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Abstract

Background: Bayesian mixing models have allowed for the inclusion of uncertainty and prior information in the analysis of
trophic interactions using stable isotopes. Formulating prior distributions is relatively straightforward when incorporating
dietary data. However, the use of data that are related, but not directly proportional, to diet (such as prey availability data) is
often problematic because such information is not necessarily predictive of diet, and the information required to build a
reliable prior distribution for all prey species is often unavailable. Omitting prey availability data impacts the estimation of a
predator’s diet and introduces the strong assumption of consumer ultrageneralism (where all prey are consumed in equal
proportions), particularly when multiple prey have similar isotope values.

Methodology: We develop a procedure to incorporate prey availability data into Bayesian mixing models conditional on the
similarity of isotope values between two prey. If a pair of prey have similar isotope values (resulting in highly uncertain
mixing model results), our model increases the weight of availability data in estimating the contribution of prey to a
predator’s diet. We test the utility of this method in an intertidal community against independently measured feeding rates.

Conclusions: Our results indicate that our weighting procedure increases the accuracy by which consumer diets can be
inferred in situations where multiple prey have similar isotope values. This suggests that the exchange of formalism for
predictive power is merited, particularly when the relationship between prey availability and a predator’s diet cannot be
assumed for all species in a system.
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Introduction

Background
Trophic interactions are fundamental components of biodiver-

sity, directly contributing to ecosystem organization and dynamics

[1]. Accurate reconstruction and quantification of the strengths of

trophic interactions remains a challenge in most ecological systems

[2]. Often, it is impossible to directly observe or document feeding

relationships [3]. In many such cases, ratios of stable isotopes

(typically those of carbon: 13C:12C and nitrogen: 15N:14N) can be

used to investigate the diets of consumers [4]. Carbon isotope

ratios distinguish primary producers that use different photosyn-

thetic pathways (or that differ in other physiological or physiog-

nomic attributes) and are conserved in the tissues of consumers,

whereas ratios of nitrogen isotopes are strongly sensitive to trophic

level (though they may vary spatially or with primary producer

functional type). Accordingly, stable isotope data of both consumer

and potential prey can be used to quantify a consumer’s resource

niche, can provide dietary information relevant across a range of

temporal and spatial scales, and can distinguish dietary differences

across hierarchies of animal communities [5,6,7,8].

The extent to which inference can be successfully drawn from

stable isotope data is dependent upon the isotopic uniqueness of

a consumer’s prey (here ‘prey’ may refer to any resource that is

consumed by an organism). When different potential prey are

isotopically distinct and the number of prey are greater than the

number of isotopic tracers +1, analytical mixing models may be

employed to assess the possible contributions of prey to a con-

sumer’s diet [9,10,11,12]. Because many different combinations of

dietary sources can produce a given set of isotope values under

these conditions, quantitative tools are required to parse less likely

trophic interactions from those that are more likely to occur.
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Bayesian mixing models can be used to numerically simulate

posterior probability distributions that quantify the range and

likelihood of all potential source combinations [7,13,14]. This

approach requires prior knowledge of a consumer’s diet to be

designated, even if that knowledge is specified to be uninformative

(i.e. that each prey item has an equal probability of contributing to

the predator’s diet). In addition, all isotopic mixing models require

the accurate specification of prey isotope values and trophic

fractionation factors [15].

Despite recent advances in Bayesian mixing models, estimates of

dietary relationships may be inaccurate or uninformative when

multiple prey are isotopically similar (this issue is problematic in

non-Bayesian mixing models as well) [11]. Here we address the

issue of isotopic similarity among prey that are not equally

available to a consumer. Because the relative availability of a

specific prey will theoretically have a direct impact on the con-

sumer’s diet, we propose a method to employ data reflecting these

differences in availability to weight the probability distributions of

a consumer’s reliance on a particular prey. Because the precise

relationship between a prey’s inclusion to a predator’s diet and a

prey’s availability is uncertain (and is not necessarily applicable

to all prey in a predator’s diet), we condition the influence of

availability data on the isotopic uniqueness of a given prey.

Incorporating Biological Information
The quantification of a consumer’s diet implicitly assumes

that all dietary resources included in an analysis are potentially

important. If an uninformative prior is used in a Bayesian mixing

model, all prey are assumed to contribute equally to a predator’s

diet a priori. This specification allows isotopic data to maximally

influence the results of the mixing model. Thus, in a system with n

potential prey sources, the a priori assumption is that the consumer

is an ultrageneralist, consuming a unit of biomass of prey i with the

probability: ci = n21. The unique isotopic distribution of prey

relative to the consumer’s isotope values can modify this pro-

bability. Nevertheless, the a priori assumption will be especially

relevant when two prey occupy the same isotopic space. Here, the

model will predict that isotopically similar prey contribute equally

to a consumer’s diet.

Additional biological information regarding prey sources may

render such generalizations over-simplistic; if the relative avail-

ability of prey on the landscape is known (a1, a2, … ,an; where the

sum of these elements is equal to unity), the underlying assumption

may be revised to reflect these differences such that the probability

of consuming a prey source is ci = ai. Accordingly, the system

operates under conditions imposed by interaction neutrality (con-

sumption in proportion to prey abundance) [16,17], as opposed to

ultrageneralism (consumption in proportion to the number of prey

available to the consumer).

In theory, prey availability data, as quantified by abundance,

biomass, consumer preference, or a combination thereof, can be

used to inform dietary relationships within the framework of

traditional Bayesian mixing models. We acknowledge upfront that,

like all aspects of isotopic mixing models, such a practice should be

used with caution. Specifically, there exists an implicit assumption

that prey availability and consumer-prey interactions are directly

related for every prey item that is included in the analysis.

Importantly, the calculation of a consumer’s diet based on prey

availability and/or isotopic data are not equivalently informative.

Isotopic data of a consumer and its potential prey are empirical

measurements that track the flow of matter within a physical

system. The relationship between isotopic data and trophic

interactions has been well established in many ecosystems

[4,6,18,19]. On the other hand, the relationship between prey

availability and diet choice is still not well understood [20], need

not be system-specific [21], and may differ across prey, even for

the same predator [21]. In these scenarios, prey availability data

should not be introduced indiscriminately to inform Bayesian

mixing models. Additionally, the use of prior information in Baye-

sian mixing models is subject to a number of important con-

straints, such that incorporation of biological information by

means other than the Bayesian paradigm may be advantageous,

depending on what data are available for a particular system.

Post-hoc adjustments vs. the formulation of Prior
Distributions

Bayesian isotope mixing models allow researchers to apply prior

information to an isotopic system, thereby making use of different

sources of biological data that provide information regarding a

consumer’s diet. Prior distributions represent the a priori knowledge

of a consumer-resource relationship, and can be parameterized by

direct or indirect measurements of prey consumption by a pre-

dator. The effect that a prior distribution has, relative to the like-

lihood, is partially dependent upon the uncertainty, or variance, of

the prior distribution [22]. The formulation of informative priors is

based on two logical assumptions. First, the Bayesian algorithm

assumes that the data used to formulate the prior and likelihood

are determinants of the same variable (in this case, diet). Second,

the parameterization of prior probability distributions is contin-

gent on calculable metrics, such as the mean and variance.

There are scenarios where one or both of these assump-

tions cannot be met. Regarding the first assumption, an example

involving the use of gut contents data to formulate a prior for an

isotope mixing model is presented in Moore and Semmens [13].

Because both gut contents data and the isotope values of a system

are indirect measures of diet (h), they lend themselves to a

Bayesian framework wherein the posterior probability p(h|y) is

informed by both the prior p(h) and the likelihood p(y|h)

p(hjy)!p(h)p(yjh), ð1Þ

where y represents isotopic data, and h is a dietary parameter.

According to Eq. (1), it is evident that p(h|y) and p(h) must both

describe diet. Alternatively, if p(h) represents measures of prey

availability to a consumer and p(y|h) is the likelihood shaped by

isotopic (dietary) data, it is unclear what p(h|y) describes, unless it is

assumed that availability is directly correlated with diet. Prey

availability would be an indirect measure of diet if species

interactions follow neutral dynamics [16,17]. For predator-prey

interactions that are influenced by non-neutral, prey-specific

ecological factors such as predator preference, prey defense, or

habitat variability, measurements of prey availability cannot lend

themselves to indiscriminant use as prior distributions as they no

longer have a one-to-one relationship with their contribution to a

consumer’s diet.

As importantly, the second assumption requires that prior

distribution parameters be calculable. Estimates of both mean and

variance must be made for all prey species in the predator’s diet

to formulate appropriate priors. In systems where isotopic data

are likely to be of maximum utility (e.g. systems that are difficult

to observe directly), such parameters are often difficult (if not

impossible) to estimate well, rendering prey availability data to

parameterize prior distributions unviable. Moreover, in systems

where few measurements of prey availability exist, or when count

(census) data are used, variance is often underestimated [23],

which can result in inaccurate posterior distributions [24]. Often,

prey availability is better characterized for some species than for
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others. Differences in body size, temporal habitat use, and many

other factors may confound parameterization of availability dis-

tributions of some species, even if the same quantities are well

known for others. This renders the formulation of an accurate

prior distribution difficult or impossible. In order to avoid these

pitfalls, and to maximize the utility of isotope mixing models, a

more targeted procedure designed to inform isotope-based mea-

surements of a consumer’s diet in a post-hoc fashion is warranted.

Here we introduce a procedure that incorporates, and appro-

priately weights, biologically relevant information into the po-

sterior distributions of a Bayesian isotope mixing model. With this

approach, the assumption of interaction neutrality is incorporated

into mixing model results conditional on the isotopic similarity of

prey sources. This condition preserves the intrinsic differences

between direct measurements that describe a system (isotopic

data), and independent data that may be theoretically linked to a

system (prey availability data). First, we introduce the utility of this

approach with a hypothetical isotopic system. We then test the

effectiveness of our approach at increasing the accuracy of trophic

interaction estimates by comparing isotope data and indepen-

dently estimated foraging rates of a whelk predator feeding on its

prey in a New Zealand intertidal community.

Methods

Weighting of Bayesian isotope mixing models
Bayesian isotope mixing model output is often summarized in

a matrix of estimated dietary contribution vectors (ri,…,n; ac-

cepted results from a Markov Chain Monte Carlo, MCMC, or a

Sampling-Importance-Resampling, SIR, algorithm), where each

element in the vector is the contribution of a potential prey source,

and each proposed vector sums to unity [13]. Proportional prey

availability can be incorporated into the vector that defines the

contribution of dietary sources for a particular consumer by mul-

tiplication and renormalization. Because direct physical measure-

ments of trophic relationships (e.g. isotopic data) are likely to be

more informative than the idealized assumption of a relationship

between prey availability and diet, we allow prey availability data

to influence dietary contribution results only in proportion to the

extent that the prey have similar isotope values. As such, our

model allows availability data to influence the source contribution

vector in proportion to the pairwise isotopic overlap between prey.

Isotopic overlap is proportional to the probability that the isotopic

values of two sources are misidentified. Relative to a single pair of

potential prey within a larger system, we define the impact of prey

availability and isotopic data on final contribution-to-diet values to

be exactly inversely proportional: when there is no overlap of prey

sources, isotopic data are singularly informative; when there is

complete overlap of prey sources, availability data are singularly

informative (for the prey pair in question). We utilize Pianka’s

measure of density overlap to estimate the degree of isotopic

overlap between two prey sources with normally distributed

isotope values. Pianka’s measure of overlap (wij) is defined by

wij~

ð
gi(x)gj(x)dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið

g2
i (x)dx

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
g2

j (x)dx

s , ð2Þ

where gi,j(x) represent multivariate normal distributions of isotope

values for overlapping prey sources i and j [25]. Solving Eq. (2)

with the assumption of bivariate normality yields

wij~

ffiffiffiffiffiffiffiffiffiffiffiffiffi
SiSj

�� ��4
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
SizSj

� ��� ��q e
{1

2
mi{mj

� �’
SizSj

� �{1
mi{mj

� �
, ð3Þ

where mi and mj are vectors of bivariate distribution means, Si

and Sj are covariance matrices of prey i and j, respectively, and

(mi{mj)’(SizSj)
{1(mi{mj) is the square of the Mahalanobis

Distance (a generalization of Euclidean Distance) [26]. While this

metric is capable of handling isotopic distributions with alternative

non-Gaussian covariance structures, mixing models have not yet

taken isotopic covariance into account, and we will not discuss it

further. The application of an alternative measure of overlap,

Morisita’s metric [27], provided nearly identical results (not

reported).

As noted above, isotopic overlap represents the probability of

mistaking one prey source for another; in systems where isotope

values for prey i and j are completely distinct (wij = 0), assumptions

of consumption based on prey availability have no influence,

whereas isotopic data are regarded as singularly effective for

determining a consumer’s likely diet. If two prey have similar

isotope values (0,wij#1), prey availability data are incorporated,

in proportion to wij, to estimate the final contribution-to-diet

values. Accordingly, prey availability data are weighted to become

increasingly informative as wij increases. If wij = 1 (exact isotopic

overlap between two prey), isotopic and prey availability data are

equally informative. We define the strength of this weighting value

for prey i and j as

ci,j~ 1{wij

� � 1

2
zwijai,j , ð4Þ

where wij is the degree of isotopic overlap (Eqns. 2,3), and ai,j are

proportional availability measurements of prey i and j (for

example, if prey i and j had proportional biomass measurements

of 0.25 and 0.75, respectively, then ai = 0.25 and aj = 0.75).

Therefore, the final weighted mixing model output is calculated as

fi,j~
ri,jci,j

Xj

i
rXj

i
rcð Þ

, ð5Þ

where ri,j represents a vector of estimated contribution-to-diet

values for prey i and j from a given iteration of the MCMC or SIR

algorithm in a Bayesian isotope mixing model without including

knowledge of relative availability. This process is employed

iteratively across all proposed mixing model contribution-to-diet

vectors, resulting in final probability distributions that are skewed

towards relative availability (ai, aj) for prey i and j in proportion

to their isotopic similarity. As an alternative to a single ratio of

two integers (e.g. ai = 0.25, aj = 0.75), relative availability can be

incorporated as a probability distribution. This ability is excluded

from these analyses for simplicity.

Application to a New Zealand intertidal food web
To assess the empirical power of our method, we applied mixing

models with and without our weighting procedure to stable isotope

data obtained from a predator-prey system of the New Zealand

intertidal [28,29]. Model results were then compared to biomass-

weighted feeding rates calculated from independent observational

data.

Merging Resource Availability with Mixing Models
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The focal predator is the gastropod whelk, Haustrum ( = Lepsiella)

scobina, which is common along the rocky intertidal shores of New

Zealand. We established the diet of H. scobina at a focal study

site (Tauranga Head, 41u469260S, 171u279200E) by performing

systematic low-tide feeding surveys of the population in pre-

determined mid- and high-intertidal areas of the shore. Each

encountered whelk was counted and carefully examined to deter-

mine feeding activity. The sizes of all whelks and their identified

prey items were measured to within 61 mm [30]. In total, 2668

whelks where encountered in 20 surveys performed over a 2-year

period (May 2005–July 2007). On average, 20.8% of all in-

dividuals were actively feeding such that a total of 554 feeding

observations on 8 prey species were recorded. The eight observed

prey species were: the snails, Austrolittorina antipodum (Aa), A. cincta

(Ac), and Risellopsis varia (Rv); a limpet Notoacmea sp. (Nr); the

mussels Mytilus galloprovincialis (Mg) and Xenostrobus pulex (Xp); and

the barnacles Chamaesipho columna (Cc) and Epopella plicata (Ep)

(Table 1). The saturated nature of the resultant species accu-

mulation curve suggests that most of H. scobina’s prey were

documented (Fig. S1). Further details are provided in Novak [30].

Observational estimates of prey contributions. We used

the observational method of Novak and Wootton [29] to convert

observed frequencies of predation events to prey-specific estimates

of H. scobina’s feeding rates. This method required an estimation of

mean prey-specific abundances and the mean prey-specific

handling time required by H. scobina individuals to consume a

prey item. Species’ densities were estimated using 10–15 quadrats

measuring 0.25 m2, randomly distributed across three 20-m

transects positioned within each mid- and high-intertidal zone.

Abundance surveys were repeated three times (May–July 2005,

January–February 2006, May 2006) such that site-wide mean prey

densities were estimated on the basis of 60–90 quadrats (Table 1).

H. scobina’s handling times (the time required by an individual to

drill and ingest a prey item) were measured in controlled labo-

ratory experiments where prey identity and relative predator-prey

body size could be manipulated independently (n = 208). The

prey-specific relationships observed between these variables allowed

us to estimate the expected handling time of each feeding event

observed in the field. These data were then used to calculate prey-

specific mean handling times (Table 1). Further details are provided

in Novak [30].

Data from the feeding surveys, abundance surveys, and field-

estimated handling-times were combined to calculate prey-specific

per capita attack rates (ci, the number of prey eaten per predator

per prey available per m2 per day) as

ci~
FiAx

Fx{Axð ÞhiNi

, ð6Þ

where hi and Ni respectively denote the ith prey’s mean handling

time (days) and mean density (#?m22), Ax denotes the proportion

of individuals in the predator population (feeding and non-feeding)

observed to be feeding on prey species x, and Fi denotes the

proportion of the population’s feeding individuals observed to be

consuming the i th prey species [29]. Species x is an arbitrarily

chosen species used throughout the calculation of all prey-specific

attack rates [29]. Prey-specific feeding rates (Ci, the grams of prey

tissue consumed per predator per m2 per day) were then calculated

based on the multispecies Type II functional response (on which

Eqn. 6 is based)

Ci~
miciNi

1z
XS

k~1
ckhkNk

, ð7Þ

[cf. 31] where S is the total number of prey observed in the

predator’s diet and mi is the i th prey’s average dry tissue weight.

We calculated prey weight from the sizes of prey items observed

during the feeding surveys using species-specific allometric rela-

tionships [28]. Feeding rates were converted to proportional diet

contributions for comparison to those inferred using stable isotope

data (Table 1).

Stable isotope estimates of prey contributions. Individuals

of H. scobina (12–15 mm shell length, n = 10) and each of its observed

prey (n = 5–8 per species) were collected for stable isotope analysis

from both high and mid-intertidal zones in July of 2004 and 2005.

All individuals were stored live on ice for 4 hrs and frozen prior to

processing. Insufficient material was obtained for Nr to enable

analysis. Although only a single Nr predation event was observed

during feeding surveys, we account for this missing prey source by

substituting Nr with the limpet Patelloida corticata (Pc), a closely related

species that shares the same habitat (Table 2). Analysis of the system

Table 1. Haustrum scobina prey-specific foraging metrics.

Prey Abb.
Feeding
obser.

Density
(m22)

Handling
time (days)

Per capita
attack rate1

Feeding
rate2

Proportional diet
contribution

Snails and limpets

Austrolittorina antipodum Aa 4 159.8 0.6 2.0361025 1.8461026 2.7661023

Austrolittorina cincta Ac 3 1921.6 0.4 2.0261026 5.3461027 8.0161024

Notoacmea sp. Nr 1 213.1 0.2 1.0461025 1.6661026 2.4961023

Risellopsis varia Rv 2 163.9 0.6 1.0161025 5.3561027 8.0261024

Mussels

Mytilus galloprovincialis Mg 5 222.2 2.0 5.2161026 7.4761026 1.1261022

Xenostrobus pulex Xp 213 4771.4 1.3 1.5961025 2.7361024 4.1061021

Barnacles

Chamaesipho columna Cc 321 84445.0 0.6 3.0561026 3.5061024 5.2661021

Epopella plicata Ep 5 1028.1 1.0 2.2861026 3.1061025 4.6561022

1Number of prey eaten per whelk per prey available per m2 per day.
2Dry tissue grams of prey eaten per whelk per m2 per day.
doi:10.1371/journal.pone.0022015.t001
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without Pc did not change the applicability of our weighting method

(Fig. S2).

We dissected, rinsed, and oven-dried the foot muscle tissue of all

snails and limpets (Hs, Aa, Ac, Pc, Rv) and the whole-body tissue of

the mussels (Mg, Xp) and barnacles (Cc, Ep). The ground samples of

some species were pooled to ensure sufficient sample size (Table 2).

Analyses of carbon and nitrogen stable isotope ratios were per-

fformed by the UC Davis Stable Isotopes Facility and were ex-

pressed in delta-notation such that d= 1000((Rsample/Rstandard)21)

where R = either 13C/12C or 15N/14N; reference standards are

Vienna PeeDee-belemnite for carbon and atmospheric N2 for

nitrogen. The isotope values of the predator Hs were corrected

by 2160.2% and 2260.3% for d13C and d15N, respectively, to

account for trophic enrichment (6 SD). Chosen values are repre-

sentative of those observed for invertebrates in general [32].

Results

Hypothetical Dataset and Model Assessment
A hypothetical predator-prey isotopic dataset (Fig. 1A) was

assigned a single consumer species, and four prey species, each

normally distributed across the bivariate isotopic niche space

(consumer and prey standard deviation (SD) = 0.5 for each isoto-

pic tracer). Two prey were constructed to have distinct (non-

overlapping) isotopic distributions, while the blue and orange prey

(hereafter referred to as prey i and j, respectively) were given equal

values. The mixing space was designed such that the overlap of

prey i and j could be manipulated without affecting direct mixing

model output (Fig. S3). As expected, analysis of this system with a

Bayesian isotope mixing model (MixSIR v.1.0.4) provided similar

posterior probability distributions of contribution-to-diet values for

the two overlapping prey species (Fig. 1B): proportional contribu-

tion medians (1st quartile, 3rd quartile) for prey i and j = 0.17 (0.08,

0.25), 0.16 (0.08, 0.25). To evaluate isotopic similarity between

prey i and j, we employed Pianka’s measure of density overlap,

such that wij = 1. We then set prey availability values (ai, aj) to 0.1

and 0.9 for prey i and j, respectively, and applied these values to

Eqs. 4 and 5 across the entire matrix of iterated diet-to-contri-

bution vectors to calculate the revised estimates of dietary reliance

(Fig. 1C): revised proportional contribution medians (1st quartile,

3rd quartile) for prey i and j = 0.04 (0.01, 0.09), 0.30 (0.25, 0.32).

An examination of Pianka’s measure of overlap confirms con-

sistent behavior over a range of isotopic mean differences and

variances, resulting in a sigmoid relationship between the mean

difference of prey isotope values and wij that becomes less pro-

nounced with increased variance (Fig. 2A). Because we construct-

ed the mixing space such that estimates of dietary contribution are

nearly invariant with respect to manipulation of wij (cf. Fig. S3), an

assessment of the behavior of our weighting procedure across

different ratios of prey availability is possible (Fig. 2B,C). There is a

linear relationship between the initial degree of isotopic overlap of

two prey and the difference of final posterior probability distri-

bution mean values. The slope of this relationship is determined by

the availability differences (ai2aj); small variations in the linear

trends can be attributed to fluctuations in mean values as the

distributions are successively weighted and renormalized. If the

abundances of prey i and j are equal (ai2aj = 0), our weighting

procedure returns results identical to those originally calculated

by the isotope mixing model, as intended given its a priori

ultrageneralist assumption. As the overlap of prey isotope values

increases, the weighting procedure increasingly returns dietary

contribution values influenced by the relative availability of the

two isotopically similar prey. This translates to an increasing

discrepancy between the proportional contribution to diet distri-

butions of prey i and j as the difference in availability increases.

New Zealand Dataset and Model Validation
Haustrum scobina’s diet at the site includes eight potential prey

(Aa, Ac, Cc, Ep, Mg, Pc (substituted for Nr), Rv, and Xp). Five of the

Table 2. Mean and standard deviation of species-specific
isotopic signatures at Tauranga Head, New Zealand.

Species Abb. d15N d13C n

Mean St.Dev Mean St.Dev

Whelk Predator

Haustrom scobina Hs 10.4 0.7 217.1 0.3 7

Snails and limpets

Austrolittorina antipodum Aa 7.6 0.1 214.8 0.3 5

Austrolittorina cincta Ac 8.3 0 217.8 0.7 2

Patelloida corticata* Pc 9.3 0.4 211.9 0.2 5

Risellopsis varia Rv 8.7 0.1 215.3 0.4 5

Mussels

Mytilus galloprovincialis Mg 7.7 0.2 218.6 0.3 5

Xenostrobus pulex Xp 7.9 0.4 218.8 0.2 5

Barnacles

Chamaesipho columna Cc 9.3 0.3 218.6 0.6 7

Epopella plicata Ep 11.6 0.4 218.7 0.2 7

*Patelloida corticata is a substitute prey for the limpet Notoacmea sp. (see text
for details).
doi:10.1371/journal.pone.0022015.t002

Figure 1. Isotopic niche space of a theoretical single predator,
four prey community. A) The predator (black) and prey (red, green,
blue, orange) have a standard deviation of (0.5, 0.5) for both isotope
tracer 1 and 2. Two of the four prey (red and green) are isotopically
distinct with no overlap. Two of the four prey (blue and orange) are
isotopically identical, with wij = 1. B) Initial MixSIR contribution-to-diet
posterior probability distributions for the isotopically identical prey. C)
Final weighted and renormalized posterior probability distributions for
the isotopically similar prey. Relative abundance values of 0.9 and 0.1
were applied to the orange and blue prey, respectively.
doi:10.1371/journal.pone.0022015.g001
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eight prey species are isotopically distinct, however the nesting

mussel Xenostrobus pulex (Xp) and the blue mussel Mytilus

galloprovincialis (Mg) had overlapping isotope values; wij = 0.63

(Fig. 3A). An analysis of the mixing space reveals a range of likely

contributions for each prey (Fig. 3B). The isotopic similarity

between Xp and Mg resulted in similar contribution-to-diet pro-

bability distributions for these species in unweighted MixSIR

results (Fig. 3B; blue and green hatched distribution density lines,

respectively): Mg = 0.16 (0.07, 0.28), Xp = 0.18 (0.08, 0.31); median

(1st quartile, 3rd quartile). Applying relative abundance measure-

ments (aMg = 0.05, aXp = 0.95) to our weighting procedure resulted

in proportional contribution distributions that were quite different

(Fig. 3C): Mg = 0.07 (0.03, 0.16), Xp = 0.27 (0.15, 0.41).

To investigate whether our weighting procedure improved

inferences of prey contribution to the diet of Hs, we regressed both

original mixing model results and our weighted results against

Haustrum scobina’s field-estimated proportional feeding rates on

each of its prey species (Fig. 3D,E). Recall that our field-estimated

feeding rates were weighted by prey biomass to ensure a more

direct comparison to the isotopic representation of the system,

which is intrinsically mass-dependent (Eq. 7). The ln-ln-trans-

formed regression of the mixing model result means with feeding

rate observation means (Fig. 3D) indicated that four of the five

most heavily preyed upon species (prey with predator feeding rates

greater than 0.0023 grams?whelk21?day21), with the exception of

Mg, fall within the 90% confidence interval (slope = 0.19, and

R2 = 0.46). After the implementation of our weighting procedure,

all five of the top prey species fall within the 90% confidence

interval (Fig. 3E; slope = 0.22, R2 = 0.56). Accordingly, the inclu-

sion of prey availability, conditional on the isotopic uncertainty of

prey, increased the slope and improved the accuracy of trophic

interaction predictions by ca. 10%.

Discussion

The usefulness of a model is ranked by its ability to accurately

describe reality with a minimal number of assumptions [33]. A

Bayesian isotope mixing model with an uninformative prior

assumes that the consumer is an ultrageneralist until proven other-

wise. When multiple prey have similar isotope values, the ultra-

generalist assumption becomes realized in the mixing model

results, forcing the consumer to have equal contributions of each

prey source. Because ultrageneralism is an unrealistic assumption

in most cases, we developed a procedure by which different types

of biological information can be used to revise this assumption.

Our method enables partitioning of prey that are isotopically

similar but differ in their relative availability to a predator. We

reiterate that prey availability values could represent proportional

differences in available biomass, predator preference, relative

digestibility, or any (combination of) measurements influencing the

availability of prey biomass to a predator. As such, the inclusion of

neutral interaction assumptions (consumption in proportion to the

prey’s abundance) is conditioned on the isotopic uncertainty of

prey; the isotope values of prey that are isotopically distinct remain

dominantly informative.

Our isotopic analysis of a New Zealand intertidal system,

compared to field-measured feeding rates, reveals increased

accuracy in predicted consumption rates of Haustrum scobina on

its prey after the weighting procedure was employed (Fig. 3D,E).

Neutral interaction assumptions were incorporated only for iso-

topically similar prey (the mussels Xenostrobus pilex and Mytilus

galloprovincialis), thereby avoiding the incorporation of such

assumptions for all prey. Our results suggest that, in this case,

we interchange the formalism of the Bayesian paradigm with

predictive power, thereby validating the use of such methods in

Figure 2. Sensitivity analysis of the weighting procedure as a function of isotopic similarity and the difference in proportional
availability of isotopically similar prey. A) Sensitivity analysis of Pianka’s measure of density overlap (wij) across differences in mean values and
variance of two bivariate normal isotopic distributions. When variance is small, wij decreases sigmoidally as the difference in means increases. Larger
variance predictably tends to linearize the relationship. B) The mixing space of our hypothetical scenario permits manipulation of isotopic overlap
between two prey (blue and orange; the consumer is black) without altering mixing model estimates of summed proportional contribution to diet of
the two prey (cf. Fig. S3). C) An analysis of the effect of model parameters (density overlap, wij, and availability differences, ai2aj) on the final
weighted and renormalized posterior distributions, measured by the difference of final distribution means for blue and orange in the hypothetical
isotopic dataset (Fig. 1). The model is assessed across all possible values of wij (0:1), and across five prey availability scenarios. There is a strong linear
effect of isotopic overlap on the difference in means of the weighted posterior probability distributions. The slope of this relationship is determined
by availability differences.
doi:10.1371/journal.pone.0022015.g002
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cases where neutral interaction assumptions cannot be justified, or

when appropriate prior probability distributions cannot be

constructed, for all potential prey.

The ultimate aim of our method is to increase the accuracy of

trophic interaction estimates, thereby contributing to our under-

standing of ecological systems, the role of neutral and niche

processes in organizing communities, and the structure of food

webs. Here we address the issue of isotopic similarity concerning

a pair of prey, however in more complex scenarios, multiple

iterations of this method could be carried out for multiple pairs of

overlapping prey. In principle, it would also be possible to handle

larger numbers of overlapping prey within the framework that we

have presented, and this would be a useful future addition to this

work. Whether there are few or many isotopically overlapping

resources, the ability of our method to refine estimates of prey con-

tribution to a consumer’s diet relies on the accurate incorporation

of proportional prey availability data. Although the availability of

a prey may be the result of differential abundance (emphasized

here), it may also result from consumer behavior, where certain

prey are preferred over others. As long as prey availability can be

expressed as proportions (where the proportional availability sums

to unity over the isotopically overlapping prey), such data can be

used in a manner equivalent to our example of differential prey

abundance. The accuracy of our method is entirely dependent on

the accuracy of proportional availability measurements. If prey

availability data are highly uncertain or unknown for one or more

of the isotopically overlapping prey sources, our method is of little

utility. Furthermore, if multiple mechanisms are important in

constraining prey availability, the relative influence of each

mechanism must be known such that the ‘overall’ proportional

availability of a given prey can be estimated.

There are situations when it is difficult or impossible to inform

Bayesian isotope mixing models with availability data. Such issues

contribute to difficulties in developing suitable priors for prey

species in many systems, though an exploration of prior develop-

ment in the context of consumer-resource relationships, particu-

larly for isotope mixing models, deserves additional investigation.

Formulation of prior distributions based on availability data may

be possible and appropriate in systems that are observable and

where neutral interaction assumptions can be justified. However,

ratios of stable isotopes are often considered to be of greatest uti-

lity when used to investigate systems that are difficult, if not

impossible, to observe directly [4,6,19]. Our procedure enables

investigators to employ independent biological information to gain

additional insights from isotopic data, while simultaneously relaxing

the number of required parameters relative to traditional Bayesian

models of consumer resource use.

Supporting Information

Figure S1 Species accumulation curve (± SD) of the prey
observed in the diet of Haustrum scobina at Tauranga
Head, constructed using feeding survey observations as
the unit of sampling [34]. Gotelli N.J. & Colwell R.K. (2001).

Quantifying biodiversity: procedures and pitfalls in the measure-

ment and comparison of species richness. Ecol. Lett., 4, 379–391.

(EPS)

Figure S2 An analysis of the New Zealand system
excluding the prey Patelloida corticata (Pc). As expected,

there are slight differences in original MixSIR results, however,

applying prey availability data to the overlapping prey Mg and Xp

results in a similar increase in the accuracy of prey contribution

estimations. A) ln-ln-transformed regression of biomass-weighted

proportional feeding rate means vs. original mixing model result

means; slope = 0.08, R2 = 0.42. B) ln-ln-transformed regression of

biomass-weighted proportional feeding rate means vs. weighted

Figure 3. The weighting procedure applied to a New Zealand intertidal community. A) Isotopic niche space of the New Zealand whelk-
predator system, where d13C is plotted on the x-axis and d15N is plotted on the y-axis. The d13C and d15N values of the predator Hs are adjusted for
trophic discrimination factors (see methods). B) MixSIR contribution-to-diet posterior probability distributions of all New Zealand prey for predator
Hs. Solid distribution density lines denote isotopically distinct prey, whereas hatched distribution density lines denote isotopically similar prey. Prey
colors match those of panel 3A. C) Weighted posterior probably distributions for the isotopically similar prey. Relative abundance values of 0.05 and
0.95 correspond to Mg (blue) and Xp (green), respectively. D) ln-ln-transformed regression of biomass-weighted proportional feeding rate means vs.
original mixing model result means; (slope = 0.19, and R2 = 0.46). Hatched red lines represent the 90% confidence interval. E) ln-ln-transformed
regression of biomass-weighted proportional feeding rate means vs. weighted model result means; slope = 0.22, R2 = 0.56. Hatched red lines
represent the 90% confidence interval.
doi:10.1371/journal.pone.0022015.g003
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model result means; slope = 0.11, R2 = 0.53. The hatched red lines

represent the 90% confidence interval.

(EPS)

Figure S3 Manipulation of the isotopic overlap of prey.
A) A mixing space with 2 non-overlapping prey (green, red), two

overlapping prey (blue, orange), and a single consumer (black).

Here, the overlap of blue and orange prey (wblue,orange) = 1. B)

MixSIR estimates of % contribution to diet for each prey

associated with Fig. S.3.A. Green and red are predicted to

contribute equally to the consumer’s diet, as are blue and orange.

C) An alternative mixing space such wblue,orange = 0. Here, the blue

and orange prey have been symmetrically moved from their

previous isotopic values (d13C = 28, d15N = 5) to Blue: d13C = 28,

d15N = 4; Orange: d13C = 28, d15N = 6. D) MixSIR estimates of

% contribution to diet for each prey associated with Fig. S.3.C.

Although the overlap of blue and orange has been manipulated,

the geometry of the mixing space retains similar estimates of %

contribution to diet for all prey, with only slight differences in

variance.

(EPS)
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