Isolation and characterization of new microsatellite markers in the surfclam *Mactromeris polynyma*.

MANON C. CASSISTA*‡ and MICHAEL W. HART**‡

Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H 4J1, Canada,
Department of Fisheries and Oceans, Bedford Institute of Oceanography, 1 Challenger Drive, P.O. Box 1006, Dartmouth, NS B2Y 4A2, Canada,
Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada

Abstract

We describe primers and amplification conditions for seven microsatellite loci that were developed and characterized in the commercially harvested surfclam *Mactromeris polynyma*. Five of these loci were polymorphic: we found 6–23 alleles per locus among 100 individuals from one population in Nova Scotia, with some large heterozygote deficits that may reflect unrecognized temporal genetic variation. We are using these markers to investigate temporal and spatial genetic structure in this species.

The surfclam *Mactromeris polynyma* is mainly harvested for global sushi and sashimi markets by towing a hydraulic dredge on the sea bottom of the northwestern Atlantic and northeastern Pacific oceans (Roddick and Smith, 1999). Like *Spisula* surfclams (to which they are closely related, and with which they were formerly classified as *Spisula*; Turgeon *et al*., 1988), *M. polynyma* are patchily distributed, and commercially targeted populations may be widely separated from each other by hundreds of kilometers of ocean bottom in which the clams are relatively scarce. These populations also show significant age structure, with large variation in the relative abundance of age classes 50 years old or more (Roddick and Smith, 1999). Such age structure is accompanied by significant genetic variation among age classes in some *Spisula* species (David *et al*., 1997). The combination of these spatial and temporal patterns could produce complex population genetic variation in *M. polynyma* that is directly relevant to the management of intensively harvested Atlantic populations. Here we describe polymorphic microsatellite loci that we use in population genetics studies of *M. polynyma*.

Genomic DNA was extracted from the adductor muscle and the foot of a single specimen using a high salt/chloroform extraction adapted from Simison and Lindberg (1999). The DNA was sent to Travis Glenn’s group at the Savannah River Ecology Laboratory where it was enriched (Hamilton *et al*., 1999) for di-, tri-, and tetranucleotide microsatellite repeats (e.g., Croshaw and Glenn 2003). We ligated and cloned the enrichment using protocols, reagents, and competent cells from a TOPO-TA cloning kit (Invitrogen). One hundred clones were isolated from each enrichment and sequenced in both directions using IRD-labeled universal M13 primers on a Li-Cor 4200 automated DNA sequencer. BLAST searches did not suggest any close homology between the cloned sequences and previously reported genomic DNA sequences.

Many clones contained microsatellite-like sequences that were interrupted at several positions or had a mosaic of different repeat motifs. Primers were designed for seven sequences, and the 5’end of one for each pair was labeled with either an IRD700 or IRD800 dye for visualization on the Li-Cor sequencer. Primers were assayed on 100 *M. polynyma* individuals collected from Lockeport, Nova Scotia. Amplifications were performed in 5µL final volume containing 10 ng of template DNA, 10 mM Tris-Hcl, 50mM KCl, 0.01% gelatin, 0.1% Tween 20, 0.2 M each dNTP, M mM MgCl₂ (concentration varied among loci; see Table 1) P pmol of each primer (Table 1), and 0.5 µL Tsg polymerase (Biobasic, Toronto, Ontario, Canada). The amplifications were
performed using a Stratagene Robocycler with the following polymerase chain reaction (PCR) profile: 95°C 180 s, 94°C 60 s, T_a °C (Table 1) 60 s, 72°C 60 s for 30 cycles. The amplified products were resolved in 6% (25 cm, 0.2 mm thick) denaturing polyacrylamide gels on the Li-Cor sequencer. Allele sizes were estimated using pUC18 DNA sequence fragments as standards.

A total of five primer pairs yielded interpretable amplification products in M. polynyma (Table 1); two other loci were fixed for a single allele. Observed heterozygosity was less than the Hardy-Weinberg expectation for all loci, including the most (Mp57) and least (Mp102) polymorphic. Quantitative tests of this deviation using GDA version 1.0 (Lewis and Zaikin, 2001) were significant for four loci (Mp57, Mp90, Mp100, Mp102). Part of the shortage of heterozygotes could reflect the presence of unamplified null alleles. For example, 4% of individuals at locus Mp90 were potential null-null homozygotes. However, we found no null-null homozygotes at two other loci where the observed heterozygote deficit was similar in absolute size (Mp100) or greater as a proportion of the expected heterozygosity (Mp102) in comparison to locus Mp 90. Thus, it is possible that the departures from Hardy-Weinberg equilibrium are a result of unrecognized spatial or temporal structure within this sample (a possibility we are currently exploring across multiple populations).

Acknowledgements

Many thanks to Jason Addison for laboratory advice and help, Travis Glenn and Mandy Schable for carrying out the enrichment, and Dale Roddick for providing the Lockeport sample of M. polynyma. This work was supported by the Canada Foundation for Innovation, Dalhousie University, and a Collaborative Research and Development award from the Natural Sciences and Engineering Research Council of Canada and Clearwater Fine Foods Inc.

References

Lewis PO, Zaykin D (2001) Genetic Data Analysis: Computer program for the analysis of allelic data. Version 1.0 (d16c). Free program distributed by the authors over the internet from lewis.eeb.uconn.edu/lewishome/software/html

Table 1 Characteristics of five microsatellite loci in the surfclam *Mactromeris polynyma* (N = 100). T_A, annealing temperature; P, optimal [primer] (pmol/5 l reaction); M, optimal [MgCl$_2$] (mM); ASR, allele size range in bases; A, number of alleles observed; H_e, expected heterozygosity; H_o, observed heterozygosity; %, percent of amplified individuals.

<table>
<thead>
<tr>
<th>Locus</th>
<th>Repeat</th>
<th>GenBank Accession No.</th>
<th>Primer Sequence (5'-3')</th>
<th>T_A (°C)</th>
<th>P,M</th>
<th>ASR</th>
<th>A</th>
<th>H_e</th>
<th>H_o</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mp53</td>
<td>(CT)$_5$, TT(CT)TT(CT)</td>
<td>AY548747</td>
<td>A: TATGTGGCTTAATGCTTC B: ATACAATTACTACCATCTC†</td>
<td>47</td>
<td>1, 4.5</td>
<td>187 – 197</td>
<td>8</td>
<td>0.72</td>
<td>0.67</td>
<td>99</td>
</tr>
<tr>
<td>Mp57</td>
<td>(GATT)$_3$, T(GATT)$_3$, T(GATT)$_3$, AATT(GATT)$_3$</td>
<td>AY548748</td>
<td>A: GAAAGAAAGAATGAAATG B: AACAGCATTATCATCTCTT†</td>
<td>54</td>
<td>2, 4.5</td>
<td>158 – 244</td>
<td>23</td>
<td>0.91†</td>
<td>0.71</td>
<td>98</td>
</tr>
<tr>
<td>Mp90</td>
<td>(GA)$_3$, AA(GA)$_3$</td>
<td>AY548749</td>
<td>A: GAAATTCACGCCTACCTCG* B: AGTGACAAAGGATCGCCG</td>
<td>52</td>
<td>1, 3</td>
<td>76 – 118</td>
<td>14</td>
<td>0.88†</td>
<td>0.55</td>
<td>96</td>
</tr>
<tr>
<td>Mp100</td>
<td>(CA)$_3$</td>
<td>AY548750</td>
<td>A: ACAAAGTAGCATCCGTTTC* B: GCCCGTCTGTGTTAATAC</td>
<td>53</td>
<td>2, 4.5</td>
<td>90 – 110</td>
<td>8</td>
<td>0.82†</td>
<td>0.49</td>
<td>100</td>
</tr>
<tr>
<td>Mp102</td>
<td>GTTT(GTT)$_3$</td>
<td>AY548751</td>
<td>A: GCCGACCATTATTTAGAAG B: ATAAACCTCTGACAAGTCG*</td>
<td>53</td>
<td>0.6, 4.5</td>
<td>94 - 127</td>
<td>6</td>
<td>0.33†</td>
<td>0.14</td>
<td>100</td>
</tr>
</tbody>
</table>

* primer 5' labeled with IRD700 dye

† primer 5' labeled with IRD800 dye

‡ significant deviation from Hardy – Weinberg expectation (P = < 0.001)