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Fish and game: a game theoretic approach to habitat
selection by predators and prey*
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Given a choice between habitats differing only in food availability, prey are known to select the
habitat providing the highest energetic return. They do so in a frequency-dependent manner,
accounting for the reduction in food availability caused by the presence of other individuals; this
results in the well-known ‘Ideal Free Distribution’, an equilibrium solution to a spatial game,
When habitats also differ in predation risk due, for example, to different predator densities, prey
also appear able to take this into account. However, in most theory (and most experiments) the
predation risk levels in the available habitats are assumed to be fixed. Here we ask what will
happen if predators are able to adjust their distribution in response to the habitat choice
decisions of their prey, i.e. we model a generalized habitat selection game between predators and
prey. We first develop & basic model which captures the essence of the problem, and then
expand it to include risk dilution and interference among predaters. The model produces
several new insights, notably that, in the absence of interference effects, the density of prey in a
habitat is determined solely by the inherent ‘riskiness ® of that habitat (a habitat measure
independent of predator density, which might reflect cover or light levels, for example) and is
unaffected by habitat productivity (a measure of the food resource available to the prey). When
interference exists between predators, prey density is also determined by habitat productivity
but to a lesser extent than by riskiness. Consequently, prey may not respond significantly to
changes in relative food resource availability among habitats if their predators are also free to
choose the habitat which maximizes their expected fitness. We consider briefly the potential
applications of game theory to diel vertical migration and other fish predater—prey scenarios.

Key words: game theory; habitat choice; foraging; predation risk; ideal free distribution.

INTRODUCTION

Optimality reasoning has been a powerful tool in understanding the behaviour of
fish (and other animals) when the preferred outcome of a situation depends
solely on the interests of a single party. In such cases an individual’s best
decision is simply the one which yields the highest expected fitness. However, the
outcomes of many situations are under the partial control of more than one
individual, each with a self interest which may conflict with the interests of the
others. Standard optimization techniques are inappropriate for these situations,
since an individual’s best strategy will depend on the decisions made by the other
individuals. Instead, a game theoretic approach is required. We illustrate this
approach by developing a habitat selection game for predators and their prey.
We hope to convince the reader of the value of looking at predator-prey
interactions in this framework by emphasizing the novel insights provided by this
approach.

Game theory was introduced into evolutionary biology and behavioural
ecology by John Maynard Smith (for useful summaries see Maynard Smith,
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1982; Parker, 1984). Every game involves at least two ‘ players’, each with a
‘strategy set’ consisting of alternative courses of action or ‘ pure’ strategies,
such as “ fight ’, “ flee ’, etc. A ‘ mixed ’ strategy is a probability distribution over
pure strategies, for example, ‘ fight with probability 0-6, flee with probability
0-4°. Every strategy, pure or mixed, is associated with a payoff which depends
on the frequency distribution of opponent strategies in the population. Thus,
games exhibit the quality of frequency-dependence.

The usual goal of evolutionary game theory is to find an equilibrium
strategy, pure or mixed, which can persist in a population. The most familiar
example of such a strategy is the Evolutionarily Stable Strategy (ESS),
introduced by Maynard Smith (1974), but more general notions of dynamic
evolutionary stability exist (Taylor & Jonker, 1978; Hofbauer & Sigmund,
1988; Friedman, 1991). An evolutionary equilibrium may be pure or mixed.
In the case of a pure strategy equilibrium, all individuals in the population
adopt the same pure strategy. In a mixed strategy equilibrium, the frequency
distribution of pure strategies at equilibrium in many cases may be interpreted
in two ways (see Maynard Smith, 1982). It may represent the proportions of
pure strategists in a polymorphic population or, alternatively, the probability
distribution of pure strategies used by all individuals in a monomorphic
population. At equilibrium all individuals within a population must receive
identical payoffs. The concept of a simple optimum no longer has meaning
since, even though all players are assumed to be maximizing their respective
payoffs, the game equilibrium need not produce the globally maximal payoff
to any player.

Game theory has already been used widely to address various questions in
behavioural ecology, including those involving fish. It has been applied, for
example, to studies of aggressive behaviour (e.g. Enquist et al, 1990), sex
allocation (e.g. Petersen, 1991), alternative mating tactics (e.g. Gross, 1984), egg
trading in simultaneous hermaphrodites (e.g. Fischer, 1988), and parental care
(e.g. Dawkins & Carlisle, 1976). Tt has also been applied previously to the study
of habitat selection, since the ‘ Ideal Free Distribution’ of competitors (e.g.
Milinski, 1979; Godin & Keenleyside, 1984; Abrahams & Dill, 1989; see below)
is really just a mixed ESS to a spatial game between foragers. Other games
between fish as prey include predator inspection (Milinski, 1987; Dugatkin, 1990;
Dugatkin & Godin, 1992), school joining (Turner & Pitcher, 1986), and perhaps
synchronized aerial respiration (Kramer & Graham, 1976).

We are concerned here primarily with games between predators and their prey.
The very nature of the behavioural interaction between the hunter and the
hunted ensures that the two usually have different preferred outcomes, but only
partial control over them, and that the best thing for one player to do will
depend on the behaviour of the other; thus, game theory is the appropriate
modelling approach. Curiously, despite its apparent relevance, attempts to
apply game theory to predator—prey interactions have been extremely scarce, in
any system (but see Stewart, 1971; Auslander et al, 1978; Iwasa, 1982,
Vega-Redondo & Hasson, 1993; van Baalen & Sabelis, 1993; Bouskila, 1993). In
this paper we describe in some detail a habitat selection game between predators
and prey to illustrate the basic concepts and the sorts of new insights that can be
obtained by using a game theoretic approach.
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A HABITAT SELECTION GAME

Consider the situation in which individual prey have a choice between habitats
which differ only in their level of some divisible resource. In such situations a
spatial game exists between prey individuals; the best habitat to occupy depends
not only on each habitat’s resource level but also on the current distribution of
other individuals competing for that same resource. Prey should switch to the
habitat with the highest payofl until the payoffs in all habitats are equal.
Fretwell & Lucas (1970) have shown that the solution to this game, termed the
‘Ideal Free Distribution’ (IFD), is a matching of the prey distribution to the
distribution of resources across habitats. However, in nature the fitness of prey
individuals is not determined solely by the availability of resources, but also by
the risks of mortality associated with each habitat. Many studies have demon-
strated that animals consider both foraging and mortality components of fitness
when choosing a resource patch or habitat (see Lima & Dill, 1990 for many
examples). Indeed, Abrahams & Dill (1989) showed that guppy (Poecilia
reticulata Peters) distributions may still correspond to the IFD prediction, if
individual prey are assumed to be maximizing (and equalizing) some combined
function of energy intake and risk of mortality. However, that study, and others
examining trade-offs between risk and food, assumed a fixed difference in
predation risk between habitats.

Inherent in the assumption of a fixed distribution of predation risk is the
assumption that predators do not move between habitats based on the conse-
quences of such movement for their own fitness. This will not usually be the case
in nature; predators, being foragers themselves, should redistribute themselves
across habitats until their fitness (based on food intake through predation) is
equalized. However, as predators move, corresponding changes in predation
risk for the prey will result in changes in prey distribution. This will in turn feed
back on the foraging success of predators, causing further adjustments in their
distribution. Clearly, a game exists, not only between prey with respect to
resource competition, but also between predator and prey with respect to
predation mortality. In addition, predators are gaming amongst themselves,
both indirectly through their effect on the prey’s distribution and possibly
directly due to interference competition. Although others have recognized the
interactive nature of such a problem (e.g. Sih, 1984; Formanowicz & Bobka,
1989), there have been few previous attempts to use game theory to find a
solution, i.e., the equilibrium distributions of prey and predators among habi-
tats. One exception is the model of van Baalen & Sabelis (1993); however, they
did not allow for frequency-dependent prey intake rates. In an approach similar
to ours, Bouskila (1993) modelled the habitat choice of desert rodents and their
rattlesnake predators. Here we present a more generalized game,

Our model (Fig. 1) considers habitats which differ in both their rate of
production of a food resource for the prey and in habitat ‘ riskiness * {defined
betow). Like most models of the * ideal free * sort, we assume that both predators
and prey have ®ideal’ information regarding the habitat parameters and each
other’s current distribution. Unlike previous models, we allow both predators
and prey to switch between habitats, and assume that both are  free ’ to do so,
whenever the payoffs in the available habitats are unequal. As in other IFD
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FiG. 1. An idealized habitat selection game between predators and their prey. The two habitats differ in
productivity of the prey’s food resource and in inherent * riskiness ’ due, in this case, to differences
in available cover. Individual prey {lower) are free to choose the habitat which maximizes their
expected fitness but the predators (upper) are free to do the same.

models, prey compete for energy within a habitat by dividing the available
resource productivity equally amongst themselves. Predators gain energy by
encountering and capturing prey randomly. We assume that predator mortality
is constant across all habitats which would be the case, for instance, if they were
top carnivores. Thus, our model spans three trophic levels, i.e., the prey’s food
resource base, the prey and the predators, with two trophic levels involved in
gaming, i.e., the prey and the predators.

The reader should note the following convention. All constants in the model
are represented by capital letters, while variables and functions are described by
lower case or Greek letters. Subscripts refer to habitat and primes indicate
values pertaining to predators. Nowhere does a prime indicate the derivative of
a function.

MODEL CONSTANTS

All constants in the model are shown in Table I. N and N’ are the sizes of the
prey and predator populations. S, is the size (area or volume) of each habitat.
Habitat * riskiness ° (R)) is mathematically equivalent to Holling’s (1963)  rate of
successful search ’, and is the product of predator search rate and the conditional
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TagLe [. Constants in the habitat selection game model

Constant (dimensions} Symbol Value
*Total number of prey N 10000

Total number of predators N 1000

Size of habitat [ {(area or volume) S, 1000 (sum)
*Habitat riskiness (size - time ™) R, 0-005 (mean)
*Habitat productivity (energy - size ' - time '} P, 1 {mean)

Energy value of prey (energy - prey ~ ) V
*Foraging efficiency of prey {proportion) F 09

Foraging efficiency of predators (proportion) F (18
*Metabolic rate of prey (energy - time ™ ') M 0-04

Metabolic rate of predator (energy - titne ~ 1) M 0-04

Prey initial growth cost (energy) G 1

Predator initial growth cost (energy) G 1

Energy cost of prey offspring (energy - offspring ') () 05

Energy cost of predator offspring (energy - offspring=") ¢ 0-5

Expected lifespan of predators (time) L 500

Dilution coefficient {time) D 5
*Predator collision coefficient (area or volume - time ™'} G, 0-05 (all habitats)
*Interference coefficient {time) I 5

All values are assumed to be positive with the exception of the interference () and dilution (D}
coeflicients, and the initial growth costs (G and G'), which may be zero. The subscript { refers to the i th
habitat. The right column shows the values used in the model or the sum or mean across all habitats,
Only those constants indicated with an asterisk affect the game equilibrium. All other constants are
irrelevant, given a valid (w(i) and w'{/)>0) equilibrium.

probability of prey capture given encounter. In our model we assume that
differences in R, reflect differences in those habitat characteristics which influence
predator search ability, or their ability to capture prey. These include such
habitat features as light level and the amount of physical structure; several
examples of the latter, many involving fishes, are reviewed by Gotceitas &
Colgan (1989).

Productivity {P)) refers to the rate at which the food resource becomes
available to the prey in each habitat. P, is assumed to be constant, with no
depletion over time, and positive, since we are only interested in habitats with
some food resource avaitable to the prey. The energy value of the prey (V) is the
gross energy content of a single prey individual.

Fand F’ are the proportions of gross energy intake available to the prey and
predator, respectively, after accounting for all costs which are proportional to
gross energy intake, such as searching, handling and processing costs. M and M’
refer to all constant (i.e., intake independent} energy demands on individual prey
or predators for baseline activity and maintenance. This may also include the
cost of growth for indeterminately growing animals, but we assume no increased
advantage for larger size in our model.

Growth may also be incorporated into the model as an initial energy
requirement for somatic growth and maintenance to a threshold size before
reproduction can taken place. G and ' represent this energy requirement for
prey and predators, respectively, When considering games between adult
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animals, G and G' may be set to zero without affecting the outcome of the game.
The energy cost of individual offspring produced by the prey and predators is
given by O and O, respectively. As explained previously we assume that the
expected lifespan of the predators (L) is independent of the habitat chosen. The
expected lifespan of the prey is variable, depending on their habitat choice, and
is discussed below.

Thus, in our model, the gross energy intake of both predators and prey may be
expended as ‘foraging’ costs (F and F') proportional to energy intake, as
constant ‘ metabolic * costs (M and M"), on initial * growth” (G and ), or for
the production of offspring (O and O").

Constants related to dilution and interference are described later.

BASIC MODEL

The strategy set for both predators and prey is the choice of which habitat
to live in. The proportion of prey and predator individuals playing strategy i
is given by p; and p;/, respectively (the sums of p, and of p/, across all
habitats, both equal 1). However, the distribution of individuals across
habitats is more ecologically, and practically, described by the density of each
in the ith habitat.

. N
Prey density d;= pig (1)
Predator density d/ = P ng (2)

We model encounters between predators and prey as a random process,
such that the overall rate of prey death in habitat i (y(i)) is:

i) = d;d/R; S; (3)

The per capita prey death rate, or the probability of death per unit time
(f(2)), is described by the overall rate of prey death in the habitat divided by
the number of prey present there:

B = j(g = Ridf @

i~

Similarly, the per capita predator capture rate (6(7)) is the overall rate of prey
death divided by the number of predators in that habitat:

o =" = R4 5
(i) 7S (5)

Note that the predator’s capture rate in this basic model is unaffected by
either risk dilution or interference effects; each of these points are addressed in
subsequent additions to the model described below,
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Payoff for prey

In order to incorporate both energy and mortality components of fitness the
payoff for strategy i, for both prey and predators, was calculated in terms of net
reproductive output (R,). Other theoretical studies of animal distributions (e.g.
Werner & Gilliam, 1984; Aksnes & Giske, 1990) have also used net reproductive
output as a measure of fitness, While mathematically tractable, R, is an
appropriate measure of fitness only when population size is constant over time
(Stearns, 1992). Therefore, we assume that both prey (N} and predator (N)
populations are held constant globally due to density-dependent factors, such as
parasitism or disease, which affect mortality or reproduction independent of
habitat. Fitness is first calculated assuming no such population regulation and is
then corrected for zero population growth. In our model, this correction has no
effect on the equilibrium solution.

Although we calculate fitness in terms of net reproductive output over an
individual’s life, our model is valid for games of any duration played between
individuals which are maximizing their future fitness. This is because population
size is held constant in the model, we impose no maximum lifespan on
individuals, and reproductive rate is independent of age. Under these conditions
net reproductive output is identical to an individual’s residual reproductive value
at any age.

The prey’s expected lifespan in habitat ; (J(f)} is simply:

1
)= - (6)
B
while its expected net energy intake rate (e(f)) is given by
e(i) = % F-M (7

'

Thus, the prey’s uncorrected fitness («(i)), in habitat f, is

ol = l(f)eg)—c;_

Since we assume that the prey population is constant in size the prey’s fitness
must be corrected so that the mean fitness of the population is 1. The corrected
fitness (w(f)) is obtained by dividing the uncorrected fitness in each habitat by the
mean uncorrected prey fitness in the population (@), thus

®)

w(i) =20 ©®
[¢3]
where w=2X p, o).

It is worth noting that maximzing w(i) is equivalent to maximizing e{(i)/f{7),
the ratio of net energy intake and the probability of death unit time. In Gilliam
& Fraser’s (1988) terminology this ratio is expressed as f/u. In either case, it
follows directly from the assumption that prey are maximizing net reproductive
output.
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Payoff for predators

The predator’s payoff is also calculated in terms of net reproductive output. A
predator’s net energy intake rate in habitat i (¢'()) is given by

CH=00) VF — M. (10)
A predator’s uncorrected fitness in i (cw'(f)) is therefore
. _Lem—-¢
oH=— 11
(1) > (1

Correcting for zero population growth (as before) by dividing ¢’'(¢) by the mean
uncorrected predator fitness in the population (@w') gives:
w'(i)

Wi =—, (12)

where w'=), p; ')

Again, it is worth noting that maximizing w'(i) is equivalent to maximizing the
predator’s capture rate 4(i).

We only accept equilibria with positive fitness for both predators and prey.
Therefore, for a valid equilibrium, ex(?) and w{i) > 0 and «'(i} and w'(i} > 0 for all
component pure strategies.

Equilibrium

It can be shown that any equilibrium, for this basic game, and for both
subsequent modifications, must be a mixed equilibrium with support from all
pure prey and predator strategies (see Appendix I), and is dynamically stable (see
Appendix I). In other words, at equilibrium all habitats will contain soine
proportion of the prey and predator populations. The equilibrium to this game
is most efficiently described by the ratio of the prey or predator densities between
any two habitats (f and 7). For any mixed strategy equilibrium, the payoff to ail
pure strategies in support of the equilibrium must be equal. Setting w{i)=w(})
and w'()=w'(j) and solving for the equilibrium density ratio reveals:

d_ R (13)
;R
and

d; P F—d;M

7

At equilibrium, the distribution of prey is determined solely by habitat
riskiness. More specifically, the ratio of prey densities between any two habitats
is given by the inverse of their habitat riskiness ratio [equation (13); Fig. 2(a)]; if
one habitat is twice as risky as another it should have half the density of prey.

The predator’s distribution is affected dramatically by both relative habitat
riskiness and relative habitat productivity {Fig. 2(b); compare the scale of the
ordinate to that of Fig. 2(a)]. More precisely, the ratio of predator densities is
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Fi1G. 2. Results of the habitat selection game for any two habitats i and ;. All panels show the ratio of prey
(d;/dy or predator (d//d/) densities as a function of the ratios of habitat riskiness (R,/R) and
productivity of the prey’s food resource (P,/P). The value of other model constants are given in
Table I and described in the text. Panels (a) and (b} are the results for the basic model; {c) and (d)

are the results with interference between predators. Dilution has no effect on the equilibrium, with
or without interference.

equal to the ratio of the productivity levels after they have been discounted by
the * foraging * and ‘ metabolic * costs of the prey in each habitat [equation (14)].
This ratio depends on prey abundances since the greater the prey density, the
greater the amount of energy required for their maintenance. Since prey density
depends on habitat riskiness (see above), predator density will also depend on the
habitat riskiness ratio [Fig. 2(b)]. The magnitude of the effect will depend on the
prey’s foraging efficiency (F), metabolic rate (M), and population size (N).
Figure 2 illustrates the results for values of M, F, and N (see Table I) chosen so
that 10% of the total productivity of the system (all habitats combined) is used
up by the prey as ‘ foraging * costs, and 40% lost through fixed  metabolic * costs.
While these values are arbitrary, the predator distribution is significantly affected

by habitat riskiness as long as metabolic costs {(expressed in M) exceed about
20% of the total energy available.

INCORPORATING DILUTION

To this point, we have effectively modelled a functional response without any
saturation, i.e., the number of prey eaten by a predator {and by the predator
population as a whole) rises linearly with prey density. This is clearly unrealistic,
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since the per capita prey mortality rate most often decreases as prey density
increases, an effect known as ° risk dilution’. To increase the model’s realism,
we now incorporate into the model the fact that predators must spend a
certain proportion of their time handling and digesting already captured prey,
and that they cannot use this time to search for additional prey. We do so by
adding an additional term to the equations for 6(/) and (i}, based on Holling’s
(1959) disc equation. By doing this we convert our functional response to
a Holling Type II response and provide a functional model of the dilution
effect. The prey’s probability of death now declines asymptotically with prey
density, while the predator capture rate increases at a decelerating rate with prey
density:

_ , 1
PO = Ry d, [m] (13)
1
=R, el | ———— 1
0 '¢L+&D¢} (16)

where D is the amount of time spent handling (catching, eating and digesting) a
single prey item. Of course, this is only one possible behavioural mechanism
which will produce a dilution effect, but the general form of the equation will be
similar in the other cases.

Interestingly, the equilibrium prey and predator density ratios [equations (13)
and (14)] are unaffected by the addition of dilution to the model. Thus, dilution
has no effect on the equilibrium distributions of predator and prey.

INCORPORATING INTERFERENCE

Just as encounters with prey take up time that cannot be used for searching, so
do encounters with other predators; this can be considered interference. The
total amount of time spent on conspecific interactions depends on predator
density (d,), the predator collision coefficient (C;; equivalent to rate of successful
search, but for contact between one predator and another), and the time cost of
each encounter (7 = the amount of time spent interacting with a single competi-
tor). By analogy with the derivation of the disc equation (Holling, 1959), we end
up with the following equations for the per capita prey death and predator
capture rates:

1
= Rd; 17
A [1+RiDdi+CiIdf'} (1
80) = Rd ! (18)
"T1+R DdAC Td

Again, there are other ways to imagine interference working, but all will have the
same effect, namely a decrease in predator capture rate and a deceleration in the
rate of increase in prey death rate with increasing predator density. Interference
is often represented in population models using the mathematically more
tractable equation of Hassell & Varley (1969). We avoided this equation due to
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its undesirable characteristic of increasing predator capture rate with increasing
mterference when predator densities are less than 1.

Due to the mathematical complexity introduced by adding interference, the
equilibrium for this version of the game cannot be solved analytically. However,
setting w(D)=w(y) and w'(i)=w'(j) and solving for the equilibrium ratios of prey
{d) and predator (d,) densitics between any two habitats (¢ and j), gives the
following pair of equations:

fdi: Rj (1+Cr'di'[) (19)
d; R(I+CdD)
df _ P,F—d;M 0)

d; P, F-d;M

The prey ratio now includes terms for predator density (&), the predator
collision coefficient (C,) and the interference coefficient (I} as well as habitat
riskiness (R;). The predator’s density ratio, expressed in equation (20), is similar
in form to equation (14) given for the basic model, and is interpreted similarly.
However, because the addition of interference to the model changes the prey
distribution, equation (20} is not strictly identical to equation (14) and yields
different results [ef. Figs 2(b) and (d)]. Again, dilution does not appear in either
equation and has no effect on the equilibrium.

To determine the actual equilibrium density ratios, we simulated the game
(for two identical sized habitats) on a computer using the constant values
given in Table 1 and the evolutionary difference equations described in
Appendix II. For simplicity, the values in Table I were chosen assuming that
predators and prey are similar in size but prey are 10 times as abundant.
Although many of the values in Table I were chosen arbitrarily, most are
irrelevant to the equilibrium anyway. The choice of the prey's ‘foraging
efficiency * (F), * metabolic * rate (M) and population size (N) has already been
discussed. The interference (f} and predator collision coefficient values (C)
were chosen so that the predator’s capture rate (6(5)) at the mean predator
density was reduced by 20% due to interference. The results of the simulations
are given in Figs 2{c) and (d). Both the prey and predator density ratios are
affected by the addition of interference. The prey’s density ratio is now
partially determined by the habitat productivity ratio, although the habitat
riskiness ratio remains the most important determinant. The predator’s
density ratio is qualitatively unchanged but the magnitude of both the riskiness
and productivity effects are reduced by interference; not surprisingly, with
interference the predators are more evenly distributed between habitats.

DISCUSSION

Ecological implications

In all versions of our model prey distribution is determined by habitat riskiness
(the inherent riskiness of the habitat independent of predator density). Prey
should prefer habitats where predator search rate or capture efficiency are
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compromised. This prediction is not surprising and is supported by the many
observations of prey preferring habitats with more cover provided by physical
structure. For example, Schmitt & Holbrook (1985) showed that juvenile black
surfperch, Embiotoca jacksoni Agassiz, prefer structurally-complex substrates in
the presence of predators. Several other examples are reviewed by Lima & Dill
(1990). More specifically, our model predicts that prey density should be
inversely related to habitat riskiness (* safety matching ’}; we know of no data to
test this prediction.

More surprising is the prediction that prey distributions are not affected (with
no interference between predators) or may be only marginally affected (with
interference) by differences in productivity (the availability of food resources)
between habitats. Therefore, prey distributions will not respond, or will respond
only slightly, to experimental changes in food abundance. This prediction is
quite different than that of the Ideal Free Distribution (prey should respond to
productivity) or the IFD incorporating predation risk (prey should respond to
both productivity and the overall predation risk—due to the combined effects of
habitat ‘ riskiness > and predator density). Our model makes no prediction about
the influence of predator density on prey habitat use. Indeed, it is meaningless
now to talk about experimental manipulation of predator distribution, since they
will re-assort themselves anyway.

It is important to emphasize that even though habitat productivity does not
influence their equilibrium distribution, prey are explicitly considering both
foraging and risk when choosing a habitat, since both affect fitness. Food
availability and predator densities influence patterns of prey distribution, but do
so through circuitous and unobvious routes when the predators and prey are able
to respond to one another’s habitat choices. We might think about these effects
as ‘ the ghosts of competition and predation present ’.

Furthermore, although the prey distribution is unaffected by habitat produc-
tivity, the prey turnover rates will be. Animals will lead shorter but more
productive lives in the richer environment, and this will have consequences for
population age structure.

Qur habitat game predicts that predators should be more numerous in
inherently  risky > habitats [Figs 2(b) and (d)]. This prediction is not surprising
though we can find no data to support it. What is more interesting is the
prediction that predators should also be more numerous in habitats with higher
productivities. Predators will appear to distribute themselves in an ideal free
manner, but with respect to a trophic level two steps removed, rather than to
their own prey abundances. Gilliam & Fraser (1988) made the same prediction
concerning the relationship of predator and food density, but only for the case of
stationary predators. van Baalen & Sabelis (1993) predicted a similar result from
their ESS model of patch distribution. They observed (p. 660) that * it is striking
that patch quality distribution is more conspicuously reflected in the ESS
predator patch selection strategy than in the prey patch selection strategy °, but
did not consider further the observation or its ultimate cause. Again our
predictions are different from the IFD; predators will not necessarily be
distributed according to their prey’s distribution.

Dilution has no effects on the distribution of either predators or prey in our
model. Interference, however, affects both distributions; with interference the
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prey’s distribution is affected by productivity and the predator distribution is
more homogeneous.

In the ecological literature, particularly the aquatic ecology component, there
has been considerable interest in the issue of top-down v. bottom-up control (see,
e.g. Matson & Hunter, 1992). According to the top-down scenario, a
population’s characteristics (especially its size, but other characteristics as well)
are determined by the trophic level above itself (i.e. effects cascade downward
from the top carnivore level); by contrast, according to the notion of bottom-up
control, populations are influenced most by the trophic level directly below
themselves, and ultimately by the primary producers. What does a game-
theoretic approach to habitat selection have to say about such a dichotomy?
When the opportunity for gaming exists between and within trophic levels the
equilibrium cannot be predicted simply by either ‘ top-down’ or * bottom-up’
logic. For example, in our model prey distributions are not predictable solety
from the distribution of their food resource (from below) or their predators’
distribution (from above). Similarly, the predator’s distribution cannot be
predicted solely on the basis of the prey’s distribution (from below). Clearly, the
‘top-down vs bottom-up * dichotomy is far too simplistic to handle the complex
interactions introduced by habitat games, which surely are characteristic of real
communities (cf. DeMelo et af., 1992).

As with any model, it is important to consider the assumptions of our model.
We assume, as do many IFD models, that prey divide all of the habitat
productivity equally amongst themselves. Other models of resource utilization
by prey exist and could change the outcome of the game. We assume that the
prey’s food resources are relatively immobile and unable to * game * for them-
selves. Similarly, we assume that predator mortality (and hence lifespan) is
constant across habitats as would be the case if they were top carnivores.
Different results would be expected if additional trophic levels were added to the

game. Finally, we assume that both the prey and predator populations are
constant in size,

Application of habitat games to fish predator—prey interactions

Game theory may be applied to any situation in which prey fish must choose
between feeding habitats (or patches) varying in both food availability and the
risk of predation. Some such situations are dynamic, whereby the optimal
habitat choice depends on forager size (an example of state dependence), leading
to the well-known ontogenetic niche shifts of fish as they grow (e.g. Werner &
Gilliam, 1984).

There are other sorts of dynamic situations where a game theoretic approach
may be a worthwhile addition to the fish biologist’s toolbox. For example, many
planktivorous fish migrate vertically in the water column on a daily basis, being
closer to the surface at night than during the day. Functional explanations of
this phenomenon are exceedingly diverse, but its role in reducing predation risk
is widely accepted (see, e.g. Clark & Levy, 1988). Frequently, the zooplanktonic
prey of these fishes exhibit diel vertical migrations as well, and this is usually
interpreted as a predator avoadance tactic (Zaret & Suffern, 1976), It is apparent
that diel vertical migration has all the elements of a habitat selection game, since
both zooplankton and fish are free to distribute themselves among depth strata,
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and temporal changes in habitat characteristics (food availability and riskiness,
the latter dependent on light level) may produce corresponding changes in the
equilibrium distributions, resulting in diel migrations of both parties. There have
been two previous attempts to model vertical migration as a game, but they have
both been incomplete. Iwasa (1982} failed to include a self-interaction term for
either the predator or the prey. In his model, the fitness of either party depends
only on the spatial distribution of the other, but not of themselves; thus, his
equilibrium distribution cannot be stable (see Gabriel & Thomas, 1988).
Although they claimed to be dealing with the same problem, Gabriel & Thomas
(1988) actually modelied a game between the prey, rather than between predators
and prey (the predatory fish were assumed not to migrate vertically).

To apply a game theoretic model to diel vertical migration it will first be
necessary to add a fourth trophic level, since the presence (and behavioural
decisions) of predatory fish undoubtedly modifies the migratory behaviour of the
planktivores. As Eggers (1978) puts it: ‘ The pattern of mutual diel vertical
migration of zooplankton and planktivorous fish is a complex equilibrium of the
processes of resource exploitation and predator avoidance affecting four trophic
levels’. We are currently working on this problem, and will report the results
elsewhere.

There are other fish habitat selection games mvolving migration. For example,
some small fishes show diel horizontal migrations in lakes [e.g. golden shiners,
Notemigonus crysoleucas (Mitchill), Hall es al, 1979; silversides, Menidia
beryilina (Cope), Wurtsbaugh & Li, 1985; northern redbelly dace, Phoxinus eos
(Cope), Naud & Magnan, 1988]. The day-night faunal changeover in coral
reef fishes (Hobson 1972; Helfman, 1986) provides a rich source of other
examples of fish migration which might be studied profitably from a game
theoretic perspective,

CONCLUDING REMARKS

Perhaps the single most important new insight arising from our modelling of
habitat selection as a game is the prediction that prey distributions may not
respond to experimental changes in food abundance, whenever their predators
are also free to respond in a dynamic way. This i1s a particularly novel and
interesting result, because it is both non-intuitive and subject to experimental
test.

We have become increasingly convinced of the value of applying a game
theoretic perspective to studies of predator—prey interactions. Not only can it be
useful in thinking about broad scale problems like habitat selection, but also in
considering the details of the actual behavioural interactions between predator
and prey. For example, in our laboratory we are currently using the approach to
study the evolutionary stability of the apparent pursuit deterrence signal
(‘ bobbing ’; Smith & Smith, 1989) given to predatory lizardfish (Saurida sp.) by
the Hawailan goby Asterropteryx semipunctatus Riippell.

We have also applied game theory to a quite different sort of behavioural
interaction, the ¢ hiding—waiting game ’ between a hiding prey and the predator
waiting for it to re-emerge. For example, the polychaete worm Serpula vermicu-
laris L., when frightened by vibration or water movement caused by an attacking
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gunnel or blenny, withdraws into its calcareous tube. Within its tube the worm
is safe, but it cannot feed or respire. Consequently, it must emerge eventually,
and the fish can choose to wait for it or pursue other prey. This is quite
obviously a game, since the best hiding time of the worm depends on the waiting
time chosen by the fish, and vice versa.

Our point is that games are to be seen everywhere in predator—prey
interactions—when you know what to look for. We believe that thinking of
fish predator-prey interactions in this framework will enrich our understanding
of the predation process, and provide a novel and useful guide for future
observation and experiment.
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APPENDIX I: ALL HABITATS ARE OCCUPIED

We show that any evolutionary equilibrium must be a mixed equilibrinm with
support from all pure prey and predator strategies. Any pure strategy which is
played with a non-zero probability in a mixed equilibrium is said to be in
‘ support ’ of that equilibrium (see Maynard Smith, 1982). A stable evolutionary
equilibrium, not supported by prey strategy / (i.e. p,=0) cannot exist if:

w() > w()) (Al.D

where j is any prey strategy in support of the equilibrium. Substituting in
the appropriate terms and simplifying (knowing that @ >0 for any wvalid
equilibrium) yields:

[L(ﬁ Fe M) - G]/O>cu(1) (AL.2)
Bi\ 4
As p; (and hence d,) approaches zero, equation {A1,2) must become true since
0<w{j)<oo and 0 < f,<o0 (n.b. equation (A1.2) will also become true as d;,
and therefore f,, approaches zero). Intuitively, this proof merely states that as
the density of prey (or predators) in habitat i approaches zero, the prey’s payoff
in habitat i becomes very large. Thus, any evolutionary equilibrium must be
supported by all pure prey strategies.

For a mixed equilibrium supported by all pure prey strategies, the payoffs for
any two pure prey strategics (7 and /) must be the same:



168 D. M. HUGIE AND L. M. DILL

w{i) = wi(j) (A2.1)

Let i correspond to a predator strategy not in support of the equilibrium (i.e.
p; =0) and j a strategy in support (i.e. p;' > 0) of the equilibrium. Again, after
substituting in the appropriate terms and simplifying (knowing that @ > 0 for
any valid equilibrium), equation (A2.1) becomes:

1 [ﬁ Fe M} =1 [iF- M} . (A22)
B |4 B | 4

Clearly, as p;’ (and hence f,} approaches zero, equation (A2.2) must become false
since d;, d; and §;> 0. Again this proof merely states that as the density of
predators in { approaches zero, the prey’s payoff in / becomes very large.
Therefore, we conclude any evolutionary equilibrium must also be supported by
all pure predator strategies.

APPENDIX II: EVOLUTIONARY STABILITY

We examined the evolutionary stability of all equilibria produced by our
model in terms of dynamic evolutionary stability (Taylor & Jonker, 1978;
Hofbauer & Sigmund, [988; Friedman, 1991). We did this by simulating the
game using the finite evolutionary dynamics described by equations (AS) and
(A6), which are based on the evolutionary difference equation described by
several authors (see Maynard Smith, 1982, equation D.1; Hofbauer & Sigmund,
1988, equation 27.3). This equation assumes that fitness represents the multipli-
cation ‘rate’ (R,) defined over the generation time. However, because the
generation times (1.¢. lifespans) of the predators and prey vary in our model, the
finite multiplication °rates ® must be re-defined over the same time units (see
Giske et al., 1993). The appropriate multiplication ‘ rates °, defined over a single
time unit, for the prey (A(7}) and predators (4'(f)) in each habitat are given by:

M) = w(p!"? (A3)
Ay = wiH' (Ad)

Substituting equations {A3) and (A4) into Maynard Smith’s (1982) evolutionary
difference equation produces the following equations for the finite changes in p,
{Ap;) and p, (4p,} over one time unit:

A — 2
ap, = p; 0 (A5}
A
, A — A
Aap/ = p; % (A6)

where 1 and 1" are the mean lambda values for the prey and predators,
respectively, given by:

A= JZ_P:' A(d)

=% p! XG)
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We simulated all equilibria (for the basic model, the model with dilution, and
the model with interference, with and without dilution) using the constant values
given in Table I (plus many other sets) for two, three and four habitat scenarios.
In all cases the simulations quickly converged on the equilibrium as long as the
equilibrium fitness values were valid (w(i) and w'(i) > 0). We thus conclude that
our game is evolutionarily stabie,

It is worth noting that while equations (A5) and (A6) represent the dynamics
of an evolving polymorphic popuiation, they could also reasonably model the
dynamics of individuals switching between habitats during their life in order to
maximize their residual reproductive value. In either case, an increase in p; or p;”
will result when the expected residual reproductive value in habitat 7 is greater
than the population mean. Thus, we interpret the mixed equilibrium as either
the proportions of pure strategists in a polymorphic population, or a probability
distribution of pure strategies in a monomorphic population, with individuals
switching between habitats according to equations (AS5) and (A6).



