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. Abstract

For animals that use crypsis 1o avoid predators, immobility reduces the risk of detection. The
magnitude of this immobility benefit depends upon the probabitity that a predator is present, since a
predator must be present for crypsis 10 be valuable. Thus, cryptic animals typicafty reduce their
movement rates upon detection of a nearby predator or signs of its activity. Such a response occurs in
tidepool sculpins (Oligocottus maculosus) when presented with water-borne compounds released from
the skin of injured conspecifics (HUGIE et al. 1991). The benefit of immobility should also depend
upon the animal’s background, or substrate, since animals on a matching substrate achieve a higher
level of crypticity than those on 2 nonmatching substrate, and have more to gain by remaining sull.
Therefore, we predicted that the response of tidepool sculpins to conspecific skin extract would
involve 1 greater reduction in movement rates for fish on sand (matching) than for those on white
{nonmatching) substrate. The results of a laboratory experiment supported this prediction, with fish
on sand showing a large decrease in movement rates in response to skin extract, while the movement
rates of those on white substrate remained unchanged.

Corresponding author: R. HoutMaN, Behavioural Ecology Research Group, Department of
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Introduction

Prey that rely on crypsis to avoid detection use a variety of behavior patterns
to enhance the cryptic effect. For example, they commonly choose backgrounds
upon which they will appear most cryptic (DONNELLY & DiLL 1984; FELTMATE &
WILLIAMS 1989; MERCURIO et al. 1985; MOREY 1990; STEEN et al. 1992; review in
EpMUNDS 1974). FELTMATE & WILLIAMS (1989), MERCURIO et al. (1985), and
Morey (1990) provide experimental evidence that cryptic animals are less at risk
on their chosen substrates than on rejected ones.
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injured conspecifics (FIUGIE et al. 1991). This “alarm response” includes decreased
movement and feeding rates and increased use of cover and burrowing into the
substrate (HUGIE et al. 1991}, and apparently indicates that the animals perceive a
predator to be nearby. In this experiment, water flushed over the lacerated skin of
sculpins (“skin extract™) was added during trials to increase the subjects’ percep-
tion of the likelihood that a predator was present.

Methods and Materials

Sculpins were collected on Jul. 21, 1989, from tidepools at First Beach, on the east side of
Trevor Channel, Barkley Sound, B.C., using dip nets and 2 120 X 180-cm pole seine. Immediately
after collection, the fish were inspected and any injured fish returned to the tidepools. The remaining
fish were then transporred to laboratory facilities at Simon Fraser University in white, 20-1 buckets. In
the lab, the sculpins were held in 20-, 40-, and 80-1 aquaria with Joose sand substrates and fed 2 diet of

* brine shrimp (Artemia salina) and broken mussels (Mytilus edulis). Water cemperature was maintained

between 11 and 14 °C.

The skin excract was prepared in 2 single batch on Aug. 9, before the start of the experimnent,
and 5-ml aliquats frozen. This batch preparation method was used (o reduce variation in skin extract
aliquot potency caused by differences between donor fish or by diffcrences in length and depth of
lacerations (sec below). Aliquots required cryo-preservation to prevent the potential deterioration of
skin extract compounds. A preliminary experiment performed in Jul. 198% indicatéd that freezing did
not affect skin extract potency: changes in movement rates in response to fresh and previously frozen

- preparations did not differ significantly (Mann-Whitney U = 70.5, p > 0.6, n = 12 fish each).

For the present experiment, 10 donor fish (5 males and 5 females, 49—67.5 mm) were used to
prepare 22 aliquots of skin extract. Each fish was killed by a blow to the skull, placed in a clean petri
dish, and lacerated 5C times on each flank with a clean razor blade. Fach flank was flushed with
approximately 6 ml of sea warer from a 5-ml syringe. The liquid from all 10 donors was poured into 2
125-ml Erlenmeyer flask, and stirred at low speed for 1 min using a magnetic stirrer. 22 5-ml
disposable syringes were filled, capped, and frozen at —14 °C. Fhe entire procedure took 25 min, and
was done in 2 cold room to minimize decay and evaporation rates.

Before each trial, the entire experimental apparatus was rinsed with hot tap water followed by
two tinses with cold sea water. Four 20-1 glass aquaria, each divided into two 23.9 x 19.8 X 19.8 cm
experimental chambers by a watertight, opaque white wall were used for the tests, Experimental
substrates (see below) were placed in the chambers and the chambers filled to a depth of 10 cm with
sea water passed through a hobby brewing filter {pore size < 56 ), 10 remove all potential food items.
Filling was done the day prior to use, to allow the water temperature to equilibrate with thac of the
cold room (1+—14 °C}. The tanks were placed in well-lit surroundings with white blinds on all sides.
Aquarium airstones, adjusted to provide a moderate bubbling rate, were placed against the rear walls
of each chamber, to ensure that the skin extract became well mixed upon addiuon to the tanks. Skin
extract was introduced to the chambers through Tygon tubes leading from behind the blind to the
water surface immediately above the airstones. '

We built artificial substrates measuring 19.6 X 19.5 cm, designed to cover the entire chamber
bottom and allow easy removal for cleaning. The matching substrate consisted of a 3-mm thick layer
of plexiglas, to which a solid layer of gray sand was glued using clear silicon sealant. These substrates
were used with the plexiglas side on top. The sand appeared grainy and wet through the plexiglas, and
provided a good simulation of the colors of loose sand and granite, tidepool substrates upon which
O. maculosus are commonly found (NAKAMURA 1976; pers. obs.). The sculpins were able to achieve a
high degree of color match with chis substrate. The nonmatching substrate was also topped with a 3-
mm piece of clear plexiglas, but had an apaque white sheet of the same thickness below it. White was
used because it is a common substrate color in natural settings (accumulations of barnacle shells, etc.),
but the sculpins could not become light enough to march it well.

The experiment consisted of 11 paired rtrials. Sculpins, starved between 19 and 24 k, were
randomly assigned to a substrate wreasment and placed singly in the appropriate chamber 2 h
(£ 5 min) prior to the beginning of trials, to allow acclimation. A minimum of 0.5 h prior to trial
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increased slightly from 22.8 = 3.6 b;fore to 23.4 £ 5.3 after skin extract addition.
The movement rate response to skin extract was significantly greater for fish on
the sand substrate than for those on the white substrate (Wilcoxon signed-ranks
test, n = 11, one-tailed p = 0.007; Fig. 1.

Thus, tidepool sculpins adjusted their movement raies in an adaptive manner
in response to cues indicative of the presence of predators. Sculpins on the
matching substrate became relatively inactive after detecting skin extrace, presum-
ably due to the large benefit of immobility in maintaining crypsis. In contrast,
sculpins on nonmatching substrates did not change their movement rate. Against
the white substrate, immobility would have provided relatively little improve-
ment in erypticity. Therefore, movement rates did not decrease in response to
skin extract, probably due to the lost opportunity costs of immobility. There may
even be a benefit to movement for sculpins on nonmatching substrate upon
detecting predator cues — it would allow them 1o search for physical cover, or
matching substrate. This may have been a factor causing the sculpins on the white
substrate to maintain high rates of movement after detection of skin extract, since
there were no prey in the tanks, and thus no real opportunity cost of immobility.

Several other studies, all non-experimental, have examined the influence of
degree of crypsis on the response to predators. KETTIEWELL (1973) searched for
moths resting on trees in an area of burnt forest and an adjacent area of unburnt
forest and found that moths were much easier to find in the burnt area, apparently
due to different levels of crypsis on the two types of trees. The moths in the
unburnt area “could be approached and captured without eliciting an escape
response”, while those in the burnt area “without exception . . . took flight on
approach and. this when T was several yards distant” (ibid. page 73). HEATWOLE
(1968) determined the distance to which individuals of two species of anoles
(Anolis stratulus and A. cristatellus) would allow a predator to approach before
fleeing. This distance was significantly less for the more cryptic species,
A. stratulus, than for A. cristatellus. Finally, RADABAUGH (1989) examined the
response to predator detection by males of three darter species, differing in the
degree and nature of color change between the non-breeding and breeding
seasons: Etheostoma flabellare change very little, E. blennioides develop bright
green colors, while E. spectabile develop intense and contrasting orange, blue,
yellow and red areas. Non-breeding and breeding E. flabellare and E. blen-
nioides, and non-breeding E. spectabile all reduced their movement rates after
predator detection. However, breeding E. spectabile did not show a significant
reduction in movement rates. Furthermore, they made more long distance moves
after predator detection than any of the other darters. All of these results indicate
that the extent to which an animal relies on crypsis during a predator encounter

depends on the likelihood of remaining undetected during that encounter.

An unexpected result of this experiment was that prior to skin extract
addition, sculpins on the white substrate had lower movement rates than those on
the sand substrate. This difference was almost significant {p = 0.061, two-tailed
Wilcoxon signed-ranks test). The opposite influence of substrate was expected,
since when no predator cues have been detected, searching for matching sub-
strates should be relatively cost-free for sculpins on the white substrate. In fact,
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extract had been detected. Thus, referring to one or both of these components as
predation risk would lead to confusion regarding the roles of the two manipula-
tions. It is likely that experimental designs like this one, in which two or more
components of predation risk are manipulated, have been overlooked because
workers have not treated predation risk as a product of several components.
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