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ABSTRACT

Decisions on managed flow releases in regulated rivers should be informed by the best available science. To do this, resource managers
require adequate information regarding the tradeoffs between alternative methodologies. In this study, we quantitatively compare two
competing multivariate habitat models for juvenile Chinook salmon (Oncorhynchus tschawytscha), a highly valued fish species under serious
decline in a large extent of its range. We conducted large-scale snorkel surveys in the American River, California, to obtain a common dataset
for model parameterization. We built one habitat model using Akaike Information Criterion analysis and model averaging, ‘model G’, and a
second model by using a standard method of aggregating univariate habitat models, ‘model A’. We calculated Cohen’s kappa, percent
correctly classified, sensitivity, specificity and the area under a receiver operator characteristic to compare the ability of each model to predict
juvenile salmon presence and absence. We compared the predicted useable habitat of each model at nine simulated river discharges where
usable habitat is equal to the product of a spatial area and the probability of habitat occupancy at that location. Generally, model G maintained
greater predictive accuracy with a difference within 10% across the diagnostic statistics. Two key distinctions between models were that
model G predicted 17.2% less useable habitat across simulated flows and had 5% fewer false positive classifications than model A. In
contrast, model A had a tendency to over predict habitat occupancy and under predict model uncertainty. The largest discrepancy between
model predictions occurred at the lowest flows simulated and in the habitats most likely to be occupied by juvenile salmon. This study supports
the utility and quantitative framework of Akaike Information Criterion analysis and model averaging in developing habitat models.
Copyright © 2012 John Wiley & Sons, Ltd.
key words: salmonids; habitat models; River 2D; AIC; model averaging; flow regulation

Received 20 February 2012; Revised 2 November 2012; Accepted 13 November 2012
INTRODUCTION

With over half of the earth’s large river systems currently
dammed (Nilsson et al., 2005), there is an increasing need
for robust quantitative tools that can predict the impacts of
flow regulation on riverine ecosystems (Petts, 2008). Dams
can allow water managers to control when and how much
water flows downstream. As such, these quantitative tools
must be able to provide resource managers with information
that accurately reflects the tradeoffs and their uncertainties
between resource use and any potential ecological impacts
of flow regulation. Understanding the ecological consequences
of different flow releases can help balance the needs for energy
generation, water storage, flood control, and downstream
aquatic communities.
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Over the last few decades, numerous competing techniques
have been developed to aid managers in predicting how
changes in river flow will modify inhabitable space for
riverine species downstream of dams (Manel et al., 2001;
Ahamadi-Nedushan et al., 2006; Mouton et al., 2010; Dunbar
et al., 2011). These statistical techniques range considerably
in complexity, but the common aim is to estimate how flow
regulation alters physical characteristics of rivers (e.g. velocity
and depth) and predict how those changes will impact individ-
ual species. For example, Bovee (1986) developed a statistical
method where several habitat variables (e.g. depth, water
velocity, cover or substrate) are parameterized independ-
ently and then combined as univariate model estimates into
a composite index of habitat suitability (CSI). The CSI can
be constructed by one of several available methods (e.g.
geometric mean, arithmetic mean and product). The CSI
approach has historically been integrated into a physical
habitat simulation (PHABSIM), which is a fundamental
component of the instream flow incremental methodology
(IFIM). The IFIM and PHABSIM are used to inform
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management decisions in regulated river systems, such as
setting minimum flow standards and quantifying flow regu-
lation impacts on aquatic habitats (Stalnaker et al., 1995;
Waddle, 2001). The CSI approach is still integrated into
IFIM and contemporary management decisions and is pub-
lished in peer-reviewed literature (e.g. Ayllon et al., 2010;
Lee et al., 2010; Boavida et al., 2011; Im et al., 2011).
However, this method has several key assumptions that
have been subject to considerable criticism over the last
few decades. Specifically, the CSI approach requires
assumptions that each parameter is selected independently
by the target species (Bovee, 1986), that each variable is
equally important and that the covariance structure among
variables is negligible (Mathur et al., 1985; Beecher et al.,
2002; Jowett, 2003; Leclerc et al., 2003). Furthermore,
the CSI approach often ignores any uncertainty in model
predictions (Burgman et al., 2001).
In contrast to the CSI approach, more complex techniques

that allow numerous parameters to be estimated simultan-
eously have been developed in the past decade, such as
generalized linear models (GLMs; Guisan et al., 2002).
GLMs have only recently been applied in aquatic habitat
modelling (Labonne et al., 2003; Ahamadi-Nedushan
et al., 2006), but many of the statistical flaws and assumptions
of the CSI approach are addressed with this technique; thus,
our ability to describe ecological data has greatly improved
(Guisan et al., 2002; Ahamadi-Nedushan et al., 2006). In
addition, previous research has demonstrated that multivariate
methods produce dissimilar predictions of usable habitat in
comparison with a CSI method, and multivariate techniques
provide a greater amount of information (Vismara et al.,
2001). However, resource managers have been slow to adopt
new methods, and multivariate techniques have received rela-
tively little attention (Vismara et al., 2001; Dunbar et al., 2011).
The slow progression of new methods into the manage-

ment community may be a result of inadequate information
allowing resource managers to distinguish the tradeoffs
between alternative techniques. For example, Manel et al.
(2001) reviewed 87 articles published in ecological literature
between 1989 and1999 and reported that over 67% of the
studies using presence–absence models failed to attempt any
kind of model evaluation. In addition, there are relatively
few published articles focused on aquatic habitat models that
compare competing methodologies on a common data set
(Ahamadi-Nedushan et al., 2006). As a consequence, there
is a paucity of knowledge to make informed decisions about
methodologies for estimating how flow regulation alters
aquatic habitat.
The aim of this study is to quantitatively compare two

statistical methodologies and examine the potential role of
Akaike Information Theory and model averaging (AICc,
Akaike, 1974; Burnham and Anderson, 2002) in aquatic
habitat modelling. This study builds on comprehensive
Copyright © 2012 John Wiley & Sons, Ltd.
reviews of the variety of methods available to resource
managers by Manel et al. (2001), Ahamadi-Nedushan et al.
(2006), Mouton et al. (2010) and Dunbar et al. (2011), and
submits a novel application of AICc model averaging for
estimating the impacts of flow regulation on habitat for the
juvenile life stage of Chinook salmon (Oncorhynchus
tshawytscha), a highly valued fish species under serious
decline in a large extent of its range (Myers et al., 1998).
We use AICc analysis and model averaging to construct a
multivariate GLM and develop a second habitat model,
following the CSI approach, comprised of aggregated univari-
ate models. We compare the models with five diagnostic
statistics deemed appropriate for gauging model performance
during model development (Mouton et al., 2010). In addition,
we include estimates of uncertainty around each model’s
predictions and extrapolate these predictions under several
flow scenarios to gain perspective on the tradeoffs between
selecting one model over the other. We hypothesize that the
AICc-averaged habitat model will have greater predictive
accuracy and provide amore robust and conservative prediction
of the relative impact of flow regulation on juvenile salmon
habitat. Therefore, results from this study aim to advance an
existing foundation for hydrodynamic habitat model develop-
ment and application (Petts, 2008).
METHODS

Study system

This study was conducted in the Lower American River
(LAR), which is primarily a snow-fed system, draining
approximately 4900 km2 of the Sierra Nevada Mountains
in Northern California. Like other California Central Valley
rivers, the American River has been highly modified from
its historic state, including flow regulation and diversion,
water pollution, gold and gravel mining, hydropower and
floodplain development, and the introduction of numerous
non-native aquatic species (McEwan, 2001; Williams,
2001; Moyle, 2002). Just downstream of the American
River north and south fork confluences, Folsom Dam was
completed in 1955, blocking upstream habitat for migratory
fishes such as anadromous salmonids. The Bureau of
Reclamation currently operates the dam for flood control,
water storage and hydroelectric generation. The LAR is
defined as the 37 km of unobstructed channel that flows down-
stream of Nimbus Dam, which is located approximately
11 km downstream from Folsom Dam. This portion of the
river still provides spawning and rearing habitat for anadro-
mous steelhead (Oncorhynchus mykiss) and Chinook salmon
(Yoshiyama et al., 2001). American River fall-run Chinook
salmon typically spawns from late September to December,
with juvenile rearing from early January to June. Our study
River Res. Applic. (2012)
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reach is approximately 800m long and located within the
Sacramento city limits, just downstream of the American
River Parkway, Sunrise recreation area (Figure 1).
Fish and habitat surveys

Following methods of Gard (2006), we attained our habitat
occupancy data via large-scale snorkel surveys conducted
from February to July (2009, 2010) across as many different
accessible habitat types as feasible (e.g. riffles, runs and
backwater habitat). We conducted the snorkel surveys during
daylight along a linear transect from downstream to upstream
and marked occupied locations of juvenile Chinook salmon
(fork length >40mm, <95mm) with flagged weights. Fish
sizes were visually estimated to the nearest 5mm fork length.
Regardless of the number of fish at occupied locations, each
observation counted as a single statistical unit in our common
dataset and analysis. When depth and velocity were too high
to allow unaided upstream snorkelling, we used fixed ropes
to facilitate our upstream movement. We then measured
physical habitat characteristics (i.e. velocity, depth, cover
and substrate) in flagged locations. Depth was measured as
the distance from the water surface to the riverbed to the
nearest centimetre, and velocity was measured to the nearest
centimetre per second with a portable electromagnetic
Figure 1. Map of study reach in the American River, California. Thiesse
were used to estimate the area around each point for integration of the

lowest (33.98m3 s�1) discharge model outlined in white and

Copyright © 2012 John Wiley & Sons, Ltd.
velocity flow metre (Marsh-McBirney, Flo-Mate) at 60%
depth. Substrate diameter was visually estimated to the nearest
centimetre except for particles less than 1 cm, which were
classified as sand (0.25 cm) or fine sediment (0.025 cm). At
regular intervals along each snorkel transect (10 or 20m),
we randomly selected unoccupied locations using a random
number generator, excluding locations less than 1m from
occupied locations, and measured the same suite of habitat
characteristics as those measured in occupied locations. These
data collection efforts thus resulted in a series of fish
presence–absence data with associated habitat attributes.
We mapped dominant habitat cover into polygons using

two categories (with and without cover) over the entire
study reach. These cover types were similar to those
described in Gard (2006). We identified locations with cover
when they were within 50 cm of large woody debris
(>7.5 cm diameter), tall vegetation (>50 cm above ground),
overhanging vegetation (<50 cm from water’s surface),
large boulders (>17.5 cm diameter), undercut banks, large
bedrock crevasses or combinations of these cover types.
Areas without cover included characteristics such as small
vegetation, small substrate (<17.5 cm diameter) or filamentous
algae. We used tools in Arc Map to spatially join cover
attributes from delineated polygons to every node, or point,
in the hydrodynamic model.
n polygons (inset) encompassing the nodes generated in River 2D
Hydrodynamic and habitat model estimates. Waters edge from the
the direction of flow indicated by bold black arrows.
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Competing habitat models

We analysed the binary occupied and unoccupied snorkel sur-
vey data via polynomial GLM with a logit link function (i.e.
multiple logistic regression) in program R (R development
core team, 2011), which estimates the probability of habitat
occupancy as a function of the predictive habitat variables.
Logistic regression has been used for similar modelling exer-
cises in numerous studies and is arguably the most appropriate
for presence–absence data (Ahamadi-Nedushan et al., 2006).
We used two competing methods to develop habitat

models that predict the probability of habitat occupancy by
our study species. In the first method, we estimated the prob-
ability of habitat occupancy for depth, velocity, substrate
and cover independently of one another. We assumed that
the logistic relationship for velocity, depth and substrate
was parabolic and thus assigned a quadratic term to each
variable (e.g. velocity + velocity2). In addition, we tested
all possible interactions among velocity, depth and cover,
of which none were significant predictors of habitat
occupancy (p> 0.05) and were subsequently excluded from
further analysis. We selected statistically significant univari-
ate habitat occupancy models and aggregated them by
taking the geometric mean of the model predictions for each
corresponding variable at a point in space. This method is
comparable with the CSI approach, supported by the US Fish
and Wildlife Service standards for habitat suitability index
model development (USFWS, 1981), recommended in
contemporary habitat modelling software (e.g. River 2D)
and applied in recent field studies (e.g. Ayllon et al., 2010).
We estimated upper and lower confidence limits for this
model by adding 1.96 standard errors, estimated with the
‘predict’ function in program R, to each point-specific
probability of habitat occupancy. We refer to this model as
‘model A’ (for aggregated) hereafter.
We developed a second model with information theory

via AICc and model averaging corrected for small sample
sizes (AICc, Akaike, 1974; Hurvich and Tsai, 1989;
Burnham and Anderson, 2002). We compared the most
complicated model with all possible model combinations
that did not include interaction terms to rank them in order
of model parsimony. A difference greater than four AICc
units between models can be interpreted as evidence for
model superiority (Burnham and Anderson, 2002). For each
model and corresponding AICc score, we calculated an
AICc weight, which is an estimate of the relative support
for each model across all the models compared. The sum
of all model weights equals 1; thus, an AICc weight of
0.25 is analogous to having 25% of the relative support
across models. We averaged model coefficients across the
95% confidence model set (summed weight, Burnham and
Anderson, 2002) because the AICc weight of the ‘top’ model
was <0.9 (as recommended by Grueber et al., 2011).
Copyright © 2012 John Wiley & Sons, Ltd.
Specifically, we averaged the parameter coefficients of the full
model proportionally to the coefficients in the 95% confidence
model set based on the AICc weight and relative support of
each model. The main function of model averaging was to
avoid losing information explained by any of the competing
models. As such, the parameter coefficients of the averaged
model represented a weighted average of the coefficients of
all candidate models based on their relative support, or
AICc weight (Burnham and Anderson, 2002). By model
averaging, we allowed for comparably supported models
to influence the parameter coefficients of the global model
and less supported models to have limited effects on the
global model. We estimated upper and lower confidence
limits for this model by adding 1.96 standard errors to each
point-specific probability of habitat occupancy. We refer to
the AICc averaged model as ‘model G’ (for global)
hereafter.
2D hydrodynamic model

We used a two-dimensional depth-averaged hydrodynamic
model (River 2D), following methods described in Steffler
and Blackburn (2002), to estimate point-specific values of
depth and velocity at different flow rates within our study
reach. River 2D is based on the St. Venant shallow water
equations for shallow flows in natural streams, in conservation
form (Steffler and Blackburn, 2002). The key parameter
inputs include a digital elevation model (DEM) of the study
reach, estimates of riverbed roughness height and measured
water surface elevations (WSELs) at the modelled discharge.
The modelling process includes the development of a
triangulated irregular network between points (‘nodes’) that
are overlaid on top of the DEM at a user specified density.
By spatial linear interpolation of the DEM, each node is
assigned x, y and z coordinates and an estimate of bed
roughness height. The user inputs the WSEL at the
upstream and downstream boundaries along with the
corresponding discharge. The River 2D software then
solves a hydraulic algorithm using Manning’s N and the
conservation of mass and momentum at each node. The
end result is an estimate of velocity and depth, for a
specified discharge, at each node in the study reach. For
greater detail in the modelling procedure and model output,
see Steffler and Blackburn (2002).
We constructed our study site DEM with topographic data

that were previously collected on the LAR and enriched this
data set with additional topographic surveys (2009, 2010).
All additional topographic data were collected with a Topcon
brand survey-grade RTK GPS in NAD (1983) State Plane,
California Zone II, FIPS 0402 (Feet). We removed erroneous
topographic points with spatial tools in ArcGIS (version 9.3).
The average topographic survey density for the study reach
was 0.13 pointsm�2, and the hydrodynamic model node
River Res. Applic. (2012)
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density was consistent between models and comparable with
the topographic point density at 0.15 (nodesm�2).
We mapped median riverbed substrate (D50) over the

entire study reach to characterize bed roughness in the 2D
hydrodynamic model. We encompassed homogeneous
regions of substrate with a large polygon, delineating the
boundaries with the RTK GPS. In highly heterogeneous
areas, we took point measurements and developed Thiessen
polygons to encompass these points in ArcGIS. Using the
equation from Thompson and Campbell (1979), we
estimated bed roughness height (ks) as ks= 4.5D50. We used
spatial join functions in ArcGIS to assign bed roughness
height to each topographic point in the consolidated
topography dataset.
We measured WSELs at four discharges (49.84, 55.39,

111.63 and 131.74m3 s�1) and extrapolated WSELs for
discharges of 33.98, 70.79, 87.78, 144.42 and 169.90m3 s�1.
We considered these flows to be within a conservative range
of interpolation and extrapolation from our measured WSELs
and discharges. These flows were representative of the mean
daily flow frequency distribution post dam construction during
salmonid rearing months, February to July.We then completed
the modelling procedure in River 2D for each flow level.
We gauged the River 2D model performance on the basis

of three criteria. First, we determined if a stable hydro-
dynamic solution was reached by evaluating the change in
model variable estimates between the final model iterations.
Specifically, the difference of the square root of sum of
squares for all hydrodynamic model variables between the
final model iterations needed to be less than 0.1% (Steffler
and Blackburn, 2002). Second, simulated outflow (m3 s�1)
was within 1% of the measured inflow (m3 s�1) for all
discharges modelled. The third criteria is the absence of
supercritical flow, or low Froude (ratio of inertial force/
gravitation force) throughout the modelled reach; in natural
systems, Froude numbers rarely exceed 1.0 (Grant, 1997).
The resulting hydrodynamic model was combined with each
of the habitat models described previously to develop
estimates of usable habitat at different discharges.
Model performance

To compare the performance of the competing habitat models
(model A versus model G), we used program R (R develop-
ment core team, 2011) and the ‘PresenceAbsence’ library
(Freeman andMoisen, 2008) to calculate optimized thresholds
for models A and G. We set the threshold value where Kappa
was maximized for both models and used this threshold value
to estimate Kappa and three additional model performance
statistics. Each statistic is a measure of the capacity to
accurately discriminate the correct outcome of our habitat
occupancy data, where probabilities that exceeded the thresh-
old would be classified as occupied (positive) and those below
Copyright © 2012 John Wiley & Sons, Ltd.
the threshold would be classified as absent (negative). We
evaluated model performance using Cohen’s Kappa statistic,
percent correctly classified (PCC), sensitivity, specificity and
the area under a receiver operator characteristic (AUC). The
Kappa statistic is a measure of all possible outcomes of
presence or absence that are predicted correctly, after account-
ing for chance predictions; it is generally accepted as a conser-
vative and standardized metric for comparing the predictive
accuracy of binary models regardless of their statistical
algorithm (Manel et al., 2001). PCC compares the proportion
of outcomes correctly classified. In this application, sensitivity
represents the proportion of true positives correctly identified,
and specificity is the proportion of true negatives correctly
identified, where 1-specificity is the proportion of false posi-
tives. Kappa, PCC, sensitivity and specificity are all threshold
dependent statistics, so we also included AUC as a threshold
independent statistic for model diagnostics. AUC is a measure
of model accuracy across all potential thresholds in binary
models. In our study, an AUC value of 1 is equivalent to
perfect model agreement between observed and predicted
habitat occupancy outcomes. AnAUC value of 0.5 is approxi-
mately equal to random predictions of habitat occupancy.
Model extrapolation and usable habitat

To be useful in management, these models must be able to
identify areas most likely to be occupied by a target species
and to predict how the total area that is likely to be occupied
will change as river flow is changed. To do this, we calculated
the point-specific predictions from each habitat model and
extrapolated those predictions over space for several flow
scenarios. We constructed three quantitative comparisons
betweenmodels. First, we plotted all point-specific probabilities
of each model’s predictions against one another to determine
if there were systematic differences between competing mod-
els. Second, we calculated and plotted the absolute difference
in point-specific model predictions for several flows to
identify spatial disparities among flow scenarios. Third, we
estimated the total usable habitat predicted by each model
and included estimates of uncertainty around those
predictions.
To extrapolate habitat model predictions across space, we

first developed Thiessen polygons in ArcGIS for each node
in all nine hydrodynamic models (one for each discharge level)
to estimate an area around each node (Figure 1). We used the
estimated velocity, depth and cover at each node across the
study reach, for all nine simulated discharges, as independent
parameter inputs for both habitat models mentioned previously
and predicted a probability of habitat occupancy for each node.
By multiplying this probability by the area encompassing
each node, we calculated the usable habitat for each
polygon and then summed the resulting values across the
entire study reach to quantify the total usable habitat for
River Res. Applic. (2012)
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each discharge. However, we restricted extrapolation to
velocities <120 cm s�1 and depths <113 cm to avoid
extrapolating model predictions beyond the physical
conditions observed in our habitat data. By multiplying
the upper and lower confidence limits of each predicted
probability by the area encompassing each node, we
calculated the minimum and maximum estimates of usable
habitat for each polygon and again summed the resulting
values across the entire study reach for each discharge to
estimate uncertainty around usable habitat predictions.
Our aim was to identify any systematic difference in model
predictions across space and under different river flows,
thereby providing a context for determining the tradeoffs
of using one model or the other in river management.
RESULTS

Habitat occupancy data

Our snorkel surveys covered a total area of approximately
182 000m2 along a total of approximately 22.5 river
kilometres, and we observed a mean fish density of 0.005
juvenile Chinookm�2. The mean stream temperature we
observed during the dates of our snorkel surveys was
12.9 �C (�1.5 �C S.D., United States Geologic Survey Station
ID. 11446500, Fair Oaks Ave, California). We observed 88
habitat locations occupied by juvenile Chinook within our
target size class and 391 unoccupied habitat locations. These
data provided a common dataset for habitat model develop-
ment and testing.
Table I. Model A coefficients, standard errors and p-values for
each independently fit polynomial logistic regression. In all
analysis, ‘Cover’ is categorical and unitless. Specifically, ‘Cover’
is defined as the presence or absence of one or more cover types
(e.g. large wood, overhanging vegetation). Except for cover, we
assumed that the correlation between habitat occupancy and our
predictor variables was non-linear and thus included a quadratic
term with each parameter

Parameter Coefficient Standard error p

Intercept �1.7393 0.2380 <0.001
Velocity 0.0290 0.0143 0.043
Velocity2 �0.0004 0.0002 0.020

Intercept �2.1877 0.4523 <0.001
Depth 0.0582 0.0254 0.022
Depth2 �0.0009 0.0003 0.010

Intercept �1.1098 0.3266 <0.001
Substrate �0.1133 0.0846 0.180
Substrate2 0.0060 0.0046 0.187

Intercept �1.5921 0.1311 <0.001
Cover 0.6324 0.3066 0.039

Copyright © 2012 John Wiley & Sons, Ltd.
Model A

Independent factors of velocity, depth and cover were
significant (Table I, p< 0.05) predictors of habitat occupancy.
There were no significant interactions between any variables,
and they were excluded from further analysis. In addition,
substrate was not significantly correlated with habitat
occupancy (Table I, p> 0.05) so it was excluded from model
A. However, large substrate (>17.5 cm diameter) was
included as a type of cover and thus included in the cover
variable. The predicted optimal depth (33.8 cm) and velocity
(36.7 cm s�1) maintained a probability of habitat occupancy
of 23.1% and 23.0%, respectively (Figure 2). In the absence
of cover, the predicted probability of habitat occupancy was
16.9%, which increased to 27.7% in the presence of cover
(Figure 2).
Figure 2. Univariate logistic regression (solid line) plotted as the
predicted probability of habitat occupancy for (A) velocity, (B)
depth and (C) cover. The fine dashed lines indicate the 95%
confidence intervals (CI) of model predictions, estimated with the

predict function in program R.
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Table III. Model averaged coefficients and standard errors fo
model G. We cannot calculate a p-value for each of ou
parameters using model averaging and information theory so it is
not provided. The coefficients are calculated as a weighted
average of coefficients from each model in our candidate model se

Parameter Averaged coefficient Standard erro

Intercept �2.2724 0.4876
Velocity 0.0293 0.0157
Velocity2 �0.0004 0.0002
Depth 0.0511 0.0268
Depth2 �0.0008 0.0003
Substrate �0.0727 0.0927
Substrate2 0.0042 0.0049
Cover 0.6316 0.3263

CONTRASTING JUVENILE CHINOOK HABITAT MODELS
Model G

There were six candidate models that were comparably
supported by AICc analysis (ΔAICc< 4). The top-supported
model, with an AICc weight (wi) of 0.34 or 34% of the
relative support, was velocity + velocity2 + depth + depth2 +
cover (Table II). All but one of the top six models (ΔAICc
4) were multivariate, with a collective 81% of the total sup-
port, indicating that a combination of predictor variables was
far more supported than the univariate models. In total, multi-
variate models received 88% of the total support within the
95% candidate model set (Table II).
We adjusted the coefficient estimates in the global model

for further analysis on the basis of the AICc weight of the
95% confidence model set (Table III), thereby accounting
for the relative support of each model. Depth was the most
strongly supported variable in AICc analysis, with relative
variable support of 95%. Cover and velocity were also
strongly supported variables at 72% and 62%, respectively.
The inclusion of substrate as a predictor variable had the least
support at 13%. The maximum predicted probability of
habitat occupancy for model G was 34.9%, with velocity at
41.2 cm s�1, with depth at 32.7 cm, with substrate at 20.32 cm
and with cover present. The probability of habitat occupancy
increased with increased substrate size. However, the probabil-
ity of habitat occupancy changed by less than 2% at the smallest
and largest substrate sizes in our model. The presence of cover
increased the probability of habitat occupancy by up to 9.5%
when depth and velocity were at their optimal level (Figure 3).
To illustrate the general correlation between the continuous
variables inmodel G, we predicted the probability of habitat oc-
cupancywhen depth was held constant at 2.7, 32.7 or 62.7, sub-
strate constant at 7.62 cm, with and without cover (Figure 3).

Model performance

The optimum threshold values for models A and G were
similar and estimated at 0.201 and 0.231, respectively. We
Table II. AICc 95% candidate model set and corresponding AICc
score and AICc weight (Wi). A change greater than four AICc units
(ΔAICc) is evidence of model superiority. The AICc weight is a
proportional measure representing the relative support estimated with
AICc analysis for each competing model

Model rank Model parameters AICc ΔAICc Wi

1 V+V2 +D+D2 +C 449.86 0.00 0.34
2 D+D2 +C 450.64 0.78 0.23
3 V+V2 +D+D2 451.71 1.85 0.13
4 D+D2 452.09 2.23 0.11
5 V+V2 +D+D2 + S +S2 +C 453.45 3.59 0.06
6 V+V2 +C 453.55 3.69 0.05
7 D+D2 + S + S2 +C 454.12 4.26 0.04
8 V+V2 +D+D2 + S +S2 454.44 4.58 0.03

V, velocity; D, depth; S, substrate; C, cover.

Copyright © 2012 John Wiley & Sons, Ltd.
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estimated each performance statistic using the optimized
thresholds and our presence and absence dataset. Model G
had the highest Kappa statistic and correctly predicted
20.3% of all possible presence and absence data, adjusted
for correct predictions by chance. In contrast, model A had
a Kappa statistic of 18.9%. Model G also had a higher
PCC statistic compared with model A at 75.2% and 72%, re-
spectively. Model G predicted 37.5% of the true positives
(sensitivity) correctly and 83.6% of the true negatives cor-
rectly (specificity), with a false positive classification of
16.4%. In contrast, model A predicted 43.2% proportion of
the true positives (sensitivity) correctly and 78.5% of the
true negatives correctly (specificity), with a false positive
classification of 21.5%. The AUC value, a threshold inde-
pendent statistic, for models G and A was 0.649 and
0.647, respectively, indicating that both models maintained
fair predictive ability above random chance.
2D hydrodynamic model

All hydrodynamic solutions reached a stable solution,
indicating little change in the River 2D spatial algorithm
solving for depth and velocity between solution iterations.
The average end solution change was 0.18%, with minimum
and maximum solution changes of 0.02% and 0.38%,
respectively. The mean difference between the measured
inflow and modelled outflows across the nine levels of
discharge was 0.07%, with minimum and maximum differ-
ences of 0.03% and 0.10%, respectively. Within wetted
regions, the average area with a Froude number≥ 1, or super-
critical flow, was 11.77m2 with minimum and maximum
estimates of 0.00 and 26.00m2, respectively, or 0.00% and
0.04% of the wetted area. The model projections for velocity,
depth and inundated area were qualitatively consistent with
field observations and intuitive predictions, where all three
variables increased positively with discharge. We could not
obtain several modelled discharges to converge on a more
)



Figure 3. Multivariate logistic regression (solid line) plotted as the predicted probability of habitat occupancy for velocity (x axis), at depths of
(A and B) 2.5 cm, (C and D) 32.5 cm and (E and F) 62.5 cm, (A, C and E) with cover and (B, D and F) without cover. Substrate size was held
constant at 7.62 cm for (A–F) all model iterations. The fine dashed lines indicate the 95% confidence intervals (CI) of model predictions,

estimated with the predict function in program R.
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stable solution and below our threshold of 0.001 even after
following the prescribed QA/QC procedures in Steffler and
Blackburn (2002). One potential, and likely, explanation is
that one or more shallow nodes were oscillating between
wet and dry status through different iterations of the hydro-
dynamic solution, thereby increasing the final solution change
(Steffler and Blackburn, 2002). We carefully examined the
entire study reach for all modelled flows and could not find
any sign of hydraulic anomalies (i.e. super critical flow and
erroneous flow direction). The difference between measured
inflow and modelled outflows was far below our threshold
(<1%), and at least 99.96% of the modelled space maintained
physically natural velocities (Froude <1.0). As such, we are
confident that each discharge modelled was accurately
estimating the depth and velocity across the study reach.
Modelled discharge altered total wetted area, where the total

wetted area for flows of 33.98, 111.63 and 169.90m3 s�1 was
63 501.5, 78 437.3 and 90 965.9m2, respectively. Increasing
flow from 33.98 to 111.63m3 s�1 resulted in a net increase
of wetted area by 14 935m2 or 19.0%. Increasing flow from
111.63 to 169.90m3 s�1 resulted in a net increase of wetted
Copyright © 2012 John Wiley & Sons, Ltd.
area of 12 528.6m2 or 13.8%. At higher flows, the wetted
surface area increased by roughly 10.5% per additional cubic
metre of water compared with the lower flows.
Comparing model predictions and calculating usable habitat

Over the three quantitative comparisons between competing
models, we found clear systematic differences between model
predictions. Model A generally estimated a higher probability
of habitat occupancy for a point in space; however, the
relationship between point-specific model predictions was
non-linear and at the highest probabilities of habitat
occupancy model G predicted higher probability (Figure 4).
The greatest differences in model predictions occurred at
intermediate and higher probabilities of habitat occupancy
(Figure 4). In general, there was very little agreement between
point-specific model predictions, and agreement only occurred
where the probability of habitat occupancy was approximately
18%.
To examine model comparisons in space, we calculated

the difference between the point-specific predictions of each
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Figure 4. Point-specific estimates for model G (x axis) and model A
(y axis) for all nine simulated flows. Model predictions are equa

where they intersect with the dashed line.

CONTRASTING JUVENILE CHINOOK HABITAT MODELS

Copyright © 2012 John Wiley & Sons, Ltd.
l

model for three of the nine flows we modelled (33.98,
111.63 and 169.90m3 s�1). Disparities in model predictions
covered the greatest area at the lowest flows we modelled
(Figure 5) and decreased as flows increased; however,
discrepancies in model predictions remained high in areas
that were most likely to be occupied by juvenile Chinook
(Figure 5). Specifically, model disagreement remained high
in the stream margins and over the floodplain.
We calculated total usable habitat across all nine flows

simulated for models G and A (Figure 6). The relationship
between usable habitat and discharge was non-linear
differed between models. On average, model G predicted
17.25% less habitat than model A across the flows we simu-
lated. Importantly, there was a high degree of uncertainty
around the estimates of usable habitat, and model G had
higher uncertainty than model A. At low flows, model G
predicted 20.6% less usable habitat than model A; however,
this difference decreased to 14.7% at higher flows. In
addition, each model predicted a different change in habitat
resulting from a change in flow indicating that extrapolation
of either model over time would produce dissimilar habitat-
flow, associations (Figure 6).
Figure 5. Estimated percent difference in model predictions plotted
for the study reach at three simulated flows: (A) 33.98, (B) 111.63
and (C) 169.90m3 s�1. Dark grey shades indicate space where mode
G estimated a higher probability of habitat occupancy than model A
Light grey shades indicate space where model A estimated a highe

probability of habitat occupancy than model G.
DISCUSSION

The results of our diagnostic statistics indicate that model G
correctly predicted a greater proportion of the outcomes in
our habitat occupancy data compared with model A,
commonly used in habitat modelling. However, the competing
models were somewhat comparable in overall predictive
accuracy and maintained slight to fair predictive capacities
based on the Kappa statistic and AUC value. As well, the total
usable habitat estimated by each model was similar given the
degree of uncertainty around the model predictions. Despite
these similarities, there were several important differences.
River Res. Applic. (2012
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Figure 6. Estimated usable habitat based on predictions from
competing hydrodynamic habitat models, A (grey circles) versus G
(white circles). Error bars represent the minimum and maximum pre-
dicted usable habitat based on the upper and lower confidence limits
of each respective model. X axis is slightly jittered (�2m3 s�1) to

avoid overlap.
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First, the models differed in the proportion of false positives
and false negatives. Model A had a higher proportion of
correctly identified occupied locations but at the cost of
an increased proportion of falsely identified unoccupied
locations. As a result, model A had a greater tendency to over-
estimate habitat occupancy, whereas model G tended to
underestimate occupancy. Second, the difference between
model predictions was greatest at the lowest flows we mod-
elled and in the physical locations most likely to be occupied
by juvenile Chinook salmon. Third, the amount of uncertainty
around model predictions was much greater for model G than
that for model A.
The relative consequence of using the aggregated (i.e. CSI

method; model A) versus the global model (i.e. GLM; model
G) in a management scenario is largely dependent on the
differences between the model predictions. For example, each
model had a clear bias between under-predicting and over-
predicting habitat occupancy. If the management goal is to
minimize habitat lost by flow regulation, then we posit it is
more important to design a habitat model that has the lowest
false positive rate. In other words, the best predictive model
is one that accurately identifies habitat that will not be
occupied by the target species. In this modelling exercise,
our results support the conclusion that model G more accur-
ately identified unoccupied locations. In this context, resource
managers would have a better estimate of flow regulation
effects using model G. In addition, the greatest differences
between model predictions occurred in the stream margins
and floodplain, which are known to be important rearing habi-
tats for juvenile salmon (Sommer et al., 2001; Beechie et al.,
2005). As such, our results indicate that model G had a higher
overall predictive ability and therefore provides resource
managers with a better tool for predicting how flow regulation
will impact those important habitats. In total, the overall
accuracy between the models was similar; however, the global
Copyright © 2012 John Wiley & Sons, Ltd.
model (G) is better suited for management applications and
predicting the impact of flow regulation on rearing habitat
for juvenile salmon.
The disparity in the amount of uncertainty around model

predictions is one of the most important differences between
the competing models. As suggested in previous research,
by aggregating univariate models, the modeller must assume
each parameter is independent, and thus, the error is also
independent (Mathur et al., 1985; Beecher et al., 2002;
Jowett, 2003; Leclerc et al., 2003). As such, taking the
geometric mean of multiple univariate model predictions
does not correctly propagate the uncertainty between model
parameters in the aggregated prediction. In this study, we
posit that model A considerably underestimated the error
aroundmodel predictions while simultaneously overestimating
habitat occupancy. It is quite possible that this flaw would
magnify when additional parameters are added and model
complexity increases. For habitat models to be useful manage-
ment tools to guide flow releases, it is imperative that they
accurately reflect the uncertainty in parameter estimation. In
doing so, resource managers would be better equipped to
identify potential consequences arising from flow regulation
within the full range of uncertainty in model predictions.
Some of the uncertainty in each model was due to low

salmon densities and the high frequency of unoccupied habitat
locations in our data. It is possible that the high proportion of
unoccupied locations was a result of low salmon returns in the
LAR during the period of time this study was conducted
(Carlson and Satterthwaite, 2011). The lower the salmon
population, the more difficult it is to parameterize the types
of models we used in this study. As numerous salmon popula-
tions are currently depressed (Nehlsen et al., 1991; Gustafson
et al., 2007), this is a concern and possible problem for future
modelling in other watersheds. Our results lend further
support for a more conservative statistical approach that more
accurately incorporates uncertainty, such as AICc model
averaging.
There were several candidate multivariate models with

similar AICc scores in this study, but generally, multivariate
models far outperformed the univariate models in predicting
our observed patterns of occupancy by juvenile salmon.
These results indicate that habitat occupancy is controlled
by a combination of variables. Here, our study is limited
to several key physical habitat variables that have repeatedly
been reported to affect densities of aquatic species, including
Chinook salmon, specifically water depth (e.g. Geist et al.,
2000; Guay et al., 2000; Kynard et al., 2000; Beecher et al.,
2002), velocity (e.g. Peeters and Gardeniers, 1998; Geist
et al., 2000; Kynard et al., 2000; Mallet et al., 2000), substrate
size (e.g. Knapp and Preisler, 1999; Vadas and Orth, 2001)
and physical cover (e.g. Vadas and Orth, 2001; Gard 2006).
However, we recognize there are a number of additional
habitat characteristics that are hypothesized to be important
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for functional salmonid rearing habitat, such as prey availabil-
ity, stream temperature and dissolved oxygen (Hill and
Grossman, 1993; Braaten et al., 1997; Malcolm et al., 2003;
Hayes et al., 2007). Furthermore, it is likely that interactions
between parameters (e.g. temperature and velocity) will
strongly influence the probability of habitat occupancy.
Within the AICc framework we have presented, additional
parameters and interactions can be easily integrated into
predictive models and their relative importance balanced by
model averaging.
We propose that the use of AICc and model averaging

may be a valuable tool in producing objective and robust
models of physical habitat for juvenile Chinook salmon or
other species. Our results support the use of multivariate
models over a CSI-based method for predicting the effects
of habitat variables on the probability of habitat occupancy.
We encourage the use of Cohen’s kappa and other diagnostic
statistics in model comparison and fully considering the
context and consequences of model selection. Future research
and management practices should carefully examine the role
of multivariate dynamics and consider the implications of
excluding them. Fresh water is, and will increasingly be, a
limited resource throughout many areas of the world
(Poff et al., 2003; Richter et al., 2003). Wise management
of aquatic resources within highly regulated river systems is
required to support ecosystem services and maintain quality
of life for the people relying on such services (Arthington
et al., 2006). Therefore, the decision on how to best manage
flow releases for downstream organisms is critical and needs
to be informed by the best available science. This study
illustrates the importance of analytic approaches in develop-
ing habitat models that support effective management of flow
in regulated river systems.
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