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Abstract.-For a multispecies fishery managed to achieve a harvest rate target for a single species,
an early and accurate forecast of an in-season or the end-of-season harvest rate index can assist
a manager with a decision to control effort. We present a model for rapidly forecasting an in-
season or end-of-season harvest rate index for one species, the species of interest, in a multi species
fishery using catch and effort data collected for that fishery. These harvest rate predictions can
be statistically evaluated against harvest rate indices calculated independently from demographic
and biological data obtained for the fishery. The model structure was defined such that an estimate
of both measurement error and process error could be obtained. The data required are the historical
time series of catches for the species caught in the fishery, fishing effort, and harvest rate indices
for the species of interest calculated independently of the catch and effort data. We illustrate the
model with chinook salmon Oncorhynchus tshawytscha as the species of interest in the west coast
of Vancouver Island troll fishery and the Strait of Georgia sport fishery. Other important species
caught in these multispecies fisheries are coho salmon 0. kisutch, sockeye salmon 0. nerka. and
pink salmon 0. gorbusha.

Troll and sport fisheries are the primary har-
vesters of chinook salmon Oncorhynchus tshaw-
ytscha along the Pacific coast of Canada. Since
1985, the management of these fisheries has been
strongly influenced by conditions set by the Can-
ada-United States Pacific Salmon Treaty. One of
the conservation goals of the Pacific Salmon Trea-
ty was to double the spawning escapement of Strait
of Georgia and west coast of Vancouver Island
chinook salmon stocks by 1998 (Anonymous
1994). The mechanisms advanced for rebuilding
these chinook salmon stocks included reducing the
aggregate exploitation rate to achieve a reduction
of the harvest rate on individual stocks. To this
end the Pacific Salmon Commission (PSC) has
published detailed technical reports on chinook
salmon stock status on a stock-by-stock and year-
to-year basis. These reports provide composite
harvest rate indices (called fishery indices by the

PSC) obtained by analyzing the catch, the age
structure, and the stock composition of coded-
wire-tagged chinook salmon captured by specific
fisheries.

To date, the main preseason analytical tool used
to design and evaluate regulatory actions aimed at
reducing harvest rates, such as area closures, fish-
ing seasons, or size limit changes, has been the
troll fishery management model (English et al.
1987). This simulation model was designed around
the multispecies nature of the troll fishery because,
in addition to chinook salmon, these fisheries catch
varying numbers of coho salmon 0. kisutch, sock-
eye salmon 0. nerka, pink salmon 0. gorbusha,
and chum salmon 0. keta, as well as steelhead 0.
mykiss. Predictions were made about the amount
of fishing effort directed toward chinook salmon
and the resulting chinook salmon catch. These pre-
dictions are based on the amount of effort directed
at each species, as well as the predicted abundance
and price of each salmon species for the upcoming
season. Management decisions to achieve harvest
rate targets were based on the performance of the
simulations.
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et al. 1989) and that is general enough to be applied
to similar problems and under similar circumstanc-
es elsewhere. A particularly useful feature of our
model is that distinction of process error and mea-
surement error can improve a manager's under-
standing of the quality of the information collected
about a fishery.

Here we present a model where the only data
required are time series of total catch for those
species caught by the fishery, of fishing effort, and
of the harvest rate (or an index of it). For the time
period for which a forecast is to be made, the cu-
mulative in-season catch totals by all species and
cumulative fishing effort are required. The model
development is typical in that it requires that cer-
tain assumptions be made, both to develop a work-
able formulation and to fulfill the statistical con-
ditions of the model. We show how these as-
sumptions can be challenged retrospectively and
that the model can provide useful harvest rate fore-
casts by using the west coast of Vancouver Island
troll fishery and the Strait of Georgia sport fishery
as examples.

Harvest Rate Index Forecast Model

Development
An index of the instantaneous harvest rate,

Pt = r lOge( 1 -~) (1)

(Ricker 1975), where Ct is catch (numbers or
weight) and Nt is initial population size (numbers
or weight) for a discrete time period t, includes
the scaling parameter r because difficulty in mea-
suring Nt usually precludes calculation of an ab-
solute harvest rate. This harvest rate index is re-
lated to fishing effort (Et) by the axiomatic rela-
tionship

P, = qE, (2)

(Ricker 1975; Gulland 1983), where q is the catch-
ability coefficient.

Consider that competition among fishing vessels
(or other factors such as vessel capacity, species
value, etc.) can result in q varying among time
periods as a function of total effort within the time
period t as described by

In 1993, managers chose to link the conduct of
the fishery in terms of catch and effort directly to
harvest rate indices developed by the Pacific Salm-
on Commission. The management objective was
to ensure that harvest rates did not exceed those
of recent years, based on harvest rate indices pro-
vided the Chinook Technical Committee (CTC) of
the PSC. Thus, for managers to achieve a harvest
rate reduction on an annual basis, they would have
to anticipate the postseason harvest rate index for
the fishery, based on the recent harvest rate history
of the fishery and the anticipated performance of
the fishery in the current season. However, formal
analyses of stock composition data (i.e., spawning
stream, age, brood-year data) for the coastal and
Strait of Georgia chinook salmon fisheries are not
complete until the summer of the year following
a fishery. Thus an official PSC harvest rate index
for the previous year's fishery based on these data
cannot be produced in time for preseason man-
agement discussions.

This frustrating time delay in the calculation of
a harvest rate index for the chinook salmon troll
and sport fisheries of southern British Columbia
stimulated our search for a simple, general method
to rapidly and reliably forecast a harvest rate index
for one species in any multispecies fishery without
having at hand a detailed contemporary knowledge
of the stock composition of the species of interest.
The method we present in this paper to achieve
this goal has at least three benefits. First, for the
forecast year, only the catch of each species and
the effort expended (e.g., boat-days) are required.
Second, fewer assumptions are needed than in a
simulation approach like the troll fishery manage-
ment model mentioned above. That particular sim-
ulation model requires, among other things, pre-
dictions about prices paid to fishers for each spe-
cies and grade, assumptions associated with abun-
dance and cohort analysis, and specific predictions
about the effect of area or species closures. Third,
the model we propose has a statistical basis that
allows estimates of error, identification of the
source of the error (process error or measurement
error), and evaluation of model fit.

We used the approach of Schnute et al. (1989)
for solving this forecasting problem because of our
desire to forecast a harvest rate based on short time
series of historical harvest rates for which more
complex time series models (Box and Jenkins
1970; Hipel and McLeod 1994) would not be iden-
tifiable. Our purpose was to develop an a priori
identifiable model structure that could potentially
segregate measurement and process error (Schnute

q = KE'
t (3)

Typically one would expect ~ < 0, with q declining
with increasing effort. Brannian (1982) found such
a relationship between catchability and effort in
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the Togiak Bay, Alaska, sockeye salmon fishery,
and Peterman and Steer (1981) and Winter~ and
Wheeler (1985) used this functional form to relate
variability in catchability to stock abundance and
stock area, respectively. Combining equations (2)
and (3) gives

Error Structure

Deterministic models for biological systems are
generally imperfect because they are unable to in-
corporate sufficient realism, and the measured va1-
ues for model variables typically include error.
Models that include a statistical component to cap-
ture error tend to be preferred because they provide
an objective means to evaluate the precision, ac-
curacy, and repeatability of model performance.
Model error arising from a deficiency in the re-
alism of the model is process error, whereas 'error
arising from an inability to accurately measure the
value of a model variable is measurement error.

The model in equation (7) can be made sto-
chastic by adding process error, measurement er-
ror, or both. The incorporation of a measurement
error term acknowledges that we are probably un-
able to measure a perfectly predicted harvest rate
index (P ,) without random error. If we assume this
error enters the model multiplicatively we can de-
fine the observed harvest rate indices (I,) in terms
of the true harvest rate indices (P,) as

P, = KE!+t. (4)

From equation ( 4) we introduce the ratio model

El+t,p, = p, (5)
El+t t-l

with a one-time-period lag to relate changes in the
instantaneous harvest rate index to changes in ef-
fort from period t -1 to t.

Effort (E,) in time period t directed at anyone
species in a multispecies fishery is usually not re-
vealed in the unpartitioned effort data (B,) that is
typically recorded by fishery management agen-
cies. Therefore we propose the function

n
El+' = Bl+'exp ~ 'YjCj, (6)

It = Pte98, (8)

Alternatively, incorporating process error into the
model acknowledges that the model is randomly
imperfect and that the harvest rate indices (P J are
unlikely to be perfectly predicted. Model imper-
fections can arise from simplified functional re-
lationships, such as the models in equations (4)
and (6). By assuming that process error also enters
the model multiplicatively, we can define the ob-
served harvest rate indices (IJ in terms of the pre-
dicted harvest rate indices (P J as

/.=P e eE

t t (9)

The model and its possible error structures are
now stated. Taking the natural logarithms of equa-
tions (7) to (9) leads directly to the linear mea-
surement error model

with coefficients 'Yj to capture how interperiod
variation in the catch (Cj.t) ofthej = 1,. ..,n spe-
cies caught in the multispecies fishery, including
the species of interest, could proportionately affect
the amount of effort directed specifically at the
species of interest. Fishing effort expended to
catch species other than the species of interest will
reduce effort directed at that species. Likewise,
increased total effort (Et) directed at the species
of interest can potentially reduce effort directed at
that species because of increased handling time
required to cope with the quantities of fish caught.
In equation (6), C'j.t simply represents Cj.t scaled
to standard deviations (0") from the mean (fL) of
the historical catches over the time periods t =
1,2,. ..,f -1 with f being the time period for
which a forecast is to be made. This scaling does
not affect model predictions but has the useful
parameterization that Et = Et when Cj.t = fLj for
each species j.

The preceding model development leads to the
following deterministic expression for predicting
the instantaneous harvest rate index for a discrete
time period t or a forecast of the index for the
forecast time period t = f.

n
loge(P,) = lOge(P1) + L 'YM.j(C;t -C;1)

j~1

+ (I + 'M)[loge(B,) -loge(B1)]

and
loge(It) = loge(Pt) + e&tP, = P, (7)n

B (I+')exp L 'YjCj,/-1 .

1}-, where lOge(Pl) is a parameter to be estimated, and
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TM.t = ~O + W[TM.t -Tp.t + loge(It-l)]the linear process error model

n
loge(Pt) = loge(It-l) + ~ 'YP.)Cjt -Cjt-l)

j~1

+ (1 + tp)[loge(B,) -loge(B,-I)], (1Ia)
and

loge (I,} = loge(P,} + eE, (lIb)

1], = V(I

n

+ L [~)Cit -Cil) + ~n+)Cit- Cit-l)]

j~1

+ ~2n+l [loge(Bt) -loge(B1)]

+ ~2n+2[loge(Bt) -loge(Bt-l)]

+ ~2n+3 Vt + TJt' t > 1;

(J»)e[(l + (J»)8t -(J)8t-l]

+ -V;;;ee" (12b)

(12c)

Process Error and Measurement Error Model t>

TM.' = loge(I,} -[loge(B,) -loge(B1}]; and

Tp., = loge(I,) -[loge(B,) -loge(B,-I}],

t > I,

with variance components

Var[1J,] = @2[(1 + 00)(1 -002) + 002(1 -00) + 00],

(13a)

and

-e2(J)(1 -(J)2) (13b)COV[TJt. TJt+1J =

As captured in the definitions of TM.t (equation 12c)
and Tp.t (equation 12d), the full model contains the
following deterministic component:

(1 -(I))[loge(B,) -loge(B1)]

+ (I)[loge(B,) -loge(B,-1)]. (14)

Model predictions can be partitioned into this de-
terministic component and the stochastic compo-
nent represented by equations (4) and (6).

We also added the potential for a step interven-
tion (i.e., the term r;32n+3 V,). Such an intervention
would change the mean level of the time series of
predicted harvest rate indices, loge(P '), which
might not be otherwise explainable by our pro-
posed model structure (Hipel and McLeod 1994 ).
This could occur if, for example, a management
agency suddenly changed the way it collected
catch or effort data (or the way it calculated har-
vest rate indices) between two time periods t -1
and t. The covariate time series, V" of zeros (0)
and ones (1) is controlled by the analysts according
to whether they believe the intervention applies to
a time period t (V, = 1) or does not (V, = 0).

Multiple regression would not be prescribed for
this model if ° < (I) < 1 because the model errors
would be autocorrelated, though somewhat weakly
with a absolute value maximum of r = -0.22 when
(I) = 0.58. We therefore rely on the solution of

Both models above (equations 10 and 11) lend
themselves to multiple-regression analysis if cer-
tain statistical conditions can be met or satisfac-
torily approximated. One condition is that the
model residuals, loge(I,)-loge(P I)' are normal and
independently distributed. Another is that the de-
pendent variables of catch (Cj.l) and effort (B,) ide-
ally must have been measured without error. We
proceed under the assumption that both catch and
effort are measured with an unimportant amount
of error, particularly when compared with the error
associated with the predictions loge(P I). We justify
this by considering that both catch and effort are
censuses of information that fishers are obliged to
provide to the management agency. They are there-
fore likely to be measured with much less uncer-
tainty than the harvest rate indices these data are
used to predict. This assumption would have to be
rejected if a posteriori diagnostics of model fit cast
doubt upon it. In that case an errors-in-variables
modeling approach might be prescribed (see
Schnute et al. 1990; Schnute 1994).

Equations (10) and (11) can be combined to de-
fine one model that (1) includes both process error
and measurement error, (2) can predict the harvest
rate indices for time periods t = 2,3,. ..,1-1, and
(3) can forecast the harvest rate index for time
period I. By letting 00 represent the proportion of
total variance, 82 = E{[loge(I,)-loge(P,)]2} con-
tributed by process error and ( 1-00 ) the proportion
contributed by measurement error, we acknowl-
edge that both error components are likely to con-
tribute to the model error associated with the pre-
dictions loge (PI). If we combine the models in
equations (10) and (11) by (1) using 00 and (1 -00)
to represent the proportional contribution of the
process error and measurement error models, re-
spectively, (2) using ~s to represent confounded
parameters, and (3) expressing the model in terms
of observed harvest rate indices (loge(I,»,we get
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TABLE 1.-Official Canadian Department of Fisheries and Oceans statistics for effort (in boat-days) and catch (in
pieces) of chinook salmon, coho salmon, sockeye salmon, and pink salmon; and the Pacific Salmon Commission harvest
rate index for the west coast of Vancouver Island troll fishery.

Schnute et al. (1989). Our parameter (I) is related
to the parameter A of Schnute et al. (1989) by the

following quadratic relationship, A being the
smaller root of

I the analysts might consider that the model is
inadequately posed, especially if they insist that
model error be defined strictly in terms of process
error and measurement error. At this point, a wise-
ly chosen intervention might result in 0 :5 (I) :5 I.
Likewise, a parsimonious model with (I) = 0 (all
measurement error) or (I) = I (all process error)
might include the independent variables from the
alternate error model (equation 10 or II). In such
a case, one should think of the variables from the
alternate model as interventions.

0 = (I)(l -(I)2)~2 + (2(1)3 -2(1) -1)~

+ (I)(l -(1)2). (15)

To convert model forecasts, loge[Pfl, to arith-
metic harvest rate predictions, note that the ex-
pected value of an observed harvest rate index (Ift
is

Two Examples of Model Performance

To illustrate the model, we chose two salmon
fisheries for which the appropriate data are avail-
able. One fishery is the west coast of Vancouver
Island commercial troll fishery for which we had
data available data on catch, effort, and harvest
rate indices for 1979-1992 (Table 1; Figure 1).
Because of its high commercial value, chinook
salmon can be considered the target species in this
mu1tispecies fishery. Our other example is the
Strait of Georgia sport fishery. Historically chi-
nook salmon or coho salmon have been the target
species for the sport fishery (Argue et ai. 1983),
but in recent years, catches of sockeye salmon and
pink salmon have increased (Collicutt and Shard-
low 1990, 1992). For this fishery, we have data on
catch, effort, and harvest rate indices for 1980-
1991 (Table 2; Figure 2). Our analyses for both
examples considered only catches of chinook
salmon, coho salmon, sockeye salmon, and pink
salmon taken by both these fisheries. Chum salmon
and steelhead are excluded because of the small
nuIQbers of fish caught.

E[If] = PfeXp(~)
(16a)

with variance

V[lf] = PJexp(2Var['Tlf]) -PJexp(Var[1Jf]). (16b)

Log-normal confidence intervals for If can be con-
structed using equation (16) where Var[1Jf] can be
calculated using equation (20.34) of Zar (1984).

When interpreting the results of a particular
analysis, consider that if (I) in equation (12a) is
estimated to lie between zero and one (0 $ (I) $
I), then this can be interpreted as an estimate of
the proportion of model error attributable to pro-
cess error as defined by equation (12). If the con-
fidence limits for (I) include zero (0) or one (1),
then the analyst should consider parsimony and
reduce the model to a measurement error model
«I) = 0) or a process error «I) = 1) model. An

analyst is most likely to face this decision when
analyzing short time series or when a proposed
model has difficulty explaining the observed data.
When the value for (I) falls outside the range 0 to
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FIGURE 1.-Time series of (a) effort for those species retained in the models for the west coast of Vancouver
Island troll fishery and catches of (b) chinook salmon and (c) pink salmon.

caught. Catch for all five species of salmon and
steelhead appear on these sales slips. This formal
collection of catch and effort data provides a re-
liable and timely census of catch and effort for this
troll fishery. These same species are caught by the
Strait of Georgia sport fishery. Catch and effort
(boat-trip) statistics for this fishery have been ob-
tained since 1980 by creel survey. The estimation
errors for catch and effort calculated by this meth-
odology tend to be about 5-10% of the estimate
(Collicutt and Shardlow 1990, 1992).

Catch and Effort Data

As a condition of the license to fish, one copy
of each sales slip produced by the sale (delivery)
of salmon caught by a member of the troll fleet is
forwarded to the Canadian Department of Fish-
eries and Oceans Catch Statistics Unit. Each sales
slip documents the effort (i.e., the number of days
fished or boat-days) and the weight of each species
of salmon caught since the last delivery. Average
weight per fish factors are then used to convert the
weight of fish delivered to number of pieces
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TABLE 2.-Official Canadian Department of Fisheries and Oceans statistics for effort (in boat-trips) and catch (in
pieces) of chinook salmon, coho salmon, sockeye salmon, and pink salmon; the analyst's choice for an intervention
(VI); and a harvest rate index calculated using cohort analysis for the Strait of Georgia sport fishery.

moralities can be estimated. These data were used
in cohort analysis (Pope 1972) to calculate harvest
rates for age-3-5 chinook salmon caught in the
Strait of Georgia sport fishery. The harvest rates
calculated by this method were also scaled to ob-
tain an average harvest rate index of 1.0 over the
four PSC base years 1979-1982. Strait of Georgia
harvest rate indices were analyzed only for the
years 1980 and later because 1980 was the first
year sport effort data were collected by creel sur-
vey.

The harvest rate index series for both the west
coast of Vancouver Island troll fishery and the
Strait of Georgia sport fishery are calculated using
arithmetic harvest rates. Though we have previ-
ously defined It and Pt as instantaneous indices and
have developed the model on that basis, we justify
using these arithmetic indices by relying on the
similarity of the values for arithmetic and instan-
taneous indices when arithmetic harvest rates are
relatively low. The annual arithmetic harvest rates
for both of these example fisheries are generally
lower than 25% (Anonymous 1994: Appendix D),
justifying this assumption.

Harvest Rate Indices

The PSC publishes harvest rate indices for major
chinook salmon fisheries in British Columbia,
Washington, Oregon, and Alaska (e.g., Anony-
mous 1994). The PSC formally refers to these har-
vest rate indices as fishery indices. A fishery index
for a particular fishery is calculated by using the
exploitation rate estimates of individual chinook
salmon stocks that are exploited by a particular
fishery in a particular year. To calculate this index,
each fishery is declared to have a number of chi-
nook salmon indicator stocks identified by their
spawning stream. Mark-recovery and cohort anal-
ysis are used to estimate an exploitation rate for
those components of each indicator stock defined
by their age (3-5 years) and brood year. An un-
scaled chinook salmon exploitation rate for an en-
tire fishery (e.g., the west coast of Vancouver Is-
land troll fishery) is then calculated by weighting
the contributions to the fishery of each indicator
stock by age-class and brood year. These rates are
then scaled to obtain an average aggregate PSC
harvest rate index of close to 1.0 over the four
base years 1979-1982.

Harvest rate indices for Strait of Georgia chi-
nook salmon fisheries were generated by cohort
analysis without regard to the stock composition
or the explicit use of mark-recovery information
(A. W. Argue, unpublished data). Age-2 and older
chinook salmon from streams contributing to fish-
eries in the Strait of Georgia are primarily resident
in the strait until they mature and return to these
coastal streams to spawn (Argue et al. 1983).
Therefore, given estimates of catch at age and es-
capement for age-5 fish, natural mortality, net em-
igration from the Strait, and maturation rates for
age-3-4 fish, initial population sizes and fishing

Results

As Zar (1984) states for multiple regression,
there is no general rule for judging the "best" fit
of a model. Therefore, we used two criteria to
define the best fit. The best fit for our so-called
open model yielded the smallest unbiased mean
squared error among all possible candidate models
(i.e., including all four salmon species) without
consideration for parsimony. The best fit for our
parsimonious model required that all coefficients
(excluding the intercept 130) be significant at a=
0.05, irrespective of the value for the mean squared
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FIGURE 2.-Time series of (a) effort for those species retained in the models for the Strait of Georgia sport
fishery and catches of (b) chinook salmon and (c) pink salmon.

and (11) were retained in both model fits. The SEs
reported in Tables 3 and 4 are less than those that
would be reported for an equivalent multiple-
regression model (applicable only when 00 = O or
00 = 1) because Schnute et al. (1989) do not ac-
count for small sample bias in the estimate ofvari-
ance (@2). That measurement error dominates the
model error is consistent with the PSC harvest rate
indices and those derived using cohort analysis
having been calculated using uncertain data. For
both our examples, the accepted results depended
only on the time series of chinook salmon and pink

error. All accepted models using either criterion
for identifying the "best" fit passed a posteriori
diagnostics that tested the assumptions of normal
and independently distributed residual error and
no skewness.

Satisfying models were obtained using both cri-
teria for both the west coast of Vancouver Island
troll fishery and the Strait of Georgia sport fishery
when the complete data sets were analyzed (Tables
3, 4; Figures 3a, and 4a). For both fisheries, there
was statistical evidence only of measurement error
«(J) = 0), although terms from both equations (10)
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TABLE 3. -Model statistics for the west coast of Vancouver Island troll fishery data of Table I for 1979-1992

0.7685

0.0580

0.8265

0.2562
0.0064

0.93 <0.001
9

12

-0.976
0.0730

-0.600
0.279
0

0.12

0.03
0.06
0.03

<0.001
>0.05
<0.001
<0.001

Source of variation
Model
Residual
Total

Covariates

Intercept
Chinook salmon (Ct.t -Ct.t-1>
Pink salmon (C4.t -C4.1>
Pink salmon (C4.t -C4.t-l)
"'

Parsimonious model: 2 loge (likelihood) = -31.22

0.7360
0.0906
0.8265

0.3679

0.0091
0.89 <0.001~

10

12

-1.098
-0.651

0.265
0

0.13

0.06

0.03

<0.001
<0.001
<0.001

Source

Model

Residual

Total

Covariates

Intercept
Pink salmon (C4.t -C4.t)

Pink salmon (C4.t -C4.t-t>

"'

both models is that only the time series of chinook
salmon and pink salmon catches correlate with the
time series of harvest rate indices. Both the long-
term variation in chinook salmon or pink salmon
catch and the change since the previous year can
be correlated with year-to-year changes in the har-

salmon catches. The analyses of the Strait of Geor-
gia sport fishery (Table 4) required an intervention
time series (V,) starting in 1985 (see Table 2) with
132n+3 = 0.389 for the open model and 132n+3 =
0.484 for the parsimonious model.

The key interpretation of the fits obtained for

TABLE 4.-Model statistics for the Strait of Georgia sport fishery data of Table 2 for 1980-1991

Source or
covariate

Sum of

squares

Mean
square

coeffi-
cients

Approxi-
mate SEdf p p

Open model: -2 loge(likelihood) = -42.52

0.4751

0.0210
0.4960

5
5

10

0.0950
0.0042

0.96 0.002

0.450
0.178
0.082
0.156

-0.120
0.389
0

0.04
0.03
0.03

0.08
0.05
0.06

<0.001
<0.01
>0.05
>0.05
>0.05
<0.01

Source of variation
Model
Residual
Total

Covariates
Intercept
Chinook salmon (C"t -C"v
Chinook salmon (C"t -C"t-,;
Pink salmon (C4,t -C4,V
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Parsimonious model: -2 loge(likelihood) = -36.24
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0.93 <0.001
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a) Contemporary fit for 1980-1992
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FIGURE 3.-West coast of Vancouver Island troll fishery 1980 to 1992. (a) The values of loge[P,] predicted by
the model in Table 3 is compared with the observed values calculated by the Pacific Salmon Commission (loge[I,]).
(b) Observed value (loge[/,]) is superimposed upon the 95% confidence interval (CI, error bars) of the forecasted
value, loge[Pf]' for that same year. (c) Correlation between the forecasted value, loge[Pf]' and the observed value,
loge[/f]' for a given year, 1983-1992. The 1:1 line indicates a perfect forecast (i.e., loge[/f] = loge[Pf)). Open circles
indicate forecasts for the early years (1983 and 1984) when the degrees of freedom were smallest.
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a) Contemporary fit for 1981-1991
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4 is compared with the observed values calculated using cohort analysis (loge[I,]). (b) Observed value (loge[I,]) is
superimposed upon the 95% confidence interval (CI, error bars) of the forecasted value, loge[Pfl, for that same
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vest rate indices. The I-year lag coefficients dis-
connect time series data more historic than I year
from the harvest rate index for year t. This implies
that some characteristic of these fisheries is chang-
ing over time in a manner that prevents the long-
term trends in chinook salmon and pink salmon
catches from explaining the pattern in the harvest
rate indices over the same time period.

One interpretation of the fits to the west coast
of Vancouver Island troll fishery is that the im-
plementation of the Pacific Salmon Treaty in 1985
changed the dynamics of the fishery. This change
might have resulted in, for example, the troll fish-
ery directing more effort at pink salmon because
chinook salmon were made less attractive by the
treaty. Note that despite huge biannual variability,
landings of pink salmon appeared to be declining
until about 1984, at which point they seemed to
level off (Table I; Figure Ic). Effort also tended
to stabilize after 1985 (Table I; Figure la). For
the Strait of Georgia sport fishery (Table 4; Figure
4a), inserting a step intervention (Hipel and
McLeod 1994) between 1984 and 1985 dramati-
cally improved the model. This implies that an
abrupt event occurred between 1984 and 1985 that
was not captured in the independent time series
candidates for the model. Although there is no
need to explain the underlying cause that leads to
this intervention in order to validate the model in
a statistical sense, it would be more satisfying to
propose a plausible explanation. Again, the im-
plementation of the Pacific Salmon Treaty in 1985
is one such proposal, although the catch trends
portrayed in Figure 2 do not suggest to us a specific
mechanism.

model we proceeded by blindly generating a har-
vest rate index forecast for each past year (1) where
there were sufficient data for years up to I, the
forecast year. For the parsimonious model we ac-
cepted the covariate series suggested by the anal-
yses of all available data presented in Tables 3 and
4 and used only those series (pink salmon catches
for the west coast of Vancouver Island troll fishery
and chinook salmon catches for the Strait of Geor-
gia sport fishery) to generate retrospective fore-
casts. Then to judge model performance we for-
mally compared those values for loge(lt> forecast-
ed in year 1 = I -1 to those values obtained in
year 1 = I, for all years 1980 and later where the
degrees of freedom were greater than zero (1983
and 1984 for the west coast of Vancouver Island
troll fishery and the Strait of Georgia sport fishery,
respectively ).

Our results for both examples demonstrate that
we have identified useful forecast models and that
both the deterministic and stochastic components
of the model contribute to model success. Not sur-
prisingly, the reliability of a forecast increased rap-
idly as the degrees of freedom rose. Figures 3b
and 4b indicate that the forecasts of loge (It> tended
to fall within the 95% confidence interval for the
forecasts starting in 1985 for the west coast of
Vancouver Island fishery and starting in 1987 for
the Strait of Georgia sport fishery. This indicates
that as the lengths of the time series increase, the
model shows statistical improvement (i.e., a nar-
rowing of forecast confidence intervals). Another
indicator of model performance is the correlation
between forecasted and observed harvest rate in-
dices. We obtained the best correlation between
forecasted and observed values of loge(lt> (0.94
for the west coast of Vancouver Island troll fishery,
0.90 for the Strait of Georgia sport fishery, Table
5) for the later years and when using the most
parsimonious model identified using all available
data (Tables 3, 4; Figures 3c, 4c). Regression of
the observed values on forecasted values for these
time periods detected neither absolute nor relative
bias in the forecasts (Schnute et al. 1990). A pos-
teriori diagnostics detected neither autocorrelation
nor skewness among the model residuals.

One contrast between the model for the west
coast of Vancouver Island troll fishery and the
Strait of Georgia sport fishery is that the success
of the former model is due mainly to identification
of the stochastic component of the model, whereas
the success of the latter model is due mainly to
the deterministic component of the model (i.e., that
component related to changes in total effort, equa-

Validation

The results we obtained for the west coast of
Vancouver Island troll fishery and the Strait of
Georgia sport fishery (Tables 3, 4; Figures 3, 4a)
demonstrate an ability to identify statistical cor-
relations between catch, effort, and harvest rate.
However, this result alone does not constitute a
test of the model's utility for forecasting harvest
rate indices. We validated the model's forecasting
ability by retrospectively and blindly obtaining
"best" fits, as defined by our two previously stated
criteria, to the historical data for the two examples
we presented. Because we were primarily inter-
ested in evaluating how the multispecies nature of
these fisheries relates to chinook salmon harvest
rate, we took advantage of hindsight and included
the intervention time series, V, , in the analyses for
the Strait of Georgia sport fishery. For the open
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TABLE 5.-Correlations between forecasted, loge(PJ,
and observed, loge(IJ, values of the naturallogaritbrns of
the harvest rate index for the west coast of Vancouver
Island troll fishery and the Strait of Georgia sport fishery.
For any forecast year, the open model is that chosen based
on the minimum mean squared error of competing models
without consideration for parsimony. The parsimonious
model is that model fit to the complete data set for each
fishery for which all coefficients are significant when a=
0.05 (Tables 3 and 4). The .'stochastic" component of the
model is that due to the processes represented by equations
(4) and (6); the "full" model includes the deterministic

component (equation 14).

tion and reporting of catch and effort information.
An analyst could also informally use adjunct his-
torical information on in-season effort patterns or,
for our examples, salmon run-timing to anticipate
total effort to some point in the season, then use
that information to generate a corresponding har-
vest rate forecast. Decisions to control effort could
be made in light of harvest policy, confidence in
the forecast model and its forecasts, and the time-
liness of the catch and effort information.

Conclusions

We have shown that harvest rate indices cal-
culated independently of knowledge of the catch
and effort statistics of a fishery could have been
reliably predicted and forecasted from those catch
and effort statistics. Further, the potential to iden-
tify the nature of model error can contribute to a
fishery manager's understanding of the fishery's
dynamics and also the quality of the data used to
manage the fishery. If this model structure had
been used to forecast harvest rate indices for the
west coast of Vancouver Island troll fishery from
1985 until 1992 and the Strait of Georgia sport
fishery from 1987 to 1992, it would have per-
formed well. The model has thus withstood the
scrutiny of retrospection. Four requirements for
identifying a usable model have therefore been
met: a model structure was identified, the values
for coefficients were estimated, diagnostics to val-
idate assumptions were passed, and retrospective
analysis to assess model utility were satisfying.
These retrospective analyses did not cast doubt
upon our assumption that the time series of Bt and
Cj,t are adequate measurements of effort and catch.

The good performance of the model for our two
examples would justify its continued use by a fish-
ery manager if they were confident that the char-
acteristics of a particular fishery and related data
collection had not changed. This cannot always be
guaranteed, however; indeed, the examples we use
seem to indicate that implementation of the Pacific
Salmon Treaty in 1985 altered certain character-
istics of these fisheries. There can be other subtle
influences. For example, using the model to justify
controls on effort in order to achieve a certain
harvest rate could result in a change in the char-
acteristics of 11 fishery as fishers attempt to counter
the management measures. Nevertheless, we think
that the model structure introduced in this paper
can be useful to managers requiring a tool to assist
them in achieving a harvest rate target for one
species in a multi species fishery. Model covariates
and their coefficients would have to be chosen ob-

Full

0.62

0.90

0.78

0.96

Open model
1982-1992
1985-1992

Parsimonious model

1983-1992
1985-1992

0.71

0.89

Strait of Georgia

0.90
0.94

0.34
-0.10

0.63
0.90

Open mode!
1983-1991

1987-1991
Parsimonious mode!

1984-1991
1987-199!

0.26
0.06

0.59
0.90

tion 14). The parsimonious model of the Strait of
Georgia fishery during 1987-1991 could attribute
only 6% of the variance of the loge(l,)s to iden-
tification of the stochastic component of the model.
The full model accounted for 90% (Table 5). This
occurs despite the parsimonious analysis of Table
4 indicating that the time series of chinook salmon
catches relates significantly to the loge(l,)s. In con-
trast, the parsimonious model of the west coast of
Vancouver Island troll fishery attributed 89% of
the variance of the loge(l,)s during 1985-1992 to
the stochastic component of the model (Table 5).

In-Season Forecasting

Equation (6) guarantees that an increase in total
effort in the forecast year (Bft will cause a mono-
tonic increase in directed effort (Eft and, therefore,
also in the forecasted harvest rate index. Figure 5
demonstrates how weekly harvest rate index fore-
casts for the west coast of Vancouver Island troll
fishery will monotonically increase with increas-
ing total effort within the forecast season. Thus,
up-to-date information on total effort expended
and cumulative in-season catch will facilitate a
forecast of the harvest rate index to that point in
the season, notwithstanding delays in the collec-
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FIGURE 5.-Weekly in-season harvest rate index forecasts for the west coast of Vancouver Island troll fishery
in 1992- Also shown are the weekly cumulative boat-days and chinook salmon and pink salmon catches upon
which the forecasts are based.

jectively and a retrospective analysis performed.
A risk-averse approach to model use would see it
applied to avoid unacceptably high harvest rates,
given the explicit uncertainty in model forecasts.
If a manager were to use a forecast to justify a
control on effort, the manager would have to eval-
uate the future benefit of a conservative harvest
rate against the consequences of an inaccurate
forecast that forgoes catch.
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