
Abstract: The detennination of age structure for many invertebrate populations is often difficult because individuals lack the
hard body parts that record growth ( e.g., otoliths, scales), and population size distributions often lack patterns expressing an
age structure. Consequently, assessments of invertebrate fisheries are often of necessity length-based. Here we review the
quantitative basis for inferring life-history characteristics such as growth and mortality rates from size frequency distributions
that do not necessarily exhibit age pulses. We use an equilibrium solution to the von Foerster equation to describe the
dependence of size distributions and optimal lower size limits for harvest on life-history characteristics. We then describe
various forms of the von Bertalanffy growth model that include stochasticity in different ways, and the patterns of size versus
age, growth increment versus size and time-at-large, and numbers versus size to which the different models lead. We show
how our portrayals can help an analyst develop a general intuitive basis for visual interpretation of size-related patterns of
growth and mortality in their data by formally analysing size frequency and growth data from a few typical invertebrate

populations.

Resume: La determination de la structure d'dge de nombreuses populations d'invertebres est souvent difficile parce que ces
organismes ne possedent pas de structures corporelles dures qui permettent d'enregistrer la croissance (p. ex. otolithes ou
ecailles) et parce que, souvent, les distributions de tailles de la population ne montrent pas de caracteristiques permettant
d'exprimer la structure d'dge. Par consequent, les evaluations despecheries d'invertebres sont souvent, par necessite, fondees
sur la longueur des organismes. Dans la presente communication, nous passons en revue les fondements quantitatifs
permettant de deduire des caracteristiques du cycle vital comme les taux de croissance et de mortalite a partir des distributions
de frequences de tailles qui ne presentent pas necessairementde pointes liees a l'dge. Nous utilisons une solution d'equilibre a
I' equation de von F oerster pour decrire la dependance, a I' egard des caracteristiques du cycle vital, des distributions de taille
et des limites de taille inferieure optimales pour la recolte. Nous decrivons ensuite diverses formes du modele de croissance de
von Bertallanffy qui tiennent compte de la stochasticite de differentes fa9ons; nous decrivons egalement les caracteristiques
taille selon l'dge, augmentation de croissance selon lataille et la periode en liberte et effectifs selon la taille, auxquelles
menent les differents modeles. Nous montrons comment nos caracterisations peuvent aider un analyste a developper une base
intuitive generale pour l'interpretation visuelle des caracteristiques de croissance et de mortalite liees a la taille dans leurs
donnees en analysant formellement les donnees sur la croissance et la frequence de tailles tirees de quelques populations
d'invertebres typiques. [Traduit par la Redaction]

Introduction

Even the most basic of population assessments require infor-
mation on the growth and mortality rates of individuals in a
population (Ricker 1975; Gulland 1983). Size-at-age data have

typically be-en used to provide growth information since
growth is a measure of change in size over time. Since high
quality size-at-age and numbers-at-age data are often difficult
to acquire for invertebrates, invertebrate fisheries usually can-
not be assessed using techniques such as virtual population
analysis (VP A, Pope 1972) and its descendants (see Hilborn
and Waiters 1992) which are often applied to fish. Size fre-
quency analysis is often the best alternate methodology for
estimating growth and mortality when individuals do not have
permanent anatomical structures which record the passage of
time.

Recruitment pulses in a size frequency distribution can aid
visual and analytic interpretation ofyear-class patterns fortem-
perate species undergoing continuous growth (Schnute and
Foumier 1980; Smith and McFarlane 1990; Botsford et al.
1994). The growth and mortality processes can be visualized
as the dissipation of recruitment pulses through time (F oumier
and Breen 1983). A conceptually and analytically more chal-
lenging problem is the interpretation of growth and mortality
rates from size frequency distributions which lack multiple age
pulses. Such distributions would be typical of species which
tend not to have annual recruitment pulses, but which have
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[2] ~=-Ei!JJ~+D(1) ]dl g(1)l dl

Equation 2 thus describes the size-based steady-state density of
numbers-at-size for any size frequency distribution. A repre-
sentation such as eq. 2 would be valid for interpreting size
frequencies which appear not to change appreciably in foml
over time. The convenience of eq. 2 is that it allows an analyst
to explore the consequences of various size-dependent func-
tions of growth, g(1), and mortality, D(1). If we assume von
Bertalanffy growth then

[3] g(1) = K'(L -I)

As an extension of eq. 3 we let K' represent K + bl below (and
in Figs. I and 2) and choose a foml ofvon Bertalanffy growth
that allows K' to change with size I,

[4] g(1) = (K + b1)(L -I)

with

[5] ~=-K+b(L-2/)
dl

individuals recruiting at a constant rate into the population of
interest. In temperate climates recruitment pulses are generally
seasonal and are apparent for the smaller individuals in size
distributions. When growth is asymptotic the pulses tend to
become smeared at larger sizes due to growth variability
(Botsford et al. I 994). In contrast, tropical and subtropical spe-
cies are more likely to be characterized by size frequency dis-
tributions lacking age pulses.

A size frequency distribution provides static information on
the size composition of a population. If there are no age pulses,
then the distribution will be only qualitatively informative
about growth, mortality, and recruitment. However, size-at-
age and growth increment information, i.e., that obtained from
a laboratory growth study, or afield mark-recapture study, can
be quantitatively informative about growth rates. When such
growth information (i.e., from individuals) is combined with
size frequency data (population aggregate information) to-
gether they can be quantitatively informative about growth and
mortality rates for a population. Our intention with this paper
is to inform readers (i) of what visual inspection of size fre-
quency distributions qualitatively can tell us about the relation-
ship between growth and mortality for a population, and (il)
what visual inspection of size-at-age and growth increment
plots qualitatively can tell us about growth and growth vari-
ability for a population.

The mathematical framework upon which we develop our
concepts of growth and mortality also provides the basis for a
general methodology for analyzing size frequency data and
growth increment data in combination to measure growth and
mortality, and for calculating an optimal minimum size limit.
The methodologies for analyzing growth increment and size
frequency data are separable thereby allowing the growth in-
crement analysis to be linked to an analysis of size frequency
data characterized by either constant or pulsed (i.e., age-struc-
tured) recruitment. The details (including precision, bias, and
robustness to assumptions) of formal parameter estimation ap-
pear in other papers such as Smith and McFarlane (1990) and
Smith et al. (1998) where we apply our models to the particular
problems of assessing the population dynamics of the lingcod
(Ophiodon elongatus) in British Columbia, and the red sea
urchin (Strongylocentrotus franciscanus) in California.

Size frequency distributions

We need a fonnal basis upon which to build a model for size
frequency distributions based on growth and mortality func-
tions of size. The von Foerster size-structured equation (von
Foerster 1959; Van Sickle 1977; DeAngelis and Mattice 1979;
Huston and DeAngelis 1987) provides the basis for describing
how the density of individuals in a population changes over
time. We present it here as

an(l, t) a
[I] ~=-a/[n(l, t)g(1)] -D(1)n(l, t)

where n(l, t) is the density of individuals of size I at time t, g(1)
is the growth rate of an individual of size 1, and D(I) is the
mortality rate of a individual of size I (see Table I for symbol
definitions). As shown in Botsford et al. (1994) we can obtain
a density expression for a size frequency distribution under
steady-state and constant recruitment conditions by setting
an(l, t)/at = O which yields
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If recruitment is assumed to be a constant value R, then the
dependencies on time t and age-at-size A(l) can be dropped.
Analytical solutions are rare for models where mortality is a
function of size, e.g.,

[10] D(1)=Ze-cl
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Table I. Defuritions for variables appearing in this paper.

Symbol Definition

~L

0"2L

~K

0"2K

A

Ao

Ao'

~A

0"2A

<l>A

V..</)

T

~I

0"2I

w(/)

<I>

V

E[.]

f'[.]

time
size
the size in a size frequency distribution to which individuals fIrst recruit
size when fully exploited yield-per-recruit is maximized
deterministic asymptotic size for an individual
represents K + bl
deterministic instantaneous rate of change in growth rate for an individual
shape parameter for a modified von Bertalanffy or Richards growth function
density of individuals in a size distribution
recruitment rate
growth rate at size 1
mortality rate at size 1
natural mortality rate at size 1 = O

I-dependent mortality coefficient
mean of L for a population
variance of L for a population
mean of K for a population
variance of K for a population

age
age at 1 = O in size-at-age data
age at 1 = O in size frequency data

expected size-at-age A
exp~cted variance in sizes-at-age A
in size frequency data, the deviation of the mean of an age pulse from that predicted by a growth function

variance of measurement error at size 1
time period over which growth increments are measured
expected growth increment at size 1 during time T
variance in growth increments at size 1 during time T
weight-at-size 1
scaling parameter ofweight-at-size function
power parameter ofweight-at-size function
expected value of the bracketed quantity
variance of the bracketed quantity

has special diagnostic value in that for deterministic growth
and mortality dn(l)/dl will equal zero when dg(l)/dl = -D(l).

Immediately this gives us a tool for visually assessing size
frequency distributions then interpreting the underlying popu-
lation dynamics, i.e., a plateau in the size distribution will oc-
cur when dg(l)/dl + D(l) = 0. Deterministic and stochastic
portrayals of distributions arising from these models appear in
Fig. I with the corresponding values for the derivative of the
growth rate, -:ag(l)/dl, and the mortality rate, D(l), appearing
in Fig. 2. For example (Figs. la Deterministic, 2a), von
Bertalanffy growth and a constant mortality rate with D(l) =

Z = K, generates a plateau that occurs over the entire domain

of I.
In Fig. 1 we have admitted variability in von Bertalanffy's

asymptotic size L by allowing L to be a normally distributed
random variable with a mean of ~L and variance O"L2
(Sainsbury 1980). We have not admitted variability in von
Bertalanffy's K because it has little discernible effect on an
equilibrium size distribution (Botsford et al. 1994). Although
no single model should be considered a unique or even bio-
logically precise descriptor of growth, we found Sainsbury's

with c > 0. For such models we rely on numerical solutions to
the differential equations to generate a corresponding size fre-
quency distribution.

An analogy of eq. 9 has previously appeared in the literature
accompanied with a discussion of its implications for the shape
of a size frequency distribution (Barry and Tegner 1990). Other
authors have exploited the benefit ofkliowing the ratio Z/ K for
interpreting fish population dynamics (see Pauly 1984; Pauly
and Morgan 1987) or using size data to interpret mortality rates
(Ebert 1973; Van Sickle 1977; Fournier and Breen 1983). Here
we extend these interpretations by showing that eqs. 2 and 7
coupled with independent stochastic variability in von Ber-
talanffy's K andL parameters (Sainsbury 1980) have a particu-
lar ability to be informative of the underlying growth and
mortality functions that give observed size frequency distribu-
tions their characteristic equilibrium shapes. These equations
also form the basis for analytical models which facilitate esti-
mation of stochastic growth and deterministic mortality pa-
rameters from size frequency, size-at-age and growth
increment data (Smith and McFarlane 1990; Smith et al.

1998).
To appreciate the utility of these models observe that eq. 2
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Fig. I. Characteristic size frequency distributions under the constant recruitment assumption. For all examples O"K = 0 because they are
indistinguishable from otherwise similar size frequency plots with O"K > 0 (Botsford et al. 1994). Histograms represent a random sample (n =

1000) of the analytical stochastic distribution organized into 5 unit cells. The parameter values for each plot are as follows: (a)~L = 100, O"L =
0, ~K= 0.3, b = 0, D(/) = 0.3; (b) ~L = 100, O"L = 10, ~K= 0.3, b= 0, D(/) =0.1; (c) ~L= 100, O"L = 10, ~K= 0.1, b = 0, D(/) = 0.3; (d) ~L = 100,
O"L = 10, ~K= 0.1, b = 0, D(/) = 4.Oe--0.051; and (e) ~L = 100, O"L = 10, ~K= 0.3, b = 0.005, D(/) = 0.1.
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(1980) model to be particularly useful for describing stochastic
growth as it is expressed in size frequency distributions, size-
at-age data, and growth increment data that we have seen. This
stochastic parameterization of growth overcomes the
incompatibility of deterministic von Bertalanffy functions repre-
senting size-at-age data and growth increment data that was
highlighted by Francis (1988).

We refer to Figs. Ib (with ~k> Z) and lc (with ~k < Z) as
growth-dominated and mortality-dominated distributions, re-
spectively. If either dg(/)/dl or D(/) vary with length then there
is potential for distributional forms more interesting than these.
Distributions with a pronounced mode near the maximum size
of individuals in the distribution appear frequently in nature as
either a growth-dominated or bimodal distributional form. Fig-
ures Id and le show that both

ag(l)/al = -K, with D(I) = Z e-cI (Figs. Id and 2d)

and ag(l)f()l = -K + b(L -21), with D(I) = z (Figs. le and 2e)

can produce a bimodal dis1n'bution. In both cases the peak of the
right-hand mode tends to occur near the value for IlL with the
spread around IlL giving an indication of the value of 0' v Note
that the portrayals in Fig. 1 are ideal and natural distributions
are not likely to perfectly conform to those distributions. In
particular, size selectivity during data collection will result in
the smallest individuals being under-represented in the distri-
bution.

At least two recruitment processes can complicate the size
distributions portrayed in Fig. 1. Periodic pulsed recruitment
can introduce age pulses into a distribution thus disguising the
underlying growth and mortality patterns that are more evident
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Fig. 2. Functions of size for -dg(/)/al and D(/) for the characteristic size frequency distributions portrayed in Fig. I. In the deterministic case a

plateau in a size frequency distribution will occur when -dg(/)/al = D(/).
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of variation (RV) of two or less, then growth and mortality
parameters can be confidently measured from such distribu-
tions.

Maximizing yield-per-recruit

Having a simple method to calculate the maximum yield-per-
recruit from size frequency data is valuable since, due to a
paucity of fishery data, many invertebrate fisheries are
passively managed by minimum size limits, or area and sea-
sonal closures (see Jamieson 1986). Our model facilitates a
simple calculation for determining a minimum size limit (Ix)
that would maximize yield-per-recruit if it is assumed that vir-
tually all individuals above Ix are rapidly exploited by a fishery.

For species that are candidates to be managed by a mini-
mum size limit, and for which the instantaneous fishing mor-
tality (Ricker 1975) can be assumed to approach infmity, i.e., a
100% exploitation rate above the minimum size IX' maximum
yield-per-recruit occurs when the value of Ix maximizes the
function n(l)g(l)w(l). The per-recruit flux, n(lx)g(lx), across the

in the constant recruitment situation. Periodic pulses will in-
troduce age pulses into a size distribution which will shift to-
ward the right over time, tending to result in a repetition of the
size distribution pattern annually if annual recruitment is some-
what constant (Fig. 3). Random recruitment pulses occurring
in a population where recruitment is typically low, but which
occasionally experiences a strong recruitment event, can lead
an analyst to suspect regular recruitment pulses as in Fig. 3
unless a time series of collected distributions indicates a pattern
of random recruitment (Fig. 4).

Only repeated sampling over time can resolve whether the
nature of recruitment into size frequency distributions is regu-
lar or random. In principle, random recruitment such as that
portrayed in Fig. 4 would be describable by a probability func-
tion. As yet we know of no analytical models for estimating
growth and mortality parameters from size frequency distribu-
tions characterized by random recruitment. However, simula-
tion studies have shown (Smith et al. 1998) that if the
magnitude of recruitment variability is low, say a coefficient
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Fig. 3. Size frequency distributions characterizing pulsed recruitment for the mortality-dominated and growth-dominated examples of Fig. 1.
The winter and summer portrayals depict the shift to the right ofpulses for a species whose peak in annual recruitment occurs in summer. For
all examples O'K= 0, b = 0, c = 0. Histograms represent a random sample (n = 1000) of the analytical stochastic distribution organized into
5 unit cells. The parameter values for each plot are as follows: (a and b) ~L = 100, O'L = 10, ~K= 0.1, D(/) = 0.3; and (c and d) ~L = 100, O'L = 10,
~K= 0.3, D(/) = 0.1.
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minimum size boundary ix is converted to biomass from num-
bers by w(lx). The function w(/) thus relates yield in weight to
a linear measure of size by, for example, a power model as in
w(/) = ~/"' .Typically w(/) would represent total weight, but in

some cases, such as that of the red sea urchin, it could represent
gonad weight since gonad flesh is the commercial product.

The estimate for the size ix (ix > 0) when fully exploited
yield-per-recruit is maximized is obtained by solving

For yon Bertalanffy growth and constant mortality, Z, maxi-
mum fully exploited yield-per-recruit occurs when

[13] lx ~,Lcc

+
ti

" J

if yield in weight is related to a linear measure of size by the

power parameter v. ,Equation 13 bears resemblance to

Hoenig's (1987) function to estimate the size when the surplus
yield in numbers (i.e., v = 1) of a population is optimized.

When growth is considered to be stochastic in L and K as
above, then the necessary condition for the ix that produces
maximum yield is

[11] d[n(/) g(/) w(/)]
dl =0

which simplifies to

-w(lx) D(lx[12] O = g(lx) ¥ I -w(lx) D (ix)

l=lx

Continuing with the previous example, the independence of Land K leads to .

Solutions to Eq. 14 are less tractable if g(l) includes power
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Equation 12 depends neither on population density, n(/), nor
recruitment history R[t -A(/)] and therefore can be applied to
populations without having concern about past recruitment
patterns. It is noteworthy that Ix is inherently conservative. That
is, if the population of interest actually experienced an exploi-
tation rate less than 100%, when managed by a minimum size
limit of Ix, then yield-per-recruit would be maximized at a size
smaller than Ix.
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Fig. 4. Characteristic growth-dominated size frequency distributions with random recruitment. Each figure (a-d) portrays 30 realizations (thin
lines) of the analytical deterministic distribution (thick line) when random variation in recruitment is added. Fig. 4a portrays 30 realizations of
a random sample (n = 1000) of the analytical stochastic distribution organized into 5 unit cells when the coefficient of variation of recruitment
(RV) is zero. The other examples (b-d) use a value ofRV = 5. The value for RV is the coefficient of variance for a lognormal probability
distribution of recruitment over monthly time cells. For all examples ~L = loo, crL = 10, and crK= 0. Note that the ratio ~KlZ determines the

analytical shape of the size distribution.

a) Growth dominated ~K=.3, Z=.1, RV=O b) Growth dominated ~K=.3, Z=.1, RV=5

c) Growth dominated: IJK=O3, Z=.O1, RV=5 d) Growth dominated' ~K=30. Z=1,O, RV=5
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parameters such as in the Richards function (see Schnute
1981 ),

Size-at-age data
The stochastic von Bertalanffy growth (eq. 4) model already
discussed can generate graphical representations for size-at-
age which allow analysts to interpret the growth model gener-
ating their observed data. By using !lA and 0" A2 to represent the
mean size-at-age and variance-at-age, respectively, the distri-
butions in Figs. 5a-5d, when b = 0, can be generated by

[17] !lA = !lL(l-E{e-I1J.A-AO>])

[18] 0"1 = 11 O"t + !It V[e-I1J.A-AO>] + VI/)

where

however, it would probably be acceptable to assume E[Lb] =

E[L ]b in the above case knowing that the coefficient of variance
of L is likely to be quite small, say about 10%.

It is noteworthy that the value of ix depends only on the ratio
Z/K, but the value for the maximum harvest depends on g(l).
For example, the expected size distributions for the popula-
tions portrayed in Fig. 4 are identical because all four distribu-
tions are characterized by the same ratio Z/K, and will thus
have the same value for ix. However the individuals in the
population represented by Fig. 4d grow lOOx faster, i.e., indi-
viduals move much more quickly from the left to the right of
the size frequency distribution, than those in Fig. 4c. Although
the calculated value for ix would be the same in all cases, the

expected yield, In(l)g(l)w(l)dt, from the population in Fig. 4c

would be only 1% of that for the population represented in
Fig. 4d, given the same constant recruitment rate, R, and value
ofv.

~~
,-~(A -Ao) O"k

[19] E [e-ILx<A-A~] = +
IlK

[20] V [e-I1x<A-AO>] =

211i
-7 K(A -Ao) (Jk.

1+
IlK

and
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Fig. 5. Characteristic size-at-age plots. The corresponding growth increment plots for a time-at-large of one age unit appear in Fig. 6. The
parameter values for each plot are as follows: (a) ~L=100, O"L = 10, ~K= 0.3, O"K= 0, b = 0; (b) ~L = loo, O"L = 0, ~K= 0.3, O"K= 0.1, b = 0;
(c and d) ~L = loo, O"L = 10, ~K= 0.3, O"K= 0.1, b = 0; and (e) ~L = 100, O"L = 10, ~K= 0.01, O"K= 0.0033, b = 0.005.
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[21] 11 = 1 -2[1 + +

Owing to its complexity there exist no simple analytical sto-
chastic expressions for expected sizes-at-age, growth incre-
ments, and their variances for this growth model; rather we
calculate these values numerically.

Figures Sa, Sb, and Sc (b = 0) distinctly portray the variation
in L, K, or both in size-at-age data. Species expressing variance
in L only will produce size-at-age distributions that will tend
to increase in variance with increasing size. Species expressing
variance in K only will tend to grow toward a singular value
for L. Variance in size-at-age will be maximum at intermediate
ages. Species expressing variance in both variables will display
a maximum variance in size-at-age at intermediate sizes. Error
in the measurement of size is also not discernible in size-at-age
plots ( e.g., compare Fig. Sc with Sd). If b > 0, then the same
arguments with regard to variance in L and K apply as with b =

0, however, the sigmoidal form of the size-at-age curve is read-

ily apparent (Fig. Se).

(Sainsbury 1980; Smith and McFarlane 1990) where A is the
age of an individual and Ao is the age when the expected size
of an individual is zero. The tenn V A/) represents the variance
of error in the measurement of size I as a function of size.

Note that the detenninistic solution to the growth model of
eq. 4 (b > 0) as a function of age is

LK(l -e-(K+bL)(A-AO»
[22] 1=

L b e- (K+bL)(A-Ao) + K
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Fig. 6. Characteristic growth increment plots. The corresponding size-at-age plots appear in Fig. 5. The parameter values for each plot are as
follows: (a) IlL = 100, O"L = 10,. IlK= 0.3, O"K= 0, b = 0; (b) IlL = 100, O"L = 0, IlK= 0.3, O"K= 0.1, b = 0; (c and d) IlL = 100, O"L= 10, IlK= 0.3,

O"K= 0.1, b = 0; and (e) IlL = 100, O"L = 10, J.lK= 0.01, O"K= 0.0033, b = 0.005.

a) Variation in L only,l--n "h _a a_an' a..n. b) Variation in K only, b=O, rh _a..",a_a"' a..h.
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in L (i.e., 0" L > 0, 0" K = 0) will generate a growth increment plot
that tends to have constant variance-at-size over sizes consid-
erably smaller than IlL (Fig. 6a). As size approaches the do-
main of the distribution of L ' s, the lower growth rate limit of

zero begins to affect the form of the distribution of increments-
at-size causing the variance of increments-at-size to decrease.
If there is variance only in K(i.e., O"L = 0, O"K> 0) then a growth

increment plot will have a conical shape with a vertex at IlL
(Fig. 6b). Growth increments plots expressing variance in both
L and K will display decreasing variance with size but not to
a vertex as in the case with O"K= 0 (Fig. 6c). Additionally, the
occurrence of negative growth increments in such a plot is
direct evidence of measurement error VAl) when it is known
that individuals of the species in question cannot undergo
negative growth (Fig. 6d). As previously mentioned, such di-
rect evidence will not be distinguishable in a plot of size-at-age
(Fig. 5). A sigmoidal growth form (b > 0) would introduce

Growth increment data

Analogous growth increment plots (Fig. 6) exist for each of the
five size-at-age distributional forms of Fig. 5. The patterns in
Fig. 6 are generated by the following growth increment models
(eqs. 23 and 24), with b = 0, (Sainsbury 1980; Smith and
McFarlane 1990) where T is the elapsed time between an in-
itial, then subsequent, size measurement to determine growth.
We use III and 0"12 to represent the mean growth increment and
the variance of growth increments, respectively, conditional on
the initial size 1 of an individual and the time period T.

[23] 1l1=(IlL-l)(l-E[e-~K1])

[24] 0"1 =11 0"1+ (IlL _1)2 V [e-~K1] + Vll)

In eqs. 23 and 24 E[e-~K1], V[e-~K1], and 11 are as in
eqs.19-21 butwithA-Aoreplacedby T.

Growth increments for a species with growth variance only
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Fig. 7. Size-at-age (SA, n = 1108) and size frequency (SF,
n = 2547) data for the waved whelk (Buccinum undatum) with the
corresponding predicted fits using each data set independently and
in combination. The parameter values corresponding to the fits to
these data are in Table 2.

a) Buccinum undatumsize-at-age

120

sampled from quadrats placed on a sand-mud bottom (Jalbert
et al. 1989) indicates a possible bimodal form (Fig. 7b), with
the absence of the smallest individuals in the distribution re-
sulting from the inability to quantitatively sample the smallest
individuals.

If we assume that the left-hand mode in Fig. 7 b is composed
of several age-classes which show no apparent pattern of in-
terannual recruitment variability , then we might interpret that
recruitment in the waved whelk occurs at a relatively constant
rate. Thus growth and mortality for the waved whelk can be
described by growth and mortality processes leading to bimo-
dality in an equilibrium size distribution as depicted in
Figs. le, 2e, and 5e. However, the assumption of constant re-
cruitment could later be falsified if size frequency plots col-
lected sequentially in time portray a progression of

year-classes.
The size-at-age data and size frequency data (Figs. 7a and

7 b) appear to be in accordance with each other (Table 2). Note
particularly that formal statistical analyses of these size-at-age
and size frequency data seem to indicate a value for a ~L near
90-103 mm shell length with a value for the standard deviation
(SD) of L (O"J of 6-8 mm shell length. We remind you that
size frequency information is uninformative of the SD of K
(0"~ (Fig. 1 and Botsford et al. 1994). Our combined analysis
of these size-at-age and size frequency data estimated mortal-
ity,D(/), to vary with shell length according to eq. 10. We used
eq. 14 and our estimates of growth, g(/), and D(/) to calculate
ix, the shell length when fully exploited meat yield-per-recruit
is maximized. Accepting the value of 3.1 for the power pa-
rameter v relating meat yield to shell length (L. Gendron, MLI,
unpublished data), we estimated ix to be near 79-82 mm

(Table 2).
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distinct convex curvature into the growth increment plot as in
Fig. 6e.

Constant recruitment examples

Buccinum undatum
For our first example using real data we present a size-at-age
(SA) plot (Fig. 7a) for the waved whelk (Buccinum undatum)
from the Gulf of St. Lawrence ( Gendron 1992 and Louise Gen-
dron, Maurice Lamontagne Institute (MLI), unpublished data).
Age was determined by interpreting growth annuli on an indi-
vidual whelk's operculum. The absence of the smallest indi-
viduals in Fig. 7b is due to SCUBA divers choosing not to
sample such small individuals for age analysis. Notwithstanding
that individuals less than 40 mm shell length were not sampled,
we can interpret from this plot that a stochastic sigmoidal
growth form could adequately describe growth for this species.
A corresponding size frequency (SF) plot of shell length
constructed from measurements of individuals exhaustively

Strongylocentrotus franciscanus
In our second example, the red sea urchin (Strongylocentrotus
franciscanus), scrutiny of the size frequency data (SF) in
Fig. 8b seems to suggest a value for IlL around lOO mm test
diameter. However statistical analysis of the growth increment
data alone (GI, Fig. 8a) yielded an estimate for IlL of 71 mm
test diameter (Table 2). This seems low in comparison with the
size frequency data, but the standard error (SE) of this estimate
was 45 mmiest diameter. The slope of the relationship be-
tween growth increment and initial size, where it is not modi-
fied by encroachment upon the domain of L, represents a value
of 0.71 yrl for IlK (SE: 0.66 yrl). There is no pattern in the
data to indicate the presence ofvariance inK, (i.e., (JK= 0 yrl).
The large standard errors for the growth parameter estimates
obtained from these growth increment data indicate they are
not particularly informative about growth on their own.

By accepting that negative growth is unlikely since these
urchins were well-fed, the negative values for increments are
direct evidence of measurement error. Thus the uncertainty in
the estimate of IlL can be explained in part by the measurement
error that enters this analysis (about 2.5% of test diameter). The
presence of measurement error signifies that individuals re-
peatedly measured will yield different test diameters. In the
case of the red sea urchin this nonrepeatability can arise from
irregularities in test diameter, asymmetry of the test and/or
imprecise measurements.
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Table 2. Fonnally estimated growth and mortality parameter values associated with the constant recruitment examples

Parameter

Ao z ix'UcrK c~L crL IlK

Buccinum undatum (waved whelk)

l.9xlO-3 3.3xlo-30. .4102.8 6.1

2.6xlo-22.3xl0--2 3.6xlo-3 3.1 798.2 0* 1*90.1

Size-at-age data

(SA)
Size frequency

data (SF)
Both data sets (SA

and SF) l.5xlo-2 3.1 826.4 2.9x10-3 0* 4.1x10-3 -8.7

Strongylocentrotus franciscanus (red sea urchin)

0.6296.5

0*71.3 37.6 0.71 0*

0. 0* 3.6 103111.3 16.2 3.43 0*

Growth increment
data (GI)

Size frequency
data (SF)

Both data sets (GI
and SF) 0.13 0. 3.6 104112.2 15.9 0.46 0. 0.

Mactromeris polynyma (Stimpson 's surf clam)

2.8 0.44 0.15 0.70.8
Growth increment

data
Size-at-age data

(SA)
Size frequency

data (SF)
SA and SF data

sets

l.2xlO-2 l.3xl0--30. -6.8115.1 5.3

.6xl0--2 0. 2.95 900.18 0. I.109.0 7.5

l.9xlO-2 .2x1 0--3 0* 2.95 900. -4.8 0.09111.4 6.2

Note: These values are used to calculate the tabled values for lx. For size frequency (SF) analyses the reported parameter values are accompanied by
unreported parameter values for selectivity curves. All size dimensions are millimeters and all time dimensions are years. An asterisk (*) beside a number
indicates the number was required to be fixed at that value (e.g., Z) or the number tended toward that boundary value and was subsequently fixed at that value to
increase model parsimony. When Z is fixed at one, as it must be for an analysis of size frequency data alone, then IlK is redefined to represent the ratio IlKiZ, and
b is redefined to represent the ratio biZ. A dash (-) indicates that the parameter does not playa role in that particular analysis. Plots corresponding to these data

are in Figs. 7-9.

The uncertainty in the growth estimates provided by the
analysis of the growth increment data alone can be overcome
by an analysis of the size frequency and growth increment data
in combination. Performing this joint analysis shows that these
growth increment data are reasonably compatible with field
collected size frequency data (Kalvass et al. 1991; Fig. 8b).
The analysis of size frequency and growth increment data in
combination yielded parameter values (IlL"" 112 mm, O"L ""

16 mm, IlK= 0.46 yrl) which are consistent with the range of
possible values yielded by the growth increment data alone.

Since the independent growth increment data provide us
with an estimate for the growth rate, g(/), then a value for the
mortality rate, D(/), can be obtained by size frequency analysis.
For the example portrayed, a constant value for D(/) of
0.13 yrl was adequate to explain the observed size frequency
distribution. If we assume gonad weight is related to test di-
ameter by the power parameter v= 3.6, then the use of eq. 15
results in an estimate for IX' the test diameter when fully ex-
ploited gonad yield-per-recruit is maximized, of 103-104 mm
(Table 2). The value of v= 3.6 was interpreted from gonad
weight versus test diameter data of Tegner and Levin (1983)
that had been collected in December at a time when gonads are
ripe and the fishery for gonads in southern California was most
active (Kato and Schroeter 1985).

Mactromeris polynyma
Laboratory-obtained growth increment data for Stimpson's
surf clam (Mactromeris polynyma) from the Gulf of
St. Lawrence (Fig. 9b; Michel Giguere and Jean Lambert,
MLI, preliminary and unpublished data) indicate von Bertalan-
ffy growth with a IlL near 71 mm shell length, a value for (5L of

3 mm shell length, a value of IlK near 0.44 yrl, and significant
variance in K (i.e., (5K= 0.15 yrl) (Table 2). In contrast, the
size-at-age data (Jean Lambert, MLI, preliminary and unpub-
lished data; Fig. 9a) indicate sigmoidal growth with quite dif-
ferent parameter values than for the growth increment data, and
no pattern to suggest a value for (5 K > 0 yrl. The two forms of
growth data are therefore both visually and statistically incom-
patible. More satisfyingly, the size-at-age and size frequency
data appear compatible since they indicate a value for IlL of
about 109-115 mm shell length with a value for (5 L of about
5-8 mm shell length (Table 2). If we accept the parameter
values from the joint analysis of the latter two data sets, and use
a value for meat yield in relation to shell length of'O = 2.95

(Jean Lambert, MLI, unpublished data), then we calculate a
value for ix of 90 mm (Table 2).

The value of fmding such discrepancies among data sets is
our ability to judge the quality of the data. In this case the
conflicting interpretations of the data led the biologist studying
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Fig. 9. Size-at-age (SA, n = 255), growth increment (GI, n = 357,

time-at-Iarge is 467 and 474 days) and size frequency (SF,
n = l770) data for Stimpson s surf clam (Mactromeris polynyma)

with the corresponding predicted fits using each data set
independently and using the size-at-age and size frequency data in
combination. The parameter values corresponding to the fits to
these data are in Table 2.

a) Mactromeris polynymasize-at-age

Fig. 8. Growth increment (GI, open circles: n = 28,
23 days-at-Iarge; diamonds: n = 32,27 days-at-Iarge) and
size frequency (SF, n = 375) data for the red sea urchin

(Strongy/ocentrotusfranciscanus) with the corresponding predicted
fits using each data set independently and in combination. The
parameter values corresponding to the fits to these data are in Table
2. Note that each series of growth increment data corresponds to a
different time-at-Iarge and thus produces its own fit using the same
model parameters.
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trate the benefit of using growth data in combination with size
frequency data to interpret the age composition of the fre-
quency distributions. Estimating a growth function solely from
the size frequency data in Fig. lOb would be frustrated by the
overlap of the older age pulses and no independent information
on growth or mortality. The combined analysis of size-at-age
and size frequency data helps relieve this frustration (Table 3).

Despite the explicit incorporation of independent growth
data into an analysis, the parameter estimates obtained are still
somewhat conditional upon the analyst's choice for the largest
age represented in the size frequency data. Also, annual vari-
ation in growth rate due to random climatic effects or other
so-called year-effects, or Lee's phenomenon (Jones 1958), can
cause an age pulse to depart (shift) from that predicted by the
growth curve. This departure might appear random around an
expected shift of zero, or if caused by Lee's phenomenon,
might tend to be progressive in one direction as size-dependent

this species to conclude that the laboratory growth experiments
were yielding seriously inaccurate growth increment data. His
conclusion was partly based on the premise that we should
have the most confidence in the size frequency data. These data
tend to be least vulnerable to bias since they are collected in
the field and are not subject to the unnatural conditions that
accompany laboratory experiments, or the uncertainty in ac-
cepting growth checks as annuli. His next step was to execute
field growth studies that would be more likely to yield growth
rates compatible with the field-collected size frequency data.

Pulsed recruitment example

Placopecten magellanicus
We chose size-at-age data (Fig. lOa) and size frequency data
(Fig. lOb) obtained for the giant sea scallop (Placopecten
magellanicus) near the hes-de-la Madeleine, Quebec (Michel
Giguere, unpublished data; Giguere and Miller 1993) to illus-
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age observed in the size-at-age data was 12 yr. We then used
the value ofv = 3.2 from the power relationship between mus-
cle weight, the commercial product, and shell height (Giguere
and Legare 1989) to obtain an estimate for Ix of 86 mm (Ta-
ble 3).

Fig. 10. Size-at-age (SA, n = 640) and size ftequency (SF, n =

1828) data for the giant sea scallop (Placopecten magellanicus)
with the corresponding predicted fits using each data set
independently and in combination. The parameter values
corresponding to the fits to these data are in Table 3.

a) Placopecten magel/anicussize-at-age
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Conclusions

Scrutiny of size-at-age, growth increment, and size frequency
data can be useful for developing a conceptual understanding
of the interrelationships between the underlying population
processes of growth and mortality in size-structured data. We
therefore recommend that a careful visual interpretation of the
available data be done before an analyst undertakes a formal
statistical analyses of such data in order that the analyst be
more prepared to judge the likelihood of success, and the con-
clusions, of the analyses. Further, the relative inexpense of
collecting size-based data, in conjunction with a sound concep-
tual basis upon which to make preliminary judgments about the
dynamics of growth and mortality for a fished population, can
lead to the rapid implementation of simple conservation meas-
ures founded upon a reliable fIrst impression of the population
dynamics for a particular species.

We finish by cautioning readers that the data portrayed in
this paper were selected and used solely for the purpose of
illustrating growth and mortality patterns. Thus they, or any
parameter values reported, are not necessarily those that best
or completely represent the populations from which they were
collected. Readers should not consider this work as a source
for definitive information on the growth or mortality dynamics
of those species used as examples.

b) Placopecten magel/anicussize frequency
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mortality persistently selects against either large or small indi-
viduals. We deal with this problem by adding a vector ofpa-
rameters ( tjI ~, where A represents age. Each value of tjI A
represents the annual shift in the mean of a discernible pulse
for age A from that predicted from the pulse for the previous
year (A -1) and the growth curve.

If an analyst has confidence in the growth parameter esti-
mates obtained from size-at-age or growth increment data, then
a size frequency analysis can be done assisted by the inde-
pendent growth data. The proportions-at-age obtained from
such an analysis might then be considered as representative of
the recruitment and mortality history of the age-classes recog-
nized in the distribution although typically the confidence lim-
its around proportions-at-age are broad. If a confident estimate
of mortality, D(/), can be interpreted from this recruitment and
mortality history, or from another independent source, then
eq. 15 can be used to calculate a value for ix. In this example
we calculated a constant value for D(l) of 0.43 yrl by the
method of Hoenig (1983) using our knowledge that the oldest
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giant sea scallop (Placopecten magellanicus).

b Ao A'
-c-JL 1%J:lL (JL ~K crK

Growth rate parameters
(size-at-age data only)

Growth rate parameters
(size-at-age and size
frequency data

combined)

2.0xl0--27.1 0.19 --0.07 86147.0

2.0xlO-2147.6 6.8 0.19 --0.08 --0.08 86

Age-class descriptions_from size frequency analysis

Note: All size dimeosions are millimeters. The" Annual mean shift" refers to the difference in growth during one
year as predicted by the growth curve and the growth represented by the size frequency data. The values for ix were
calculated using D(l) = 0.43 yr-l (see text) and \1 = 3.1. An asterisk (*) beside a number indicates the number teoded

toward that boundary value and was subsequently fIXed at that value to increase model parsimony. A dash (-)
indicates that the parameter does not playa role in that particular analysis. Plots corresponding to these data are in

Fig. 10.

Francis, R.I.C.C. 1988. Are growth parameters from tagging and age-
length data comparable? Can. J. Fish. Aquat. Sci. 45: 936-942.

Gendron, L. 1992. Determination of the size at sexual maturity of the
waved whelk Buccinum undatum Linnaeus, 1758, in the Gulf of
St. Lawrence, as a basis for the establishment of a minimum catch-
able size. J. Shellfish Res. 11: 1-7.

Giguere, M., and Legare, B. 1989. Exploitation du petoncle aux iles-
de-la Madeleine en 1988. Canadian Atlantic Fisheries Scientific
Advisory Committee, Dartmouth, Nova Scotia. Res. Doc. 89/14.

32p.
Giguere, M., and Miller, R. 1993. Review of scallop fisheries in

Quebec. Can. Ind. Rep. Fish. Aquat. Sci. 217. 23 p.
Gulland, J.A. 1983. Fish stock assessment. A manual of basic meth-

ods. FAO/Wiley Series on Food and Agriculture. John Wiley &
Sons, Toronto, Ont. 223 p.

Hilbom, R., and WaIters, C.J. 1992. Quantitative fish stock assess-
ment: choice, dynamics and uncertainty. Routledge, Chapman and
Hall, Inc., New York, N.Y. 570 p.

Hoenig, J.M. 1983. Empirical use of longevity data to estimate mor-
tality rates. Fish. Bull. (U.S.), 82: 898-903.

Hoenig, J .M. 1987. Estimation of growth and mortality parameters for
use in length-structured stock production models. In Length-based
methods in fisheries research. ICLARM Conference Proceedings
13. Edited by D. Pauly and G.R. Morgan. Int. Cent. Living Aquat.
Resourc. Manage., Manila, Philippines, and Kuwait Inst. Sci. Res.,
Safat, Kuwait. pp. 121-128.

Huston, M.A., and DeAngelis, D.L. 1987. Size bimodality in mono-
specific populations: a critical review of potential mechanisms.
Am. Nat. 129: 678-707.

Jalbert, P., Himmelman, J.H., Beland, P., and Thomas, B. 1989.
Whelks (Buccinum undatum) and other subtidal invertebrate

predators in the northern Gulf of St. Lawrence. Nat. Can.
(Ottawa), 116: 1-15.

Jamieson, G.S. 1986. A perspective on invertebrate fisheries
management- the British Columbia experience. In North Pacific
Workshop on stock assessment and management of invertebrates.
Edited by G.S. Jamieson and N. Bourne. Can. Spec. Publ. Fish.
Aquat. Sci. 92. pp. 57-74.

Jones, R., 1958. Lee's phenomenon of "apparent change in growth
rate," with particular reference to haddock and plaice. Int. Comm.
Northwest Atl. Fish. Spec. Publ. I. pp. 229-242.

Kalvass, P., Taniguchi, I., Buttolph, P., and DeMartini, J. 1991. Rela-
tive abundance and size composition of red sea urchin, Strongylo-
centrotus franciscanus, populations along the Mendocino and
Sonoma County coasts, 1989. Cal. Fish Game AdIIiinistrative
Rep. 91-3. 103 p.

Kato, S., and Schroeter, S.C. 1985. Biology of the red sea urchin,
Strongylocentrotus franciscanus, and its fishery in California.
Mar. Fish. Rev. 47(3): 1-20.

Pauly, D., 1984. Fish population dynamics in tropical waters: a man-
ual for use with programmable calculators. ICLARM Studies and
Reviews 8. Int. Cent. Living Aquat. Resourc. Manage., Manila,
Philippines. 325 p.

Pauly, D., and Morgan, G.R. (Editors). 1987. Length-based methods
in fisheries research. ICLARM Conference Proceedings 13. Int.
Cent. Living Aquat. Resourc. Manage., Manila, Philippines, and
Kuwait Inst. Sci. Res., Safat, Kuwait. 486 p.

Pope, J.G. 1972. An investigation of the accuracy of virtual popula-
tion analysis using cohort analysis. Int. Comm. Northwest Atl.
Fish. Res. Bull. 9: 65-74.

Ricker, W.E. 1975. Computation and interpretation of biological sta-
tistics offish populations. Bull. Fish. Res. Board Can. 191.382 p.

138



S~ith and Botsford: Interpretation of growth, mortality, and recruitment patterns

Sainsbury, K.J. 1980. Effect of individual variability on the von Ber-
talanffy growth equation. Can. J. Fish. Aquat. Sci. 37: 241-247.

Scbnute. J. 1981. A versatile growth model with statistically stable
parameters. Can. J. Fish. Aquat. Sci. 38: 1128-1140.

Scbnute, J., and Fournier, D.A. 1980. A new approach to length fre-
quency analysis: growth structure. Can. J. Fish. Aquat. Sci.
37: 1337-1351.

Smith, B.D., and McFarlane, G.A. 1990. Growth analysis of Strait of
Georgia lingcod by use oflength-frequency and length-increment
data in combination. Trans. Am. Fish. Soc. 119: 802-812.

Smith, B.D., Botsford, L.W., Wing, S.R., andQuinn, J.F. 1998. Es-
timation of growth and mortality parameters from size frequency
distributions lacking age patterns: an application to the red sea

urchin (Strongylocentrotus franciscanus). In Proceedings of the
North Pacific Symposium on Invertebrate Stock Assessment and
Management Edited by G.S. Jamieson and A. Campbell. Can.
Spec. Publ. Fish. Aquat Sci. 125. (Unpublished.)

Tegner M.J., and Levin, L.A. 1983. Spiny lobsters and sea urchins:
analysis of a predator-prey interaction. J. Exp. Mar. BioI. Eco1.
73: 125-150.

Van Sickle, J. 1977. Mortality rates from size distributions. Oecolo-
gia, 27: 311-318.

von Foerster, H. 1959. Some remarks on changing populations. In
The kinetics of cell proliferation. Edited by F. Stahlman. Grune
and Stratton, New York, N.Y. pp. 382-407.

139


