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Smith, B.D., W.S. Boyd, and M.R. Evans 2003. A statistical model discriminating random and 1 

correlated mortality from laying to fledging: Barrow’s Goldeneye as an example. 2 

Ecological Applications 00:0000-0000. 3 

Quantitative conservation methodologies such as Population Viability Analysis (PVA) require 4 

reliable measurements of life history parameters such as breeding success.  The utility of such 5 

metrics for egg-laying species is complicated by our knowledge that the mortality of eggs in a 6 

clutch and juveniles in a brood can occur both randomly and independently over time, or 7 

catastrophically, such as in the sudden loss of a clutch or brood.  Not knowing the nature of 8 

breeding mortality events caused by either or both of abiotic (e.g., weather, pesticides) and biotic 9 

(e.g., predation, habitat alteration) circumstances limits our ability to confidently assess a 10 

population’s demography and sustainability, or test competing hypotheses.  Using the seaduck 11 

Barrow’s Goldeneye as an example, we describe a multinomial likelihood model that estimates 12 

egg and juvenile survival rates continuously from laying to fledging based on periodic 13 

observations of individual clutches and broods.  Adjunct data, such as environmental or 14 

predation threat measurements, can be included as covariate series for evaluating their influence 15 

on the predicted survival rates of juveniles in a brood.  In our example we conclude that expected 16 

brood size on hatch day is strongly positively correlated with the probability a juvenile Barrow’s 17 

Goldeneye will survive to fledge.  We also discuss how knowledge of the effect of an 18 

environmental variable on breeding success interpreted from our model can guide conservation 19 

strategies that manipulate that variable.  Our model has a distinctive ability to statistically 20 

characterize mortality between the extremes of random and catastrophic mortality; and can 21 

determine if unwitnessed mortalities occurred independently or were correlated (i.e., 22 

overdispersed, where catastrophe is extreme overdispersion).  Overdispersion is estimated as a 23 
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parameter of the beta-binomial probability distribution of survivals, and thus differs from its 1 

treatment in Program MARK where overdispersion is an a posteriori diagnostic referred to as Ĉ . 2 

 3 

Key words: beta-binomial, breeding success, brood, brood amalgamation, catastrophe, clutch, 4 

clutch parasitism, Mayfield, mortality, overdispersion, Program MARK, survival 5 
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INTRODUCTION 1 

One of the key methodologies for assessing a population’s sustainability over time is 2 

population viability analysis (PVA, Beissinger and McCullough 2002, Morris and Doak 2002).  3 

Effective use of analyses such as PVA require that an analyst has confidence in the life history 4 

parameters that enter such models.  Uncertainty in the mean value of a rate parameter such as 5 

survival is generally expressed in confidence limits.  However, such expressions of uncertainty 6 

often tacitly assume that survival estimates arise from a simple binomial process where 7 

individuals independently either live or die, and whose rate may or may not change over time.  8 

The three most well-known statistical tools for estimating survival rates for bird clutches and 9 

broods are the Kaplan-Meier product-moment survival estimator (Kaplan and Meier 1958), the 10 

Mayfield method (Mayfield 1961, 1975), and Program MARK (White and Burnham 1999, 11 

http://www.cnr.colostate.edu/~gwhite/mark/mark.htm).  The Mayfield method for nest success 12 

has found wide use in bird demographics over the last four decades, and some authors have 13 

modified or refined the Mayfield method to adapt it to their particular data (Johnson 1979, 14 

Johnson and Shaffer 1990, Grand and Flint 1997, Dinsmore et al. 2002).  The Kaplan-Meier 15 

product-moment survival estimator has found broad generic applicability in survival analysis and 16 

hypothesis testing in a variety of fields from medicine to demography.  However, like the 17 

Mayfield method, it assumes that mortality events, i.e. the death of individuals, are random and 18 

follow a binomial probability distribution. 19 

A well known contemporary analytical tool for population demographers is Program 20 

MARK (White and Burnham 1999).  Program MARK offers a suite of options for survival 21 

estimation and modeling using observational or capture-mark-recapture (CMR) data that includes 22 

a ‘Nest Survival’ module that has evolved from the Mayfield method.  The principal contribution 23 
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of Program MARK is its capacity for robust and realistic, though potentially highly 1 

parameterized, survival models, and its ability to empirically deal with overdispersion; i.e., the 2 

tendency for individual mortality events to be correlated.  Program MARK exploits the 3 

contemporary availability of powerful computers to undertake data analyses that were impractical 4 

in the recent past.  Perhaps more importantly, it has implemented contemporary theory for model 5 

ranking based on the information-theoretic approach to model selection and interpretation 6 

(Burnham and Anderson 2002).  Thus it has the ability to estimate survival rates and their 7 

uncertainty for direct use in demographic population models or for hypotheses testing among 8 

competing models. 9 

Despite the robustness of analytical tools such as Program MARK, there remain many 10 

circumstances where specific hypotheses or particular data structures are not well suited to the 11 

suite of statistical options available in the literature.  One key deficiency concerns the breeding 12 

success of egg-laying species, notably birds.  A reliable assessment of the viability of a defined 13 

bird population requires an understanding of the survival dynamics of offspring from laying, 14 

through hatching, to fledging.  In demographic and statistical terms, this understanding includes 15 

estimation of survival rates, their uncertainty, and distributional characteristics.  It has also been 16 

recognized by demographers that a survival rate is not a generic metric, but integrates an 17 

individual’s success at avoiding mortalities due to random biotic (e.g., predation) and abiotic 18 

(e.g., weather) events (Morris and Doak 2002).  Likewise, such predation or weather events are 19 

not likely to affect all eggs in a clutch, or all juveniles in a brood, independently.  For example, a 20 

predator may attack more than one juvenile in brood of ducklings, or a violent weather event may 21 

destroy an entire brood.  Overall survivorship of eggs and juveniles will represent an individual’s 22 

success at enduring all of these threats. 23 
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The model we present here addresses two limitations of the Mayfield, Kaplan-Meier and 1 

Program MARK methodologies.  None of the above models deals explicitly with overdispersion 2 

during the parameter estimation phase of model fitting (though Program MARK deals with 3 

overdispersion as an a posteriori correction).  Likewise, none accommodates the realism that an 4 

individual’s survival likely results from enduring of a mixture of random (independent) and 5 

correlated (overdispersed) mortality processes.  A key feature of our model is that it explicitly 6 

incorporates both of these processes into survival estimation and has the ability to partition these 7 

two separable mortality profiles.  Specifically, our model addresses two components of breeding 8 

success as expressed by offspring survivorship from laying to fledging.  First, survivorship is 9 

statistically partitioned into random and correlated mortality profiles.  Thus the assumption that 10 

mortality events be statistically independent, i.e., binomially distributed, is relaxed.  The 11 

overdispersed partition may range from partial to full (catastrophic).  This non-independence of 12 

mortality events is accommodated by use of the beta-binomial probability distribution for model 13 

prediction error (Mood et al. 1985, McCullagh and Nelder 1989).  Whereas the first two 14 

moments (mean and variance) of the binomial distribution are defined by n (the number of 15 

individuals at risk of mortality over a specific time period) and the survival rate ( µ ); the beta-16 

binomial distribution is further defined by a variance inflation parameter ( 2θ ), that explicitly 17 

measures overdispersion.  Second, survivorship estimates can be measured from laying through 18 

hatching, then from hatching to fledging without the need to observe hatching.  Our model also 19 

incorporates the information-theoretic features of model ranking (Burnham and Anderson 2002) 20 

that would be familiar to users of Program MARK and are key to model selection and hypothesis 21 

testing. 22 
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Researchers can judge the utility of the clutch and brood survivorship model we describe 1 

here for their scientific inquiries by addressing the following features of their hypotheses and 2 

data.  If… 3 

(a) your purpose is (i) to estimate clutch and/or brood survival rates, their uncertainty and 4 

distributional (random or correlated) characteristics for use in a demographic or simulation 5 

model, or (ii) to rank models or test hypotheses concerning the effect of covariates on the 6 

survival rate of juveniles in a brood (i.e., test the effects of predators, weather, pesticides, etc.), 7 

and 8 

(b) you have data on steady or declining clutch and/or brood sizes periodically over time, clutch 9 

and/or brood age, and optionally a covariate series (e.g., weather, or a stage or condition 10 

variable), and 11 

(c) you are comfortable with assuming almost synchronous hatching of all eggs in a clutch, 12 

specifying a laying age and/or a fledging age, assuming negligible measurement error, and 13 

assigning all eggs or juveniles observed to a family, then 14 

you can estimate clutch and/or brood survival rates and their uncertainty, have survival rates vary 15 

with age or time, relate survival to a covariate data series, and partition mortality into its random 16 

and correlated components. 17 

Fig. 1 near here 18 

Our model was motivated in part by demographic questions concerning the breeding 19 

success of the seaduck Barrow’s Goldeneye in the central interior (Chilcotin-Cariboo) region of 20 

British Columbia, Canada.  From a conservation perspective, the western population of Barrow’s 21 

Goldeneye is judged secure, with breeding occurring throughout British Columbia and the Yukon 22 
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Territory, but the eastern Canadian population is federally listed as a species of ‘Special Concern’ 1 

by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC; 2 

http://www.cosewic.gc.ca).  COSEWIC is the scientific body which adjudicates the status of 3 

species listed or proposed as candidates for protection under Canada’s Species-at-Risk Act.  Our 4 

particular interest in Barrow’s Goldeneye in this region stems from the unique grassland and 5 

fragmented forest mosaic habitat near Riske Creek, British Columbia.  This habitat is rare and 6 

unique in British Columbia and is geographically isolated from similar habitat to the east, 7 

particularly in Canada’s prairie provinces.  Decades of forestry and fire suppression have resulted 8 

in this unique habitat being further diminished by timber harvesting and forest encroachment 9 

upon the grassland. 10 

Conservation concerns for the Chilcotin-Cariboo population of Barrow’s Goldeneye 11 

initially arose due to their being secondary cavity nesters that lay 4-15 eggs (Godfrey 1986) 12 

primarily in cavities excavated by Pileated Woodpeckers (Dryocopus pileatus, Evans et al. 13 

2002).  Barrow’s Goldeneye tend to choose cavities roughly 12 m above the ground and in aspen 14 

or fir trees within ≈100 m of a small, shallow pond (Evans 2003).  Their choice of such cavities 15 

helps minimize egg predation by black bears and small mammals (Evans et al. 2002).  Hatching 16 

of all eggs in a clutch occurs somewhat synchronously with the hatched young undergoing a 17 

coordinated freefall from their cavity and then being led to an adjacent pond by the hen.  The 18 

territoriality of Barrow’s Goldeneye usually results in each small pond accommodating a single 19 

brood, with larger ponds sometimes accommodating multiple, but isolated, broods (Savard 1982, 20 

1984).  Brood rearing occurs on ponds shallow enough for the young to dive for invertebrate prey 21 

(Evans 2003).  While on or around the pond the young are vulnerable to avian and mammalian 22 

predators and harsh weather events such as heavy rain or hailstorms.   23 
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The key scientific queries concern the potential loss of riparian areas as a source of 1 

cavities due to forestry, the possibility that climate change would alter the productivity 2 

(invertebrate biomass) of the ponds for foraging juveniles, and that a changing landscape from 3 

forest encroachment would increase predation threats, particularly from avian predators, on 4 

juveniles (Evans 2003).  Consequently, over the past two decades Barrow’s Goldeneye have 5 

attracted research attention from both conservation and behavioral scientists.  Conservation 6 

questions addressed, for example, whether the use of nest boxes would increase clutch 7 

survivorship by providing greater protection from predation, resulting in more and larger clutches 8 

(Savard 1988, Evans et al. 2002).  Similarly, behavioral ecologists questioned the evolutionary 9 

advantage of the high prevalence of conspecific clutch parasitism (Eadie and Fryxell 1992, Eadie 10 

and Lyon 1998, Eadie at al. 1998, Lyon and Eadie 2000) and brood amalgamation (Savard 1987) 11 

in Barrow’s Goldeneye and related species.  The model we present here is particularly well suited 12 

to challenge some aspects of such questions.  For example, it can challenge the null hypothesis 13 

that a Barrow’s Goldeneye juvenile has the same probability of surviving to fledge regardless of 14 

whether it hatched in a small or large clutch. 15 

We point out that with respect to clutch parasitism and brood amalgamation, an 16 

experimental approach to detecting the subtle fitness implications of brood size is difficult 17 

because experimental protocols require unnatural manipulation of brood sizes, and the labor 18 

intensiveness of executing such experiments limits sample sizes.  As such, much of the scientific 19 

argument concerning the evolutionary consequences of these behaviors has relied on theoretical 20 

models (Johnstone 2000, Öst et al. 2003, Broom and Ruxton 2002a,b) and genetic sampling and 21 

interpretation (Andersson and Åhlund 2000, Lyon and Eadie 2000).  Here we offer a statistical 22 

modeling approach to the analysis and interpretation of data gathered to improve our 23 
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understanding of the biology of clutch parasitism and brood amalgamation.  A statistical 1 

modeling approach benefits from potentially large sample sizes and no need to manipulate 2 

nature, but carries the philosophical disadvantage of an inability to sanction categorical 3 

conclusions concerning alternate hypotheses.  Statistical interpretations are limited to 4 

adjudicating the relative support of competing models for explaining observed data within an 5 

information-theoretic approach to model selection. 6 

With these concepts in mind we applied our clutch and brood survivorship model to 7 

observations of known clutches and broods made in 1995, and 1997 to 2000, at Riske Creek.  8 

Simultaneously we collected data on covariate series such as pond productivity, and where 9 

possible, brood size on hatch day.  We used our model to challenge two hypotheses.  Hypothesis 10 

I: There is a different probability of surviving to fledge for a juvenile Barrow’s Goldeneye 11 

hatched in a large versus a small brood.  Hypothesis II: The foraging quality of a brood-rearing 12 

pond (as measured by invertebrate biomass) affects the probability that a juvenile in a brood 13 

using that pond will fledge.  In challenging these biological questions our model simultaneously 14 

identifies the statistical nature (random or correlated) and mixture of the clutch and brood 15 

survivorship profiles.  Such partitioning improves the ability of the model to statistically 16 

discriminate between mortality processes resulting from abiotic and biotic processes, and 17 

increases the prospect for realism in any subsequent demographic models for Barrow’s 18 

Goldeneye. 19 

We perceive the value of our statistical model of clutch and brood survivorship to rest 20 

with its availability and robustness as a statistical tool for researchers addressing biological and 21 

conservation questions similar to our own.  As such our model was developed as a Microsoft 22 

Visual Basic © application with a user-friendly interface and the flexibility to handle datasets 23 
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similar to ours and which meet the requirements we describe above.  The model and its 1 

documentation may be downloaded from http://www.sfu.ca/biology/wildberg/bdsmith.html 2 

(available soon). 3 

SURIVORSHIP MODEL 4 

As with all statistical models, our model is defined by a deterministic component for 5 

generating survival predictions, and a statistical error component that evaluates observed survival 6 

outcomes with respect to these predictions.  Model estimates are derived by minimizing, in a 7 

probabilistic sense, the discrepancy between the predicted and observed survivorships using the 8 

principle of maximum likelihood. 9 

Deterministic model 10 

The deterministic component of our model was developed on the premise that the 11 

survival rate of eggs in a clutch, or juveniles in a brood, can vary with age (a), and in the case of 12 

broods (b), in relation to abiotic and biotic covariates.  We developed our model using the 13 

Weibull probability density function (pdf) as a tractable and flexible model of survivorship 14 

probabilities over time (Walpole et al. 1998).  The Weibull distribution has a sound theoretical 15 

basis for modeling survivorship both in biological and engineering systems.  In its simplest 16 

formulation it represents a constant survival rate with an exponential distribution of survivorship. 17 

The Weibull pdf, )(aω , is described by 18 

[1] 
βαβαββαω aeaa −−= 1),;(  19 

with its attenuation, or survivorship, function (1-cumulative probability function) )(aA  being 20 

described by 21 
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[2] 
βαaeaA −=)( . 1 

When 1=β  survivorship is a constant instantaneous rate α . 2 

A key feature of our model is that it has the ability to partition survivorship into random 3 

(R) and correlated (C) components.  As such it is necessary to define a mean survival rate from 4 

age a to age a+i, ][ iau + , as a function of the mixture of random and correlated mortality 5 

processes.  To achieve such a model we chose to construct a pdf as a contagious mixture of two 6 

Weibull distributions representing the random and correlated components of mortality for both 7 

clutches (or nests, N) and broods (B).  We found it both biologically reasonable and 8 

mathematically tractable to model the new distributions, )(a•ω , by 9 
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where ••,α  and '
,, b••α  (units & domain: a-1 & >0); and ••,β  and '

,, b••β  (unitless & >0) are 13 

parameters of the random and correlated mortality processes for the four subscript combinations 14 

N,R, N,C, B,R and B,C.  When the shape parameters ••,β  or '
,, b••β  are set to their null value of 15 

unity their effect on Eq. 3a or 3b is nullified.  Values for the shape parameters that differ from 16 

unity introduce age dependence to the survival rate.  The parameters Nc  and Bc  define the 17 
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proportion of clutches and broods, respectively, vulnerable to a correlated mortality process at 1 

age a-I and a, respectively, and which diminishes with age at rates Nf  and Bf , respectively. 2 

Fig. 2 near here 3 

Note that the two scenarios of random (R) and correlated (C) mortalities are additive for 4 

both clutches and broods (Fig. 2).  Integration of Eqs. 3a&b yields the following survivorship 5 

function for clutches or broods 6 
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The survivorship functions for both clutches and broods must be bounded in time.  By 4 

defining a=0 to correspond to the age that a clutch hatches, increasingly negative ages apply to 5 

increasing younger clutches, while positive ages apply to broods.  We therefore define a negative 6 

number of days (I), corresponding to the age all clutches in the dataset are initiated.  Likewise, 7 

for broods we define a positive number of days corresponding the age (D) beyond which the 8 

disappearance of a juvenile from a brood might be due to fledging rather than mortality.  9 

Consequently, the age range for clutches is a=I to 0 while that for broods is a=0 to D. 10 

One goal of our model was to allow both the random and correlated survivorship profiles 11 

for broods to be functions of external factors, our so-called brood covariates.  We identified two 12 

potential brood covariates directly associated with basic data collection; expected brood size on 13 
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hatch day ( ]0[, =aE bN ) and the day of the year that hatching occurred, t.  We refer to these as 1 

intrinsic brood covariates.  Additionally, up to m adjunct brood covariates may have also been 2 

measured.  The functional relationships of the brood covariates to •,Bα  and •,Bβ  are defined by 3 

[5a] 

∑
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where b is an index for individual broods. 7 

The deterministic survivorship model is now defined such that the conditional probability 8 

of surviving a time period a to a+i, )(, ia +••µ , can be predicted by 9 
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for each of the four subscripted clutch or brood and random or correlated mortality scenarios 11 

(N,R; N,C; B,R; B,C).  The relationship between this prediction and a corresponding observed 12 

outcome )( ias +•  is 13 
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where rε  is the model error for data record r. 15 
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Model error 1 

A key model assumption is no, or more practically, negligible measurement error.  That 2 

is, we assume that counts of the number of eggs in a clutch or juveniles in a brood are accurate.  3 

Therefore all data records (r, r=1 to ℜ) for each clutch or brood must exhibit a steady or 4 

declining number of individuals over time.  As such, our model error structure presumes that 5 

deviates from predicted survivals ( rε ) arise from actual stochastic outcomes.  Further, we 6 

consider the basic sampling or observational unit to be a clutch or brood followed through time, 7 

with their eggs and juveniles, respectively, being considered elements of the sample.  8 

Survivorship estimates are therefore inherently weighted by clutch or brood size.  We also make 9 

the point here that our implementation of the model treats individuals alive on hatch day as 10 

juveniles in a brood. 11 

When statistically evaluating the survivorship of )( ias +•  individuals to age a+i from an 12 

initial number )(an•  alive at age a, the binomial probability mass function (pmf), 13 

)](),();([ , iaaniasBI ++
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has usually been the probability distribution of choice, where )]([ iasp +••  is the probability of 16 

observing )( ias +•  of )(an•  individuals alive at time a+i, given a survival rate from a to a+i of 17 

)(, ia +••µ .  However, we have often recognized in clutch and brood survivorship data that the 18 

fundamental assumption that each mortality event is random and uncorrelated with other 19 

mortality events fails.  This is most apparent when we witness catastrophic mortalities due to, for 20 

example, weather events.  To address that deficiency of the binomial pmf we chose to employ the 21 
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beta-binomial probability pmf in our model.  The advantage of the beta-binomial pmf, 1 
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is that its definition includes a third parameter, )(2
, a••θ , that explicitly accommodates 9 

overdispersed (i.e., correlated) outcomes when 0)(2
, >•• aθ .  If 0)(2

, =•• aθ  there is no 10 

overdispersion and the distribution limits to the binomial pmf.  If, in the extreme, 1)(2
, =•• aθ  the 11 

beta-binomial distribution is fully overdispersed such that the )(an•  individuals in a clutch or 12 

brood either all survive or none survive; by our definition a catastrophic outcome at a survival 13 

rate of )(, ia +••µ .  Note that we have made )(2
, a••θ  a function of age, 14 

[10] 
a

CC ea •−
•• = νθθ )0()( 2
,

2
,  15 

to accommodate the plausible scenario that the degree of correlated mortality (C) is likely to 16 

diminish ( 0≥•ν ) with age, especially for juveniles in a brood. 17 
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Fig. 3 near here 1 

To illustrate our model error structure we draw attention to the graphic examples (Fig. 3) 2 

of a binomial pmf of random outcomes (Fig. 3a), a beta-binomial pmf of correlated outcomes 3 

with partial overdispersion (Fig. 3b), a fully overdispersed, catastrophic, beta-binomial pmf 4 

(Fig. 3c), and a mixed distribution composed 70% of random mortalities and 30% of correlated 5 

mortalities (Fig. 3d).  The probability of an observed survivorship outcome for such a mixture is 6 

defined by 7 
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where we define 0)(2
, =• aRθ  for all ages such that the error distribution for a random mortality 9 

process (R) is always represented by the binomial distribution.  Consequently, the expected 10 

number of eggs surviving in a clutch, or juveniles surviving in a brood, ][ iaE +• , is 11 

[12a] 









+++=

++=+

•
•

•
•

•

•
•

=+ =
•

•

•
•• ∑ ∑

•

)(
)(
)(

)(
)(
)(

)(

)]([
)(
)(

)(][

,
,

,
,

)(

0)( &

,

ia
aA
aA

ia
aA
aA

an

iasp
aA
aA

iasiaE

C
C

R
R

an

ias CRj
j

j

µµ
 12 

with variance 13 

[12b] 
2

)(

0)( &

,2 ][)]([
)(
)(

)(][ iaEiasp
aA
aA

iasiaV
an

ias CRj
j

j +−++=+ •
=+ =

•
•

•
•• ∑ ∑

•

. 14 

The above formulae are sufficient to model a clutch from its initiation age (a=I) through 15 

to hatch (a=0), or a brood from hatch until the fledging age (a=D).  Thus this is a helpful model 16 

only if an observer was able to record the number of juveniles present on hatch day.  Recognizing 17 
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that even a determined observer is unlikely to witness many clutches hatching, we realized that 1 

the utility of our model would rest with its ability to accept data records lacking observations of 2 

the number of eggs or juveniles alive on hatch day.  We therefore developed our model to 3 

accommodate such data structures. 4 

The calculation of the expected number of surviving juveniles in a brood when 5 

individuals were last observed as eggs in a clutch is complicated by the reality that the 6 

survivorship predictions for ages after hatch day result from a probabilistic mixture of four 7 

processes.  For example, one of those processes is eggs surviving a random mortality process 8 

from age a to hatch (a=0), followed by the hatched juveniles surviving a random mortality 9 

process to be observed at age a+i.  Referring to that process as R|R survivorship indexed by j|k, 10 

expected survivorship potentially includes three other mortality processes R|C, C|R and C|C.  11 

Therefore 12 
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Once the probabilities of observing any outcome )( ias +•  have been defined, we can 1 

calculate the negative ln-likelihood of each possible outcome for each data record r using 2 

[15] [ ])]([ln2)]([ iaspiasFr
+−= ••+•

λ  3 

where 1)]([ =+• iasFr  if the outcome )( ias +•  for prediction )(, ia+••µ  was observed, else 4 

0)]([ =+• iasFr .  We include the factor 2 to make Eq. 15 equivalent to the G-statistic for 5 

evaluation using likelihood ratio tests (Burnham and Anderson 2002).  The Pearson deviate 6 

associated with Eq. 15, which has utility as a goodness-of-fit (GOF) statistic (Roff and Bentzen 7 

1989), is 8 
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The model is now fully stated. 10 

Hypotheses, data preparation, parameter estimation, and utile metrics 11 

Our purpose is to report on two hypotheses concerning survivorship to fledging of 12 

Barrow’s Goldeneye juveniles, primarily to illustrate our model.  However, our results have 13 

implications both for Barrow’s Goldeneye conservation, and our understanding of the fitness 14 

implications of the reproductive behaviors of clutch parasitism and brood amalgamation.  Null 15 

Hypothesis I proposes that there is no difference in the probability of surviving to fledge among 16 

juveniles reared in broods of different sizes, as measured or inferred on the day the eggs hatched 17 

(hatch day).  Null Hypothesis II proposes that there is no difference in the probability of 18 

surviving to fledge among juveniles reared on ponds with differing productivities, as measured 19 

by estimates of invertebrate biomass (Evans 2003).  Invertebrate biomass (mg/sample) was 20 
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estimated from benthic core samples and pelagic activity traps collected among 20 ponds in 1997 1 

to 1999 a priori qualitatively judged to be of low, medium and high invertebrate productivity 2 

(Evans 2003).  An estimated interannual correlation of 93% among ponds supported that this 3 

measure had merit as a reliable index of pond productivity.  Invertebrate biomass varied by 4 

roughly an order of magnitude among the ponds sampled, all of which were observed to support 5 

Barrow’s Goldeneye broods in at least one of the years sampled. 6 

Fig. 4 near here 7 

We had available for analysis a set of observations of the number of eggs in a clutch and 8 

juveniles in a brood for individually followed families (Fig. 4).  Offspring associated with an 9 

adult tending hen, identified by her unique nasal disc pairing, allowed each egg or juvenile 10 

observed to be assigned to a specific hen.  However, clutches may have been parasitized, so we 11 

generally did not know if a family was comprised of eggs from more than one hen.  Typically 12 

broods were observed and counted every two to five days, but sometimes more or less frequently.  13 

Clutches were observed much less frequently than broods.  The calendar date (t) of all 14 

observations was recorded and used to calculate clutch and brood ages.  If clutches were not 15 

observed at, or just before, hatch, as was typically the case, calendar hatch date was usually 16 

inferred from the observed stage of juvenile development when broods were first observed on a 17 

pond (Gollop and Marshall 1954).  Our analyzed dataset included egg counts only for dates on or 18 

after the date the maximum number of eggs in a cavity was observed.  Our data set did not 19 

include broods that we knew underwent brood amalgamation or for which hatch date, and 20 

therefore clutch and brood age, could not be confidently calculated.  Further, observations of 21 

clutches outside the age range I≤a, a+i≤D were excluded from our dataset.  Within the subset of 22 

data that qualified for analysis (Fig. 4), a few families were first followed as clutches, while most 23 
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were not followed until they were first seen as broods on a pond.  We chose I=-40 days and D=56 1 

days for the analyses we present.  We also clarify that for Barrow’s Goldeneye I refers to the age 2 

the tending hen began to incubate her full clutch in order to assure synchronous hatching.  Egg 3 

laying for any hen will have taken place over several days.  Fewer data records qualified for our 4 

challenge of Hypothesis II ( 659=ℜ ) than for Hypothesis I ( 1090=ℜ ) since challenging 5 

Hypothesis I could use data from families on ponds for which there was no estimate of pond 6 

productivity. 7 

Table 1 near here 8 

Fitting the model to the data organized for this study required that values be estimated for 9 

the parameters of the model introduced in the previous section (and see Table 1).  Maximum 10 

likelihood estimates for these parameters are those obtained when L  (Eq. 17) is minimized 11 

( MINL ), where 12 
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13 

We used with equal success either the derivative-based Marquardt’s algorithm (Press 14 

et al. 1986) or the direct search simplex method (Mittertreiner and Schnute 1985, Ebert 1999) of 15 

function minimization to obtain MINL .  MINL  is sometimes referred to as model deviance since 16 

theoretically 0=MINL  when the model perfectly fits the data.  A covariance matrix was calculated 17 

by inverting the numerically calculated Hessian matrix of second partial derivatives of L  with 18 

respect to the parameter estimates at MINL .  The quality of model fit (GOF) was liberally 19 

diagnosed based on randomized Pearson deviates and randomized deviance (Roff and Bentzen 20 

1989) using the MINL  parameter estimates, and more conservatively diagnosed by parametric 21 
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bootstraps which also yielded confidence limits for parameter estimates and an a posteriori 1 

estimate of overdispersion Ĉ  (White and Burnham 1999).  These diagnostics evaluate the 2 

probability of the observed data given the model and parameter estimates.  A satisfactory 3 

diagnostic is a probability value that suggests the data are reasonably likely, given the model, i.e., 4 

0.025<p<0.975, where extremely small values for p suggest an underfitted model, and extremely 5 

large values of p an overfitted model. 6 

For an accepted model fit, we consider three metrics to be of special interest to many 7 

analysts and are therefore reported in model output.  One is the probability, at age a, that a 8 

juvenile will fledge at age D, where for hatch day (a=0), 9 
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10 

This metric has particular utility for expressing the relative effect of model covariates on a 11 

juvenile’s propensity to fledge. 12 

A second metric is expected brood size on hatch day, ]0[,bNE , from Eq. 12a, though here 13 

we add the brood subscript (b) to emphasize that each brood has its own expectation.  This 14 

metric provides an estimate of the number of juveniles alive in brood b on hatch day when there 15 

is at least one observation of the number of eggs alive prior to hatch.  In this study we use ]0[,bNE  16 

as an intrinsic covariate to challenge Null Hypothesis I.  It has particular value in that it mitigates 17 

an observer’s inability to count the number of juveniles in a nest on hatch day.  It worth noting 18 

that for some interpretations ]0[,bNE  might be considered a better metric than an actual count of 19 

juveniles on hatch day if the analyst’s purpose is to infer a hen’s intended initial brood size; i.e., 20 
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analyses drawing fitness interpretations, however the two metrics will tend to be very highly 1 

correlated. 2 

Lastly, we present a measure of dispersion more intuitive than 2
,••θ , specifically, 3 

[19] )1)(()(1 2
, −×+= ••• anaEIU θ . 4 

This metric calculates the ‘effective independent unit’ (EIU), a statistical measure of the number 5 

of individual eggs or juveniles that tend to associate as a single mortality event such that the 6 

hypothetical outcomes of such mortality events would follow a binomial distribution.  An EIU 7 

value of, say 2.3, for juveniles might be interpreted that a predator tends to take on average 2.3 8 

juveniles per mortality event interval.  This metric has proven informative in other sampling 9 

applications where individuals birds within a flock do not associate independently (Iverson et al. 10 

2003).  Conversely, when 02
, >••θ  the ‘effective independent sample size’ (EISS) for a clutch or 11 

brood observation is reduced from )(an•  to 12 
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RESULTS 14 

Table 2 near here 15 

Competitive model trials to challenge Null Hypotheses I and II using our data from all 16 

ponds produced a distinct ranking of models (Table 2).  The highest ranked models for both 17 

hypotheses narrowly passed parametrically bootstrapped goodness-of-fit diagnostics of model 18 

adequacy (p±1 SE=0.03±0.02 for Null Hypothesis I; p±1 SE=0.06±0.02 for Null Hypothesis II).  19 

More satisfying values for p could have been obtained had we chosen to remove a few outlier 20 
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data points that contributed disproportionately to model deviance ( MINL ).  However, we had 1 

confidence that our relatively large number of data records (ℜ) effectively neutralized any bias 2 

from these outliers.  Our choice not to censor outliers resulted also in bootstrapped estimates of 3 

Ĉ±1 SE slightly greater than unity, at 1.08±0.04 and 1.06±0.05 for the best ranked models 4 

(Model 1) for Null Hypotheses I and II, respectively. 5 

Null Hypothesis I was poorly supported, with the second highest ranked model, Model 2 6 

(ignoring Model 1 with function )(2
, aCBθ for the moment), strongly supporting a parametrically 7 

and statistically strong relationship between the probability, on hatch day, that a juvenile will 8 

fledge at age D=56 days, )],0([ DFledgep , and expected brood size on hatch day, ]0[,bNE .  9 

Model 2 is an ≈500 times more probable fit to our data that its direct competitor, Model 6 (Pair A 10 

in Table 2, Fig. 5), lacking ]0[,bNE  as a covariate.  A likelihood ratio test significantly favors 11 

Model 2 ( 0004.0]6Model2Model[ =≡p , ∆ MINL =20.53, df=4).  Model 2 also identifies strong 12 

year-effects, with the effect of ]0[,bNE  varying among years to the extent that little effect is 13 

evident in 1997, while in other years there is a distinct tendency for )],0([ DFledgep  to 14 

increase as ]0[,bNE  increases.  Model 2, with year-effects, is an ≈104 times more probable fit to 15 

our data that its competitor, Model 7, that lacks year-effects (Pair F in Table 2).  A likelihood 16 

ratio test significantly favors Model 2 ( 0001.0]7Model2Model[ <≡p , ∆ MINL =24.25, df=3). 17 

Figs. 5&6 near here 18 

Competitive model trials to challenge Null Hypothesis II using our data from those fewer 19 

ponds for which we had covariate data on pond productivity also produced a distinct ranking of 20 

models (Table 2).  As for the original dataset used to challenge Null Hypothesis I, Model 3 21 
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challenging Null Hypothesis II also strongly supported a positive relationship between 1 

)],0([ DFledgep  and ]0[,bNE , again with year-effects (Fig. 6a), though the statistical strength of 2 

the relationship is weaker due to the smaller dataset.  Indeed, Model 3 excluded pond 3 

productivity as a covariate, indicating insufficient statistical support for the hypothesis that, 4 

among the ponds sampled, )],0([ DFledgep is influenced by pond productivity.  The direct 5 

competitor of Model 3, Model 5 (Pair B in Table 2), was approximately 5 times poorer at 6 

explaining our data than was Model 3.  Model 11, which included pond productivity, but not 7 

]0[,bNE , as a covariate, ranked poorly as a putative model to explain our data, though there is a 8 

slight tendency for the )],0([ DFledgep  to increase with pond productivity in years other than 9 

1997 (Fig. 6b).  The weakness of this relationship is revealed in the random scatter of the 10 

residuals )],0([ DFledgep  versus pond productivity from Model 1 (Fig. 6c).  The influence of 11 

]0[,bNE  on brood survivorship is illustrated in Fig. 7 which portrays increasing shallower 12 

survivorship profiles, )(aAB , for increasing initial brood sizes.  Fig. 7 also demonstrates that the 13 

survival advantage conferred upon a juvenile by being in a larger brood is realized while it is 14 

relatively young. 15 

Fig. 7 near here 16 

The best ranked models challenging Null Hypotheses I and II include the function 17 

)(2
, aCBθ (Eq. 10) with 0>Bν , indicating that the degree of correlated mortality among juveniles 18 

(EIU) diminished with brood age.  The models that included 0>Bν  were approximately 1300 and 19 

14 times more probable than their competitors with 0=Bν , for Null Hypotheses I (Pair E in 20 

Table 2) and II (Pair K in Table 2), respectively.  Likelihood ratio tests affirmed the statistical 21 
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contribution of 0>Bν  to model fit (Null Hypothesis I: 0001.0]0[ <=Bpν , ∆ MINL =16.41, df=1; Null 1 

Hypothesis II: 007.0]0[ ==Bpν , ∆ MINL =7.30, df=1).  This was anticipated since juveniles would 2 

be expected to behave more independently of their siblings as they aged, thereby lessening group 3 

vulnerability to predation or weather threats.  The inclusion of )(2
, aCBθ in all competitive model 4 

pairs significantly improved the fit of these models but did not change the relative ranking of 5 

models based on the covariates of age, year, ]0[,bNE , or pond productivity. 6 

Fig. 8 near here 7 

For neither Null Hypotheses I nor II was there statistical evidence of an age-effect on 8 

juvenile survivorship independent of any putative covariates.  That is, there was no evidence to 9 

support either 1, ≠RBβ  or 1, ≠CBβ .  This implies a constant survivorship rate during the brood 10 

rearing period, though there is clear evidence that this rate varies among years and is affected by 11 

]0[,bNE .  Nevertheless, our highest ranked models for both hypotheses (Model 1) included the 12 

intrinsic brood-effect parameters R,1γ  and C,1γ  operating on RB,β  and CB,β , respectively (Eq. 5b), 13 

such that 1'
,, ≠•RBβ  and 1'

,, ≠•RBβ .  Thus an effect of ]0[,bNE  was to change daily survivorship 14 

with age among broods.  Figure 8 illustrates that the correlated mortality process was more 15 

strongly affected by ]0[,bNE  than was the random mortality process, the former process showing 16 

a greater range of daily survivorships among broods at a young age.  The tendency was for young 17 

broods with higher values for ]0[,bNE  to experience higher survivorships early in life (Fig. 9), 18 

which eventually resulted in a higher overall )],0([ DFledgep  for those broods.  When 19 

interpreting Fig. 9, recall that the proportion of broods vulnerable to the correlated mortality 20 
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process portrayed there diminishes with brood age (Fig. 10a), as does the degree of correlation 1 

among juveniles in a brood as measured by the EIU (Fig. 10b). 2 

Figs. 9&10 near here 3 

Finally, the more precise estimates of the ]0[,bNE  provided by Model 1 challenging Null 4 

Hypothesis I afforded an opportunity to look for a relationship between ]0[,bNE  and pond 5 

productivity for those clutches and broods for which we had adjunct data on pond productivity.  6 

No significant statistical relationship was detected (Fig. 11) thereby providing no evidence that 7 

that the ]0[,bNE  for Barrow’s Goldeneye hens using those ponds may be determined in part by the 8 

pond’s productivity. 9 

Fig. 11 near here 10 

DISCUSSION 11 

Our results have demonstrated the utility of our clutch and brood survivorship model for 12 

addressing two key hypotheses concerning the breeding success of Barrow’s Goldeneye in 13 

British Columbia.  More importantly, we think this demonstration of our model introduces 14 

researchers to a robust analytical tool for investigating environmental effects (e.g., pesticides, 15 

predation, habitat alterations, weather, etc.) on the reproductive success of birds, or for providing 16 

high quality parameter estimates and a measure of their uncertainty for inclusion in population 17 

viability (PVA) or similar analyses.  With respect to similar analyses, we have used our model 18 

successfully on previously published dataset of our colleagues (Gill et al. 2000, 2003) to 19 

challenge the null hypothesis that pesticides do not affect the reproductive success of American 20 

Robins (Turdus migratorius) nesting in fruit orchards of the Okanagan Valley, British Columbia.  21 

As we expected, we found no detectable effect of pesticides on reproductive success in 22 



Smith et al.: Clutch & brood survivorship 

 2929

accordance with the authors’ original interpretations using the Mayfield method (Mayfield 1961, 1 

1975) and Program MARK’s Nest Survival module (White and Burnham 1999).  The reason for 2 

our expectation arises from our recognition that overdispersion in a dataset acts to reduce the 3 

effective independent sample size (EISS, Eq. 20) and thus appropriately decreases the power to 4 

falsely detect a significant effect.  That is, our model reduces the probability of making a Type II 5 

error (Walpole et al. 1998) when survivorship outcomes are not independent.  A corollary to this 6 

benefit of our model is that analyses that do not explicitly account for overdispersion run a higher 7 

risk of falsely detecting statistical correlations which can ultimately lead to fictitious 8 

interpretations of cause and effect. 9 

Readers may have perceived that our model is not limited in application to demographic 10 

analyses of bird reproduction, but can be applied to any species where an interpretation of its 11 

reproductive life history is analogous to that of birds, e.g., egg-laying reptiles.  Indeed, when 12 

there is no need to model the clutch to brood transition, our model can be applied to any species 13 

where an integer number of offspring in a brood can be accurately counted over time, there is a 14 

desire to explicitly account for overdispersion, and the model’s caveats and assumptions stated in 15 

the Introduction are acceptable to the analyst. 16 

As you have read, we illustrated our model using data on Barrow’s Goldeneye clutch and 17 

brood survivorship to challenge two null hypothesis.  (Incidentally, in preliminary analyses we 18 

found no support for the null hypothesis that juvenile survivorship was not influenced by hatch 19 

day of the year, t).  Rejection of Null Hypothesis I clearly supported that a juvenile’s probability 20 

of surviving to fledge at 56 days increased with its expected brood size on hatch day ( ]0[,bNE ).  21 

This finding supports the life history argument that conspecific clutch parasitism has a fitness 22 

advantage for the juveniles (Eadie and Lyon 1998, Eadie at al. 1998, Lyon and Eadie 2000) with 23 
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perhaps an ultimate fitness for the recipient hen (Eadie and Lumsden 1985, Eadie et al. 1988).  1 

The juveniles of both the tending hen, and the hen that deposited her eggs in that tending hen’s 2 

nest, are conferred a survivorship advantage by having their offspring as members of larger 3 

broods.  However, this interpretation must be tempered by the realization that the tending hen is 4 

probably not indifferent to the parentage of the brood she is tending.  There is evidence in 5 

common eiders (Somateria mollissima) that a tending hen, or her ducklings, may act to 6 

preferentially increase their fitness over that of the other ducklings in amalgamated broods (Öst 7 

and Bäck 2003), a so-called “selfish herd” behavior (Hamilton 1971, Eadie at al. 1988).  We 8 

point out that we did not have information on which, if any, of the broods in our analysis were 9 

formed through clutch parasitism, but this seems certain to be true for the largest of broods (i.e., 10 

those with brood sizes on hatch day of 20-25 juveniles; J.-P. Savard, personal communication, 11 

Evans et al. 2002).  Likewise, we did not follow the survivorship of broods which were observed 12 

to increase in size by brood amalgamation.  However, our interpretations of a higher probability 13 

of surviving to fledge in larger broods endorses the fitness value of brood amalgamation (Savard 14 

1987). 15 

A conservation interpretation of our rejection of Null Hypothesis I is that increasing the 16 

size of broods in a region, such as the Riske Creek region of our study, appears a conservation 17 

option if survival to fledge is considered to limit population growth.  Thus our results add 18 

another question to conservation planning.  That is, what is the trade-off between providing nest 19 

boxes to increase the number of Barrow’s Goldeneye nesting opportunities in underutilized 20 

ponds, versus increasing the survivorship of offspring in currently used ponds?  The answer is 21 

inconspicuous with our current knowledge.  However, Barrow’s Goldeneye have invested in the 22 

life history fitness option of relinquishing offspring to the care of another, perhaps more 23 
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established or closely related (Andersson and Åhlund 2000, Lyon and Eadie 2000) hen.  This 1 

suggests that this option might be preferable to a hen raising her own offspring in a more risky 2 

habitat, perhaps despite nesting opportunities provided by artificial nest boxes.  Though the use 3 

of nest boxes has been proven to have successful outcomes, large (e.g., bears) and small (e.g., 4 

squirrels) mammal predation can defeat their efficacy (Evans et al. 2002), perhaps more so in less 5 

preferred habitat.  However, our study supplements the findings of Evans et al. (2002) which 6 

demonstrate a significantly increased clutch size for nest boxes over natural cavities.  7 

Notwithstanding unconsidered factors, our results imply that such increases in clutch size can 8 

disproportionately increase the expected number of juveniles fledged. 9 

Had our data supported a positive relationship between pond productivity and the 10 

probability of juveniles surviving to fledge (i.e., a rejection of Null Hypothesis II), we would 11 

have been able to provide guidance as to which ponds would have the highest priority for nest 12 

boxes.  Unfortunately we found no such relationship, possibly because there was insufficient 13 

contrast in pond productivity, with no pond’s productivity below a critical threshold affecting 14 

juvenile survival.  Supporting this interpretation of adequate productivity, we also found no 15 

relationship between expected brood size on hatch day and pond productivity, given that it has 16 

recently been established that Barrow’s Goldeneye hens from the Riske Creek region acquire the 17 

vast majority of their nutrition for egg development locally (Hobson et al. submitted).  Our 18 

failure to detect such a relationship must be interpreted with the understanding that only ponds 19 

that supported at least one brood were included for consideration in this analysis.  Clearly ponds 20 

depauperate of prey biomass would be poor choices for brood rearing.  More positively, there 21 

appears to be a considerable range of pond productivities that support successful rearing of 22 

Barrow’s Goldeneye broods. 23 
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We conclude by emphasizing the key contributions of our model for advancing our 1 

understanding of the dynamics of reproduction in birds and perhaps other egg-laying species.  2 

Principally, we provide a method and model application for measuring and statistically 3 

evaluating survivorship during the critical life history phase of egg-laying to fledging.  We 4 

particularly want to emphasize two elements of our modeling approach.  First, we demonstrate 5 

the utility of our model for statistically discriminating between random and correlated mortality 6 

events.  We think this is a key advance that reinforces the need for demographic models, 7 

including population viability models, to strive for realism concerning survivorship dynamics.  8 

Second, our emphasis on overdispersion (correlated mortality) reinforces that mortality events 9 

are unlikely to be random events, particularly in young broods, and indeed may be fully 10 

correlated, i.e., catastrophic.  We implore investigators to recognize this potential feature of 11 

brood survivorship when they draw statistical inferences from their similar data.  To that end we 12 

have also introduced the concept of the effective independent sample size (EISS, Eq. 20), which 13 

we trust will motivate readers to take heed of the potential for non-independence of individual 14 

mortalities. 15 

Finally, despite the benefits of our statistical modeling approach to the hypotheses 16 

challenged here, there potentially remain with our model the same subtle suite of biases that also 17 

can plague studies that have relied on the more traditional Mayfield (Mayfield 1961, 1975) and 18 

Kaplan-Meier (Kaplan and Meier 1958), or the more contemporary Program MARK (White and 19 

Burnham 1999) methodologies.  Since we can only draw statistical interpretations from the data 20 

we collected, clutches or broods that failed before they were witnessed by an observer introduce 21 

interpretive biases to which a researcher must be astute.  We consider such biases in our 22 

particular study to be minimal because of the dutiful nature of data collection and the easily 23 



Smith et al.: Clutch & brood survivorship 

 3333

observed brood rearing by Barrow’s Goldeneye hens.  Our most overt bias is our compulsory 1 

selection only of ponds supporting broods for challenging Null Hypothesis II.  So as with all 2 

modeling interpretations, our ultimate conclusions are conditional upon the constraints that 3 

determined what data were collected and the circumstances under which they were collected. 4 
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TABLES 1 

 2 
Table 1: Definitions and symbols for model variables. 

Symbol Units Character Definition 

a days data Clutch or brood age relative to hatch day (a=0) 

t days data Sequential day of the year (1 to 365) 

I days data Age at which all eggs in all clutches are laid 

D days data Age at which all juveniles in all broods fledge 

i days data age increment 

b integer index Index for individual broods 

r integer index Index for each qualified data record*. 

ℜ integer index Number of qualified data records 

N - subscript Subscript for a mortality process occurring entirely 

within a clutch (nest) 

B - subscript Subscript for a mortality process occurring entirely 

within a brood 

R - subscript Subscript for a random mortality process 

C - subscript Subscript for a correlated mortality process 

j - subscript Index for R or C 

k - subscript Index for R or C 

j|k - subscript Subscript notation for mortality processes originating 

in a clutch and progressing to a brood 

1)]([ =+• iasFP  unitless calculation Pearson deviate associated with having observed 
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)( ias +•  of )(an•  individuals to have survived the age 

increment i. 

)(, ia +••µ  probability calculation Probability an individual egg in a clutch (N) or juvenile 

in a brood (B) survives the age increment i when 

subjected to either a random (R) or correlated (C) 

mortality process 

)(a•ω  pdf calculation Probability density function (pdf) at age a for the 

mortality of eggs in a clutch (N) and juveniles in a 

brood (B) when either may be subjected to a mixture of 

random (R) and correlated (C) mortality processes 

)(, aA ••  probability calculation Probability of surviving to age a for the mortality of 

eggs in a clutch (N) and juveniles in a brood (B) when 

either may be subjected to a mixture of random (R) and 

correlated (C) mortality processes 

)]([ iasFr +•  frequency data A Bernoulli frequency of observation of the possible 

survivorship outcomes )( ias +• ; i.e., 1)]([ =+• iasFr  if 

observed, else 0. 

1)]([ =+• iasFr
λ  unitless calculation Negative ln-likelihood associated with having 

observed )( ias +•  of )(an•  individuals to have survived 

age increment i. 

)(an•  integer data Number of eggs in a clutch (N) or juveniles in brood 

(B) vulnerable to mortality at age a 

)( ias +•  integer data Number of surviving eggs in a clutch (N) or juveniles 
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in brood (B) at age a+i.  Note that )( ias +•  is undefined 

when 0)( =• an  or is unknown; and when a<I or a+i>D. 

][ iaE +•  individuals calculation Expected number of surviving eggs in a clutch (N) or 

juveniles in brood (B) at age a+i 

][ iaV +•  individuals2 calculation Variance of the number of surviving eggs in a clutch 

(N) or juveniles in brood (B) at age a+i 

][•p  probability calculation Probability of the event represented by •. 

•c  a-1 parameter Instantaneous rate of mortality due to a correlated (C) 

mortality process for clutches (N) or broods (B) at a=0 

•f  a-1 parameter Instantaneous attenuation rate of •c with age a 

)(2
, a••θ  scalar parameter Overdispersion parameter ( 1)(0 2

, ≤≤ •• aθ ) of the beta-

binomial probability mass function (pmf) 

•ν  a-1 parameter Instantaneous attenuation rate of )(, a••θ with age a 

••,α  a-1 parameter Weibull mortality pdf function scaling coefficient 

••,β  scalar parameter Weibull mortality pdf function shape coefficient 

'
,, bB •α  a-1 calculation ••,α , as modified by Eq. 5a for brood b 

'
,, bB •β  scalar calculation ••,β , as modified by Eq. 5b for brood b 

•,1ζ  individuals-1 parameter Instantaneous effect of the expected number of 

juveniles in a brood on hatch day (a=0), ]0[,bNE ,on 

••,α  

•,2ζ  t-1 parameter Instantaneous effect of hatch day of the year (t) on ••,α  
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h integer data Index for adjunct brood covariates 

m integer data Maximum number of adjunct brood covariates 

•+ ,2 hζ  bhK ,
-1 parameter Instantaneous effect of bhK ,  on ••,α  

•,1γ  individuals-1 parameter Instantaneous effect of the expected number of 

juveniles in a brood on hatch day (a=0), ]0[,bNE ,on 

••,β  

•,2γ  t-1 parameter Instantaneous effect of hatch day of the year (t) on ••,β  

•+ ,2hγ  bhK ,
-1 parameter Instantaneous effect of bhK ,  on ••,β  

bhK ,  Covariate 

unit-1 

data Adjunct covariate h associated with all observations in 

any brood b. 

* A data record qualifies for a statistical evaluation of an observation )( ias +•  with respect to a 

prediction )]([ iasp +••  only when an observer recorded the date, identified the family, exactly 

counted the number of eggs or juveniles alive within the family, and recorded the age of the eggs 

or juveniles.  The age of the eggs may have been determined retroactively once hatching was 

witnessed.  A data record may qualify for an analysis of mortality as a function of time, not age, 

if only parameters independent of time are included in the analysis.  Data records can qualify 

only if 0)( >• an , I≤a, and a+i≤D. 

 1 
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 1 
Table 2: Model rankings and associated statistics for Null Hypotheses I and II.  For both 

hypotheses the baseline NULL (EC,JRC) model identifies a constant mortality rate with a 

correlated mortality (C) process for both eggs (E) and juveniles (J), and in the case of juveniles 

statistically identifies also a random mortality process (R).  The following symbols represent 

those covariates challenged with explaining our clutch and brood data.  YEAR: among-year 

differences in juvenile survivorship; AGE: age-dependent differences in juvenile survivorship; 

]0[,bNE : juvenile survivorship differs with expected brood size on hatch day; PP: juvenile 

survivorship differs among ponds with different invertebrate productivities. The symbol )(2
, aCBθ  

indicates that the degree of correlated mortality among juveniles can diminish with brood age.  

The heading ‘Pair’ identifies, using shared characters, paired rank comparisons for the effect of 

RCbNE ]0[,  for Hypothesis I, the effect of PPR for Hypothesis II, and other comparisons referred to 

in the text.  The heading # represents the number of estimated parameters, W the AICC weights. 

 
 
Null Hypothesis I: There is no difference in the probability of surviving to fledge among 

juveniles reared in broods of different sizes as measured or inferred on their hatch day. 

 
Rank Pair Model description ∆AICC # W Deviance ( MINL ) 

1 E,H NULL+YEARR+ RCbNE ]0[, + )(2
, aCBθ  0.00 14 0.99 1522.67 

2 A,E,F NULL+YEARR+ RCbNE ]0[,  14.40 13 0.01 1539.09 

3 B NULL+YEARR+AGER+ RCNE ]0[  16.26 14 0.00 1538.93 

4 G,H NULL+YEARR+ )(2
, aCBθ  21.02 10 0.00 1551.72 

5 B NULL+YEARR+AGER 24.10 10 0.00 1554.80 
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6 A,G NULL+YEARR 26.91 9 0.00 1559.62 

7 C,F NULL+ RCbNE ]0[,  32.64 10 0.00 1563.34 

8 D NULL+AGER+ RCbNE ]0[,  34.29 11 0.00 1562.99 

9 D NULL+AGER 36.86 7 0.00 1573.57 

10 C NULL (EC,JRC) 42.30 6 0.00 1581.02 

 
Null Hypothesis I model fit summaries and sampling statistics: Number of clutches plus broods: 

117; Number of eggs: 990; Number of juveniles: 7707; Number of clutch predictions made and 

evaluated: 45; Number of brood predictions made and evaluated: 894.  The bootstrapped 

estimates of Ĉ±1 SE for the null and best models are 1.07±0.04 and 1.08±0.04, respectively.  The 

best model (AICC=1550.73) passed the parametric bootstrap diagnostic for goodness-of-fit. 

 
 
Null Hypothesis II: There is no difference in the probability of surviving to fledge among 

juveniles reared on ponds with different invertebrate productivities as measured by estimates of 

invertebrate biomass on selected ponds. 

 
Rank Pair Model description ∆AICC # W Deviance ( MINL ) 

1 A,K NULL+YEARR+ RCbNE ]0[, + )(2
, aCBθ  0.00 14 0.77 849.05 

2 A NULL+YEARR+PPR+ RCbNE ]0[, + )(2
, aCBθ  3.50 16 0.13 848.53 

3 B,K NULL+YEARR+ RCbNE ]0[,  5.29 13 0.06 856.35 

4 C NULL+YEARR+AGER+ RCbNE ]0[,  7.13 14 0.02 856.18 

5 B NULL+YEARR+PPR+ RCbNE ]0[,  8.52 15 0.01 855.56 

6 C NULL+YEARR+AGER+PPR+ RCbNE ]0[,  10.49 16 0.04 855.52 
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7 D NULL+AGER+ RCbNE ]0[,  19.09 11 0.00 874.17 

8 E NULL+ RCbNE ]0[,  19.20 10 0.00 876.30 

9 D NULL+AGER+PPR+ RCbNE ]0[,  20.19 13 0.00 871.26 

10 F,J NULL+YEARR+PPR 20.87 11 0.00 875.95 

11 J NULL+YEARR+PPR+ )(2
, aCBθ  21.40 12 0.00 874.47 

12 E NULL+PPR+ RCbNE ]0[,  21.62 12 0.00 874.70 

13 F NULL+YEARR 21.66 9 0.00 880.76 

14 G NULL+YEARR+AGER 22.74 10 0.00 879.83 

15 H NULL+AGER 23.07 7 0.00 886.19 

16 G NULL+YEARR+AGER+PPR 23.69 12 0.00 876.76 

17 H NULL+AGER+PPR 24.09 9 0.00 883.20 

18 I NULL (EC,JRC) 24.47 6 0.00 889.59 

19 I NULL+PPR 34.86 8 0.00 895.97 

 
Null Hypothesis II model fit summaries and sampling statistics: Number of clutches plus broods: 

61; Number of eggs: 574; Number of juveniles: 5408; Number of clutch predictions made and 

evaluated: 39; Number of brood predictions made and evaluated: 536.  The bootstrapped 

estimates of Ĉ±1 SE for the null and best models are 1.05±0.05 and 1.06±0.05, respectively.  The 

best model (AICC=877.14) passed the parametric bootstrap diagnostic for goodness-of-fit. 

 
 1 
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FIGURES 1 

Fig. 1.  Map indicating the approximate location of Riske Creek, and portraying landscape 2 

characteristics of the Chilcotin-Cariboo region of British Columbia (B.C.), Canada. 3 

Fig. 2.  Example plots of (a) probability density functions and their associated (b) survivorship 4 

attenuation functions for random (R) and correlated (C) mortality processes and both additively 5 

combined (R&C).  The functions for R&C in plot (a) and (b) portray a situation with an initial 6 

period where young juveniles experience a high rate of correlated mortality (perhaps catastrophic 7 

losses of broods) which diminishes with time as the rate of random mortality increases then 8 

diminishes with age.  The parameter values for this example are: 001.0, =RBα , 5.2, =RBβ , 9 

1.0, =CBα , 9.0, =CBβ , 7.0=Bc  and 05.0=Bf . 10 

Fig. 3.  Examples of plausible probability mass distributions of survivorship outcomes, 11 

)]([ iasp +•• , for 10)( =• an , 6.0)(, =•• aµ , and 0=•ν .  Plot (a), no overdispersion, 0)(2
, =•• aθ , 12 

generates a binomial distribution of survivorship outcomes; (b) partial overdispersion, 13 

2.0)(2
, =•• aθ , generates a greater spread of possible survivorship outcomes according to a beta-14 

binomial distribution; while (c) full overdispersion, 0.1)(2
, =•• aθ , generates a beta-binomial 15 

distribution with only two possible outcomes, either all )(an•  individuals survive or die.  Plot (d) 16 

portrays an example where 70% of the mortalities follow a random mortality process (C), while 17 

30% of mortalities ( 0;3.0 == •• fc ) are correlated (C) and fully overdispersed as per plot (c). 18 

Fig. 4.  Typical (a) observed, (b) predicted, and (c) simulated profiles of the observed number of 19 

eggs (brood ages <0) in a clutch and juveniles (brood ages ≥0) in a brood.  Clutches and broods 20 

for each tending hen are connected by faded lines.  The observed data (a) are those for the years 21 
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1995 and 1997 to 1999.  These data were analyzed to challenge Null Hypothesis I ( 1090=ℜ ).  It 1 

is evident that many more broods were observed than clutches.  Note that the observed data are 2 

truncated at a brood age of 56 days corresponding to the analyst’s choice of D=56 for age at 3 

fledging.  The model predictions (b) are those provided by Model 1 of Table 2.  Likewise, the 4 

simulated data (c) are one realization using the maximum likelihood estimated parameters of 5 

Model 1 of Table 2. 6 

Fig. 5.  The probability, on hatch day, that a juvenile Barrow’s Goldeneye will fledge at D=56 7 

days, )],0([ DFledgep , as a function of expected brood size on hatch day, ]0[,bNE .  The values 8 

portrayed are those reported by the highest ranked model (Model 1) of those used to challenge 9 

Null Hypothesis I (Table 1).  Year-effects are clearly evident.  There is no evidence that 10 

)],0([ DFledgep  is influenced by ]0[,bNE  in 1997, while in other years there is a clear tendency 11 

for juveniles hatched into larger broods have an increased )],0([ DFledgep . 12 

Fig. 6.  (a) The probability, on hatch day, that a juvenile Barrow’s Goldeneye will fledge at D=56 13 

days, )],0([ DFledgep , as a function of expected brood size on hatch day, ]0[,bNE .  The values 14 

portrayed are those reported by the highest ranked model (Model 2) of those models used to 15 

challenge Null Hypothesis II that include pond productivity as a covariate (Table 1).  This result 16 

is similar to that portrayed in Fig. 5 which is based on a larger sample size.  (b) The 17 

)],0([ DFledgep  as a function of standard deviates of pond productivity measured as mean 18 

invertebrate biomass per pond-year (mg/sample).  The values portrayed are those reported by 19 

Model 11 of those used to challenge Null Hypothesis II.  The results indicate both a 20 

parametrically and statistically weak tendency for the )],0([ DFledgep  to be higher on the more 21 

productive ponds.  The inadequacy of this relationship is emphasized by the very low rank (11th) 22 
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of this model when compared to models including ]0[,bNE  as a covariate.  (c) Illustrating this 1 

point, the )],0([ DFledgep  as a function of the standard deviates of pond productivity for the 2 

highest ranked model (Model 1), which includes the covariate ]0[,bNE , but excludes pond 3 

productivity, shows no residual relationship between )],0([ DFledgep  and pond productivity. 4 

Fig. 7. The influence of ]0[,bNE  on brood survivorship in years 1995 and 1997 to 1999 is 5 

illustrated by the increasing shallower survivorship profiles, ( )(aAB , solid lines), for three 6 

deliberately chosen increasing initial brood sizes (5, 15 and 25 juveniles hatched).  These profiles 7 

correspond to Model 1 challenging Null Hypothesis I.  Associated with each survivorship profile 8 

are three simulated brood outcomes (faded lines with symbols) illustrating the degree of 9 

variability in brood survivorship that can be realized in a sampled dataset. 10 

Fig. 8.  Daily survivorship profiles for juveniles from hatch day (a=0) to fledge day (a=D), and 11 

according to year, with lines connecting juveniles within a brood.  Daily survivorship for the 12 

random (R) and correlated (C) mortality processes combined (solid circles, solid lines) results 13 

from the weighted addition of the random mortality process (open circles, faded lines) and 14 

correlated mortality process (open diamonds, faded lines).  The correlated mortality process 15 

diminishes with brood age when 0>Bf  as in this result for Model 1 challenging Null Hypothesis 16 

I (see Fig. 10a).  Individual broods portray different survivorship profiles due to differences 17 

among broods in their expected brood size on hatch day, ]0[,bNE .  The tendency is for larger 18 

values of ]0[,bNE  to be associated with higher survivorships (see Fig. 9). 19 

Fig. 9.  Daily survivorship for the first day after hatch, and according to year, for juveniles versus 20 

expected brood size on hatch day, ]0[,bNE , for Model 1 challenging Null Hypothesis I. 21 
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Fig. 10.  (a) The proportion of juveniles alive at the plotted brood age that are vulnerable to a 1 

correlated mortality process.  This proportion will diminish with brood age when 0>Bf  as in this 2 

result for Model 1 challenging Null Hypothesis I.   (b) The effective independent unit (EIU) 3 

versus brood age.  EIU will diminish with )(anB  as well as with brood age when 0>Bν  as in this 4 

result for Model 1 challenging Null Hypothesis I.  The scatter within and among years for both 5 

(a) and (b) arises from differences among broods in their expected brood size on hatch day, 6 

]0[,bNE , and for (b) also from differences the number of juveniles alive at brood age a, )(anB . 7 

Fig. 11.  The expected brood size on hatch day, ]0[,bNE , as a function of the standard deviate of 8 

pond productivity measured as mean invertebrate biomass per pond-year (mg/sample).  The 9 

values portrayed for ]0[,bNE  are those reported by Model 1 of those used to challenge Null 10 

Hypothesis I.11 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 
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Figure 11 
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