as either B or C. This
is the same as the MacArthur fraction model.
The randomization process is illustrated for
scenario 2 (K=0.5) in Figure B2.1. The
transformed abundances are now presented as
cumulative precentages and a random number
(between 0 and 100) drawn. If this random
number happened to be 48, species B would
be chosen (B occupies the slot of 241.4% and
<70.7% in the cumulative abundance
distribution). B’s niche is then divided at
random into two pieces. These new niches will
have a summed abundance of 25 units since itis
the true (untransformed) niche space that is
being divided — the weighting simply changes
the probability with which a niche of a particular
size is chosen. This continues until the
assemblage reaches its designated richness.
Since each run of the model produces a
slightly different outcome the whole process is
repeated a large number of times so that the
mean pattern of relative abundance is generated.
This can then be compared with empirical
data.

where K=0 where K= 0.5 where K=1
Species X xK X xK X xK
Al 50 1 Al 50 7.07 A 50 50
B 25 1 B 25 5 B 25 25
Cc 25 1 Cc 25 5 Cc 25 25
= random fraction = MacArthur fraction
Weighted niches A ¥ niche sizes (%)
a41.4%
7.07 units
41.4%
B
5 units 29.3%
70.7%
C
5 units 29.3%
100%

Figure B2.1
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One of the resulting niches is then selected and again split at random.
The process continues until all species have been accounted for. How-
ever, the name of the model, power fraction, highlights a subtle differ-
ence between it and the random fraction model. In the random fraction
model the choice of niche to be split is strictly random. By contrast, in
the power fraction model, the probability that a niche will be split is pos-
itively, though rather weakly, related to its size (x) through a power func-
tion K (that is xX where K ranges from 0 to 1}. The closer K approaches 1,
the more likely it is that the largest niche will be selected for fragmenta-
tion. Indeed, when K = 1 the power fraction model resembles the
MacArthur fraction model (in which larger niches have a greater proba-
bility of fragmenting). On the other hand when K =0, a completely ran-
dom choice of niche fragment is restored, and the model corresponds to
the random fraction. (See Box 2.1 for an illustration of the power fraction
model.)

Tokeshi {1996) showed that when the parameter K was set at 0.05 the
power fraction model provided a good description of a range of species-
rich assemblages. In fact virtually all the assemblages he investigated
could be accounted for by a value of K <0.2. He interprets this finding as
evidence that larger niches have a slightly greater chance of being frag-
mented. Such fragmentation could occur either ecologically (when a
new species colonizes an assemblage) or evolutionarily (when speciation
takes place) (Gaston & Chown 1999).

As already observed, a reduction in the value of K increases the resem-
blance between the power fraction and random fraction models. Since K
is apparently low in natural assemblages there may be many instancesin
which both models describe observed patterns of species abundance
equally well (Tokeshi 1999).

One of the frustrations of diversity measurement has always been the
necessary recourse to different models to account for contrasting pat-
terns of species abundance. The fact that the value of the parameter K can
be adjusted to depict different forms of niche apportionment means that
a more integrated approach to the investigation of ecological diversity
may at last be possible. This benefit is enhanced by the ability of the
power fraction model to account for patterns of species abundance in
large as well as small assemblages and at scales ranging from ensemble to
geographic region (Tokeshi 1999). This flexibility can be viewed as a
weakness rather than a strength (Gaston & Blackburn 2000).

MacArthur fraction model

One longstanding concern about the broken stick model is the unrealis-
tic manner in which niches are split simultaneously. Tokeshi {1990,

1993) thus recast the process of niche fragmentation in a sequential, and -

therefore ecologically {and evolutionarily) more plausible, form. The
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emphasis on sequential niche division also highlights the relationship
between this model and other niche apportionment models. Both the
MacArthur fraction and the broken stick models lead to the same result,
in terms of the predicted species abundance distribution. This acts as a
useful reminder that observation of a given pattern of species abundance
does not necessarily validate the precise mechanisms assumed by a
model predicting the same pattern. Further investigation is always
warranted.

In the MacArthur fraction model the probability of a niche being
fragmented is related to its size. Thus, larger niches are more likely to be
subdivided by an invading species or through speciation. This process
generates a very uniform distribution of species abundances and is only
plausible in small communities of taxonomically related species. As
already noted, the MacArthur fraction is a special case of the power frac-
tion model, albeit one unlikely to pertain in species-rich assemblages.

Dominance decay model

An even more uniform pattern of species abundance is envisaged by
Tokeshi’s dominance decay model. In it the largest niche is invariably
split. The sizes of the resulting fragments are chosen at random. (If the
largest niche was always split in a fixed way this model would be the
inverse of the geometric series and thus deterministic. Since the way
in which the largest niche is split is decided randomly the model is sto-
chastic, and therefore the mirror image of the dominance pre-emption
model.) To date there are no empirical data indicating that communities
aspredicted by Tokeshi’s dominance decay model can be found in nature.
This may, of course, be because insufficient investigations have been
conducted or because such an even distribution is genuinely not achiev-
able under natural conditions. In any case the model performs the useful

- role of setting the upper level of evenness that might potentially be

achieved by a niche apportionment process.

Random assortment model

Tokeshi realized that there may be situations where the abundances of
species in a community vary independently of one another. This might
arise if there is no relationship, or only a very weak one, between niche
apportionment and species abundances, or if the community is in a state
of flux, perhaps because it is subject to major environmental changes,
and competition is not setting the limits on species abundances. Tokeshi
(1993) notes that this model behaves as a stochastic analog of the geo-
metric series model in which k = 0.5, and that it is similar in spirit to
Caswell’s (1976) neutral model {see below), which also assumes that the
abundances of different species are independent of one another.
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Composite model

The preceding models have each assumed that niche apportionment can
be explained by a single rule. This may represent an oversimplification
since two or more processes could equally well be involved. Tokeshi
(1990) thus formulated his composite model. It assumes that competi-
tion is more likely to occur amongst abundant species and that these
would therefore divide available niche space according to one of the
niche apportionment models —dominance pre-emption, random/power
fraction, MacArthur fraction, or dominance decay. The remaining rare
species might be predicted to achieve their niches on the basis of random
assortment. One potential complication is knowing where to set the
boundary between the more abundant and less abundant species.
{Gaston’s [1994) quartile criterion of rarity {reviewed below) is one solu-
tion.) Another is deciding which niche apportionment scenarios to test.
It is also possible to extend the model to accommodate more than two
processes of niche subdivision {Tokeshi 1999). The composite model has
not yet been comprehensively explored but its attempt to encapsulate
ecological realism should prompt further investigation.

Hughes’ dynamic model

Hughes’ (1984, 1986) concern about the log normal model led him to
devise his own dynamic model. It invokes competition as the structuring
mechanism and was developed to explain the patterns of species abun-
dance that characteristically arise in marine benthic communities. These
assemblages often have more abundant species than predicted by the log
series distribution but too few rare species to produce the mode that de-
fines the log normal distribution. By visually inspecting rank/abundance
plots from 222 animal and plant communities, Hughes concluded that his
dynamics model predicted species abundance patterns more effectively
than either the log normal or log series models. Barange and Campos
(1991), however, preferred the Zipf-Mandelbrot model and felt it to be
more appropriate in the light of the hierarchical organization of natural
systems. Hubbell’s {2001) neutral model {discussed below} makes a num-
ber of parallel assumptions. Both approaches, for example, incorporate
birth and death processes. However, Hughes’ model is more complex and
specific than Hubbell’s and to date has received relatively little attention.

Other approaches

Caswell’s neutral model

Caswell’s {1976) neutral model is rightly celebrated for its innovative
approach to the analysis of community structure. In essence the model
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asks what the species abundance patterns in a community would be if all
biological interactions were removed. Intriguingly, both species rich-
ness and evenness in real world communities tend tobe lower thanin the
neutral landscape of Caswell’s model. The deviation statistic, V, can be
used to compare observed diversity (H’) with the predicted neutral diver-
sity (E(H’)).

[H" - E(H")]
SD(H’)

(H’is the Shannon diversity index. It is examined in detail in Chapter 4.)
Values of V> 2 or V <-2 denote a significant departure from neutrality
(Clarke & Warwick 2001a). Goldman and Lambshead (1989) provide a
computer program for calculating V; this isimplemented in PRIMER.® Al-
though V is sometimes treated as a measure of environmental stress
(Platt & Lambshead 1985; Lambshead & Platt 1988} it needs tobe applied
with caution. Given the complex relationships between richness and
evenness in nature, Vis probably only useful as a measure of disturbance
when data from control unperturbed assemblages are available as a
benchmark. Other more promising methods of assessing environmental
stress are explored in Chapter 4. Moreover, Hayek and Buzas {1997} note
that for reasonably large values of S and N the expected values of H’ gen-
erated by the neutral model resemble those predicted by the log series
model. The congruence in the outcome of different models has been
noted already in this chapter and provides a further reminder that the
biological interpretation of results is not always straightforward.

Hubbell’s neutral theory of biodiversity and biogeography

Hubbell (2001) has developed an ambitious new neutral model that ex-
tends MacArthur and Wilson’s equilibrium theory of island biogeogra-
phy toaccount forregional aswell aslocal patterns of biodiversity. In this
approach metacommunities are defined as large-scale assemblages of
trophically similar organisms that occur across evolutionary timescales.
Each metacommunity is comprised of a set of local communities.
Hubbell’s model makes the assumption that communities are always
saturated with individuals, and that there is a fixed relationship between
N and area {A}. No new individuals can be added through birth or immi-
gration until N has been reduced by death. The relative abundance of
eachspeciesinalocal community isrelated toits abundance in the meta-
community; species abundances in the metacommunity are in turn
shaped by speciation. Hubbell’s theory can be encapsulated in a single di-

6 www.pml.ac.uk/primer/index.htm.
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mensionless biodiversity number 6, which is equal to twice the
speciation rate multiplied by the metacommunity size. It is this bio-
diversity number that predicts the relative abundance of species. If, for
instance, metacommunity size (N)isheld constant, whilespeciationrate
is increased, more rare species will result. Alternatively, the speciation
rate (v) may be held constant and the consequences of varying metacom-
munity size explored. Different models of speciation lead to different
species abundance distributions in the metacommunity. For example, if
point mutation, whereby new species arise as a single individual, is the
dominant form of speciation, species abundances in the metacommun-
ity will follow a log series distribution. In contrast, the random fission
model of speciation, which produces two approximately equally abun-
dant daughter species, results in a zero-sum multinomial distribution of
species abundances. (See Hubbell 2001 fora full description.)

When immigration is unlimited the pattern of species abundance in
a local community will be identical to that in the metacommunity
(though species richness will be reduced as the spatial dimensions of the
local community, and therefore the number of individuals it can support,
will also be smaller). It will thus follow a log series or a zero-sum multi-
nomial distribution, depending on the mode of speciation. Alterna-
tively, if immigration is severely limited, perhaps because the local
community is remote and there are barriers to dispersal, species abun-
dances will resemble a log normal distribution. This is explained by the
relationship between N and A. Extinctions must be compensated by in-
creases in the abundance of existing species since there are few colonists
to contribute new, but generally rarer, species to the community. At in-
termediate immigration rates the distribution of (logged) species abun-
dances becomes skewed to the left—the pattern often observed in
natural assemblages (Gaston & Blackburn 2000). Under such dispersal
limitation the distribution of species abundances in local communities
follows the zero-sum multinomial distribution, irrespective of the shape
of the distribution in the metacommunity.

Hubbell’s model is remarkable for its ability to account for a wide
range of empirical species abundance distributions.” None the less the
assumption of neutrality —defined by Hubbell {2001, p. 6) as the “per
capita ecological equivalence of all individuals of all species in a tropi-
cally defined community” —runs against the grain for many ecologists
familiar with the functional diversity of ecological systems (Brown
2001). It seems unlikely that the identity of the dominant species in a
community is purely a matter of chance. Gaston and Blackburn (2000}
also take issue with the assumption that assemblages are saturated with
respect to the number of individuals they support. Magurran and Hen-

7 McGill (2003), however, finds that the lognormal distribution fits empirical databetter than Hubbell's
zero-sum multinomial.
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derson (2003) have independently shown that dispersal limitation can
account for the characteristic left skew in the species abundance distrib-
ption of local communities. In contrast to Hubbell’s approach, biological
interactions are assumed to play an important role. We use a mixture of
the log series and log normal models to account for empirical patterns.
Hubbell’s model has already stimulated a great deal of interest and will
u.ndoubtedly give rise to many new studies. One complication is that
simulations are required to estimate the fundamental biodiversity num-
ber and dispersal rate for empirical data sets. Hubbell {2001} provides an
algorithm for computing the expected relative abundance distribution
of a .metacommunity assuming point mutation speciation. A fitting
routine is promised for the zero-sum multinomial {see also McGill 2003).

Fitting niche apportionment models to empirical data

How does an investigator establish whether an assemblage conforms to
one (or more| niche apportionment models? Clearly the best approach is
to have an expectation of possible modes of niche subdivision based on
an understanding of the ecology of the assemblage in question. For ex-
ample, if competition is known to be important it is logical to apply a
model that emphasizes this process. Beyond this, the size of an assem-
blage and the degree of evenness in the observed pattern of species abun-
dance may indicate a starting point.

In statistical (and deterministic) models, as noted earlier, the usual
procedure is to compare the observed pattern of species abundance with
the patterns predicted by a particular model. Stochastic models present a
different challenge. Rather than assuming (as deterministic models do)
that N individuals are distributed amongst S species in a fixed manner
stochastic models recognize that random variation in the natural world’l
will produce a slightly different outcome every time a community is as-
sembled according to a given set of rules. As a consequence the investi-
gato¥ needs to be able to predict the mean abundances of each of the
species in an assemblage, and to assign confidence intervals to these
mean values. This necessitates a simulation procedure in which the
community is repeatedly reconstructed. Strictly speaking, comparisons
between these expected abundances and a real assemblage should only
be made when replicated observations of the latter are used {Tokeshi
1990, 1993). This clearly places greater demands on the investigation
particularly if Tokeshi’s (1993} advice to take more than 10 samples per,
assemblage (over space or time) is followed. In fact, since studies of niche
apportionment tend to be small scale and intensive this requirement
may not be as onerous as it initially appears. Furthermore, there are good
reasons why replication should become standard practice in investiga-
tions of diversity. Replication means that variation in diversity, over
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space and time, is amenable to statistical analysis (Chapter 4) and that
estimates of total species richness are feasible (Chapter 3).

Tokeshi (1990) pioneered a new way of testing these stochastic models
(see also Worked example 5). To summarize, 11 2 10 samples are taken.
Species (S} are ranked from most abundant to least abundant. The mean
abundance of the most abundant species (x,_,) is calculated. This is re-
peated for the next most abundant species {x,_,) and so on until the least
abundant species (x,_¢) has been included. {In most cases, particularly
those where the processes underlying niche fragmentation are of pri-
mary interest, it is not necessary to know the identities of the speciesin
each replicate and the mean value of x,_; may be calculated regardless of
the actual taxonomic species involved. In certain other circumstances,
however, it may be important to know which species is which; see
Tokeshi {1999) for a discussion.) These mean abundances constitute the
observed distribution. The expected abundances are then estimated for
an assemblage of the same number of species (S . To do this a model is
chosen and then simulated a large number of times {say N=1,000] using
S species. {The randomness built into the models means that each simu-
lation will lead to a slightly different outcome.] The mean (u;) and
standard deviation (o) of the abundance of each rank,i=1toi=3S,arecal-
culated. This allows the user to assign confidence limits to the expected
abundance of each rank. These confidence limits are set in the usual way,
with the important consideration that the sample size is n {that is the
number of replicated samples of the assemblage) rather than N {the num-
ber of times the model was simulated).

R(x,;) =y, + 16, /Vn

where r defines the breadth of the confidence limit. It is 1.96 for a 95%
limit and 1.65 for a 90% limit. If the mean observed abundances fall
within the confidence limits of the expected abundances (see Worked
example 5, the model can be said to fit the assemblage. Comparison
between the observed and expected distributions is simplified if abun-
dances are treated as proportional, that is the sum of the abundances (x)
across all S species is Ex,= 1. Graphic presentation of the result is further
clarified if these proportional abundances are plotted on a log,,scale. An
advantage of this simulation approach is that it makes subtle distinc-
tions between the possible distributions and spares the user the frustra-
tion that often accompanies the application of deterministic models,
several of which may apparently fit the same data set.

A potential problem arises if the number of species {S)variesfrom sam-
ple to sample (Tokeshi 1993). This should not matter if the variation is
slight. Alternatively, the difficulty may be overcome by adjusting S to a
common value, provided that such a value of S accounts for most of the
abundance (>95%}in the replicated samples.
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Figure 2.19 Testing the fit of a number of assemblages to a single model. Here a power
fraction model with k =0.05 is fitted to a series of species-rich assemblages. The solid line
is the standard deviation of log, abundance predicted by the model. Broken lines represent
42 s.d. of this standard deviation. Theoretical values are derived from a large number of
simulations. The graph reveals that miscellaneous assemblages conform to the power
fraction model with k =0.05. (Redrawn with permission from Tokeshi 1999.}

What happens if it has not been possible to replicate the sampling?
Tokeshi (1999) notes that it may be legitimate to compare unreplicated
ranked abundance data with the mean {(+2 s.d. or £95% confidence lim-
its) simulated values of a model. Alternatively, the standard deviation of
the log, observed abundances of species can be plotted on a graph show-
ing the mean (+2 s.d.) of the log, expected abundances. This method
is useful if the goal is to determine whether a number of species-rich
assemblages share a common abundance distribution (Figure 2.19).
Tokeshi also reminds us that unreplicated data are not appropriate for
use with either the broken stick or MacArthur fraction models.

. Bersier and Sugihara (1997) recognized that Tokeshi’s method of relat-
ing stochastic species abundance models to field data represented an
important first step but highlighted some shortcomings in the method.
They observed that the test does not permit the rejection of data sets in
Which the variance is greater than that predicted by the model. Addi-
tlgnally, since the mean observed abundances of all species must lie
within the expected confidence intervals, rich assemblages are more
prone to rejection than species-poor ones. Distributions may be skewed,
rendgring symmetric confidence limits inappropriate and species ranks
nonindependent. Bersier and Sugihara’s (1997) solution was to propose a
Monte Carlo test. One drawback to their approach is that it is computa-
tlopally intensive. Cassey and King (2001} offer some important clarifi-
cations of Bersier and Sugihara’s (1997) method and provide a test that
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makes it computationally more efficient. Moreover, the algorithm that
Cassey and King (2001} developed to implement the test, which is writ-
ten for sas, is freely available from the authors on request.

General recommendations on investigating patterns
of species abundance

Previously, I (Magurran 1988) suggested that it would be informative to
explore empirical data in relation to four species abundance models: the
geometric series, log series, log normal, and broken stick distributions.

These represent situations of increasing evenness. The expectation was

that most assemblages would be described by a log normal distribution
and that any departure from this pattern warranted further investiga-
tion. An obvious drawback of this approach is that it treated the models
primarily as statistical descriptors of patterns rather than using them to
infer biological processes. Interpretation could be impeded if the data
were described by more than one model, or even by none at all.

Tokeshi’s {1990, 1993, 1996, 1999) revaluation of species abundance
distributions, his innovative niche apportionment models, and other
advances in the field mean that this advice must now be updated.

1 It is important at the outset to know what the precise aims of the in-
vestigation are, and which hypothesis, if any, is being tested. This may
sound obvious but it is a point that is often overlooked.

2 If the purpose of the investigation is to describe species abundance
patterns, or quantify changes over time or space, for example through
succession or following pollution, then replication of sampling, though
strongly recommended, is not strictly necessary. However, it is essential
that sampling be sufficiently thorough to reveal the true species abun-
dance distribution (see Chapter 5 for a further discussion of sampling).
On the other hand, should the study aim to relate the observed patterns
to the ways in which the ecological niches have been carved up by the
constituent species, replicated sampling increases the power of the
investigation immeasurably.

3 The aims of the project will also help delineate the boundary of the as-
semblage under investigation. For example, an investigator interested in
the biological basis of abundance patterns will often focus on a small
assemblage of closely related organisms, since ecological interactions,
particularly competition, are more likely to be discernible there (but see
discussion of the power fraction model above). Tokeshi’s niche appor-
tionment models are fitted most easily to samples with the same species
richness. Comparison of communities is also facilitated if they are
equally speciose.

Studies involving the description of pattern are less constrained by
size and can extend from small ensembles to large heterogeneous assem-

[
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blages. However, comparisons between assemblages are again more
straightforward, and probably also more meaningful, if species richness
does not vary excessively.

4 In almost all investigations the most useful next step is to graph the
data using a rank/abundance (Whittaker) plot. These plots are often
the best way of illustrating differences in evenness and species richness.
Wilson {1991) provides a method for fitting several key species abun-
dance models to these plots {see also point 6 below).

5 If understanding niche apportionment is the goal, the investigator
should fit one or more of Tokeshi’s models. In some cases it may be use-
ful to examine a range of models, but in others, particularly where it has
been possible, from a priori knowledge of the system, to arrive at a
hypothesis of niche apportionment, it will be obvious which model or
models to test. Although there have been relatively few tests of Tokeshi’s
models to date, the random fraction model appears to be most generally
applicable to small assemblages and the power fraction to larger ones
(these models being, of course, closely related). It may not always be fea-
sible, but ideally the next step would be to conduct experimental manip-
ulations to confirm the niche apportionment mechanisms implied by
the analysis.

6 Alternatively, when the objective is to describe the distribution of
species abundances, an investigator has two options (which need not be
mutually exclusive). The first is to examine the rank/abundance plot and
compare communities using either k {the parameter of the geometric se-
ries) or the slope of a linear regression. This method neatly and intuitive-
ly encapsulates differences between the assemblages. It does not require
the user to assess goodness of fit but simply equates the diversity of the
assemblage with the slope of the regression. Analysis of covariance
{ANCOVA) can be used to test for differences in slopes. The second op-
tion is to fit one or more models to the data. Depending on the outcome it
may be possible to draw biologically interesting conclusions. For exam-
ple, alog series distribution highlights the preponderance of rare species,
and produces a robust diversity measure. A log normal distribution may
be auseful gauge of pollution stress. The geometric series is often indica-
tive of a species-poor assemblage and could imply that resources are
being apportioned according to simple rules. The difficulty, of course, is
that several different distributions may equally well describe the same
data set. Moreover, the truncated log normal distribution is so versatile
that it is a poor discriminator of communities. However, this problem
can be largely overcome if the assemblages in question are reasonably
speciose —with at least 30, but ideally 50 or more, species and where the
presence of a mode in the distribution of (logged) species abundances in-
dicates that a log normal distribution is plausible. Given the continuing
debate, evidence that “natural” assemblages, as opposed to large hetero-
geneous collections of samples, follow a fully unveiled log normal distri-
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bution would be an interesting, and undoubtedly publishable, result.
The presence of log left-skew will also stimulate further investigation
and analysis.

7 It may not be necessary to rely on species abundance distributions
to distinguish between assemblages. Tokeshi (1993) notes that the
Kolmogorov-Smirnov two-sample test can be used to determine
whether two data sets have the same pattern of abundance. However, it
is essential to make sure that the data have been collected in a standard
way {see Worked example 3).

Rarity

This chapter has concentrated on species abundances. But if some
species are common, then others, by definition, must be rare. Rarity, like
abundance, is a relative concept; it will depend on the scale of the inves-
tigation and the manner in which the assemblage has been delineated.
Different authors emphasize different aspects of abundance —endemici-
ty, local population size, habitat specialization, and so on—when defin-
ingrarity. Gaston (1994) reviews these approaches and provides a unified
definition of rarity. His method is particularly relevant to biodiversity
measurement.

In the preceding discussion in this chapter, and in line with common
practice, rare species were classed as those falling at the lower end of the
distribution of species abundance. The boundary between rare species
and the rest was not specified. Where this is desired, Gaston’s (1994]
advice is to place the cut-off point at the first quartile in terms of pro-
portions of species. Thus, in an assemblage of 40 species, the 10 with the
lowest abundance would be defined as rare (Figure 2.20). Likewise, the
upper quartile can be used to identify common species. One potential
drawback to this approach is that it de-emphasizes the proportion of low
abundance species in an assemblage (Maina & Howe 2000). For instance,
Robinson et al. {2000 noted that 33% of forest birds in Amazonian sites
had densities of less than, or equal to, one pair per 100ha, while Pitman
et al.(1999) found that 88 % of Amazonian tress had densities ofless than
one individual per hectare over a network of forest plots in Manu Na-
tional Park, Peru. A small number of species will often account for 90%
or more of the total abundance {see Figure 2.4 for an example) and one
might legitimately consider the remaining majority to be rare. In addi-
tion, a rigid definition, such as the quartile criterion, may mask differ-
ences in the preponderance of rare species in different assemblages.
When Robinson et al. (2000) examined the diversity of forest birds com-
munities in Panama they found that only 17% of species were rare in
contrast to 33% of species in Amazonia.
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Figure 2.20 Rarity amongst freshwater fish in Trinidad and Tobago according to Gaston’s
quartile criterion. Fish abundance was measured in two ways — either as numbers of
individuals or as biomass. Data were collected by Phillip {1998). The quartiles in the two
distributions are shown as broken lines; fish species that fall to the left of the individuals
line or below the biomass line are classified as rare. While there is substantial agreement
about the nonrare species, only five {rather than the expected 10} out of the 41 species
recorded are unequivocally rare according to both measures of abundance.

Abundance can be measured in different ways {see Chapter 5 for a full
discussion). Different abundance measures may generate different sets
of rare species; the degree of overlap will vary with taxon. In the fresh-
water fish example in Figure 2.20 there is some consistency between
those species identified as rare on the basis of numbers of individuals,
and those designated as rare using biomass data. As the variance in the
biomass of individuals increases, agreement regarding the identities of
rare species will diminish.

In addition, it is possible to apply absolute definitions of rarity. For in-
stance, in an investigation of insect herbivores in New Guinea (Novotny
& Basset 2000), rare species were classified as those represented by a sin-
gle individual {otherwise known as a singleton). The same number of
species from the upper end of the species abundance distribution were
then defined as common, and the remainder designated “intermediate.”
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Singleton species are prevalent in insect assemblages and often consti-
tute the largest abundance class. Indeed, this is why the log series distri-
bution appears to have particular application in such contexts. Novotny
and Basset (2000) found that when the assemblage was defined as the
group of species associated with a single plant species, on average 45%
of leaf-chewing and sap-sucking insects were singletons. A somewhat
smaller proportion, 278 of the 1,050 species recorded, were represented
by asingle individual {unique singletons). While still an impressive total,
this illustrates how even absolute definitions of rarity are contingent on
the sampling universe and are in a sense relative. The investigation rep-
resented 950 person days of sampling. None the less, Novotny and Basset
(2000) speculate that the unique singletons may belong to species that
feed on plants other than those studied. The alternative explanation,
that these species are genuinely sparsely distributed, would require
them to persist at population densities below one individual per hectare
of forest.

Longino et al. {2002 point out that sampling methodology can have a
large impact on the perception of rarity. Their investigation of ants in
Costa Rica employed eight different sampling methods. Rare species
were defined as being locally unique (that is found in one sample only).
The proportion of unique species varied from 0.13 to 0.47 (average 0.33)
when data sets, collected using the different sampling techniques, were
examined separately. However, when all data were combined the pro-
portion of unique species dropped t00.12 (51 out of 437). This may in part
be a numerical effect—as more individual samples are collated the
chances of identifying new species diminishes. But more importantly
the different sampling methods insured that a wide range of ant niches
were searched (see also Chapter 5). Longino et al. (2002) then went on to
examine the status of their 51 locally unique species. The rarity of 20 of
these species could be attributed to “edge effects,” that is species likely
to be abundant at the La Selva Biological Station but hard to sample, or
species known to be common elsewhere but rare in this particular geo-
graphic locality. Only six species —the “global uniques” —were foundin
asingle sample, and nowhere else on earth.

An “absolute” definition of rarity is also generally adopted when the
abundance-based coverage estimator is used to deduce the species rich-
ness of an assemblage (Chazdon et al. 1998; Colwell 2000). In this case
species having 10 or fewer species are typically defined as “rare.” Chap-
ter 3 provides more details.

As the scale of the investigation broadens, abundance data become
harder to compile. With the exception of particularly well-studied taxa
such as British birds, good abundance data are lacking for geographic
regions. An alternative, and often more practical, approach is to look in-
stead at the distribution of species’ range sizes and use this as a surrogate
of abundance. Gaston (1994) assesses various methods of quantifying
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Table 2.3 The distribution of seven forms of rarity in the British flora using 160 species
(after Rabinowitz et al. 1986, with permission).

Gegraphic

distribution: Wide Narrow
Habitat specificity: Broad Restricted Broad Restricted
Local population size: 36% 44% 4% 9%

somewhere large

Local population size: 1% 4% 0% 2%
everywhere small

Table 2.4 Seven forms of rarity amongst freshwater fish in Trinidad and Tobago using 40
species (after Phillip 1998, with permission).

Gegraphic

distribution: Wide Narrow
Habitat specificity: Broad Restricted Braad Restricted
Local population size: 29% 13% 3% 16%

somewhere large

Local population size: 13% 13% 0% 13%
everywhere small

range size. He also notes that species that are categorized as rare on the
basis of abundance, will also generally be identified as rare on the basis of
their range size.

There are exceptions, however. Some species inevitably fall within
the quartile criterion of distribution but not abundance (and vice versa).
Gaston (1994) resists the temptation to treat these as different forms of
rarity. Other authors have argued that rarity is a multifaceted concept.
Rabinowitz and her colleagues (Rabinowitz 1981; Rabinowitz et al.
1986}, for example, argue that a species’ rarity statusis a functionof three
characteristics —geographic distribution, habitat specificity, and local
population size. The authors (Rabinowitz et al. 1986) categorized British
flora in this way and found that only some 36 % of species were unequiv-
ocally common (Table 2.3). One category of rarity —narrow geographic
distribution, broad habitat specificity, and an invariably small local pop-
ulation size —contained no species at all. A similar result was obtained
when the freshwater fish in Trinidad and Tobago were classified in the
same way (Phillip 1998)(Table 2.4), although when Thomas and Mallorie
{1985) investigated patterns of rarity in butterflies of the Atlas Moun-
tains in Morocco they did find a single species (out of 39) that matched

these criteria. Evidently, this form of rarity is biologically hard to
achieve.
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This approach has considerable potential in conservation biology. In-
deed, the International Union for Conservation of Nature and Natural
Resources’ “red data book” definition of rarity (Gaston 1994} incorpo-
rates the same variables:

Taxa with small world populations that are not at present Endangered or
Vulnerable but are at risk. These taxa are usually localised within re-
stricted geographical areas or habitats or are thinly scattered over amore
extensive range.

However, in the context of biodiversity measurement, rarity is best
viewed as a continuous, as opposed to a categorical, variable. This is be-
cause we are generally engaged in providing quantitative comparisons
between assemblages and it is easier toachieve these if rarity is measured
using a single metric. Categories of rarity are potentially less objective.
They demand detailed information on the ecology of all the species in an
assemblage. In addition, Rabinowitz’s seven forms of rarity tend to be as-
signed at the level of the geographic region whereas many investigations
of biological diversity take place at more local scales (but see also Chap-
ter 6). Deciding where the rarity boundary falls on the continuum of rare
to abundant species remains a difficult challenge. Gaston’s {1994} quar-
tile criterion provides a useful starting point but because assemblages
vary in their evenness, and because the proportion of low abundance
species will change according to the intensity of sampling and the scale
of theinvestigation (the veil line again), it is not universally applicable. If
the quartile method seems inappropriate, the usual alternative is to
identify the species with the lowest abundance or incidence as rare—
as Novotny and Basset {2000}, Pitman et al. (1999), and Robinson
et al. {2000) have done. The extent to which perceptions of rarity are
governed by sample size will be considered further in Chapter 5 and the
relationship between rarity and B diversity in Chapter 6.

This chapter has come full circle. It began by noting that assemblages
can vary considerably in species richness but all are characterized by un-
even distributions of abundance. The precise shape of the distribution of
species abundances is of considerable fundamental and applied interest.
It can shed light on niche apportionment in communities, help explain
why particular levels of richness can be sustained, and monitor the
effects of pollution stress (Chapter 5). Species abundance distributions
may be used to estimate species richness —the topic of Chapter 3. Alter-
natively, statistics can be employed to summarize the diversity or even-
ness of an assemblage, but even though these are sometimes called
“nonparametric” measures, their performance is mediated by the under-
lying pattern of species abundances. These statistics will be examined in
Chapter4.
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Summary

1 Different plotting methods can be used to display the distribution of
species abundances. Of these the rank/abundance plot (or Whittaker
plot) and log{x) frequency distribution (or Preston plot) are most widely
used.

2 Species abundance distributions can be classified as statistical or bio-
logical. Statistical models describe observed patterns whereas biological
models attempt to explain them. Most statistical models are determinis-
tic and most biological models stochastic.

3 The log series and log normal models are the widely used statistical
models. There is still debate over whether the log normal is the expected
distribution for large, unperturbed ecological assemblages. Empirical
log normal distributions tend to log left-skewed. Reasons for this are
explored.

4 Motomura’s geometric series and MacArthur’s broken stick model are
two early examples of biological models. Tokeshi has proposed a series of
new models reflecting different scenarios of niche apportionment. Of
these the random fraction model and the related power fraction model
appear to have greatest application to small and large assemblages,
respectively. Methods of fitting niche apportionment models are
discussed.

5 Null models of species abundance, including Caswell’s and Hubbell’s
neutral models are reviewed.

6 General recommendations on investigating patterns of species abun-
dance are given. The goals of an investigation will determine whether a
biological or statistical model is appropriate. This in turn will guide the
sampling strategy. Since species abundance distributions can be com-
pared directly it may not be necessary to fit a model.

7 Rarity is discussed. Relative and absolute definitions of rarity are pre-
sented. From the perspective of biodiversity measurement, rarity should
be treated as a continuous variable. Gaston’s definition—that rare
species are those that fall in the lower quartile of the species abundance
distribution—provides a useful working definition.



