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Revisiting the method of cumulants for the analysis of
dynamic light-scattering data

Barbara J. Frisken

The method of cumulants is a standard technique used to analyze dynamic light-scattering data mea-
sured for polydisperse samples. These data, from an intensity–intensity autocorrelation function of the
scattered light, can be described in terms of a distribution of decay rates. The method of cumulants
provides information about the cumulants and the moments of this distribution. However, the method
does not permit independent determination of the long-time baseline of the intensity correlation function
and can lead to inconsistent results when different numbers of data points are included in the fit. The
method is reformulated in terms of the moments about the mean to permit more robust and satisfactory
fits. The different versions of the method are compared by analysis of the data for polydisperse-vesicle
samples. © 2001 Optical Society of America

OCIS codes: 120.5820, 290.5870.
1. Introduction

The method of cumulants1 for the analysis of dynamic
ight-scattering ~DLS! data was first introduced by

Koppel in 1972. He showed that the logarithm of
the field–field correlation function is equivalent to the
cumulant-generating function. Information about
the cumulants of the distribution of decay rates can
thus be obtained from the correlation function mea-
sured for polydisperse samples.

The method, as commonly used,2–5 allows the log-
arithm of the field-correlation function to be written
in terms of a polynomial in the delay time t, which is
a function that can be fitted easily by use of linear
least-squares techniques. This function has several
disadvantages. Most remarkably, parameters ob-
tained in the fits are not invariant as more data
points are included. In addition, fitting this function
requires that the long-time baseline of the intensity
correlation function be an assumed rather than a
floating parameter. Using the baseline as a floating
parameter makes it possible to detect problems in the
data and to fit data when a little bit of noise is
present.
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The ubiquitous use of nonlinear fitting routines
makes formulation in terms of a polynomial unnec-
essary. Reformulating the method in terms of the
moments of the distribution rather than of the cumu-
lants results in more satisfactory and robust fits and
permits independent fitting of the long-time baseline.
Furthermore, it is not necessary to limit the fit to a
restricted range of the data. In this paper data from
measurements of polydisperse lipid vesicles are used
to highlight the differences between the traditional
and the reformulated versions of the method. Like
the original cumulant method, this reformulated mo-
ment method is most reliable for monomodal decay-
rate distributions of finite width.

2. Theory

A. Dynamic Light Scattering

DLS measurements involve the analysis of the time
autocorrelation function of scattered light as per-
formed by a digital correlator. The normalized time
autocorrelation function of the intensity of the scat-
tered light g~2!~t! for a given delay time t is given by2

g~2!~t! 5
^I~t!I~t 1 t!&

^I~t!&2 , (1)

where I~t! and I~t 1 t! are the intensities of the scat-
tered light at times t and t 1 t, respectively, and the
braces indicate averaging over t.

In most cases of practical interest the intensity–
intensity time autocorrelation function may also be
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expressed in terms of the field–field time autocorre-
lation function g~1!~t! as

g~2!~t! 5 B 1 b@ g~1!~t!#2, (2)

with g~1!~t! given by

g~1!~t! 5
^E~t! E*~t 1 t!&

^E~t! E*~t!&
, (3)

here E~t! and E~t 1 t! are the scattered electric
elds at times t and t 1 t, respectively, and b is a
actor that depends on the experimental geometry.
quation ~2! is known as the Siegert relation.6 The

factor B, commonly referred to as the baseline, is the
long-time value of g~2!~t!. Although the factor B
should be equal to one, in practice, a small amount of
noise in the measurement can result in values that
differ from unity by small ~;1024! amounts. In this
case assuming that the baseline is one changes the
parameter estimates and increases the deviation of
the fit from the data. Larger deviations of the base-
line from one can indicate that there is a problem
with the data.

For monodisperse particles in solution the field-
correlation function decays exponentially, g~1!~t! 5
exp~2Gt!, with a decay rate of G 5 Dq2, where D is the
diffusion coefficient of the particles and q is the mag-

itude of the scattering wave vector. The scattering
ave vector q is defined as the difference between the

ncident and the scattered wave vectors, and its mag-
itude q is given by

q 5
4pn
l0

sinSu

2D , (4)

where n is the refractive index of the solvent, l0 is the
wavelength of the laser in vacuum, and u is the scat-
tering angle. The Stokes–Einstein relation, D 5
kBTy6phRh, where kB is Boltzmann’s constant, T is
he temperature, and h is the dynamic viscosity, re-

lates the diffusion coefficient to the hydrodynamic
radius Rh of the particles. For a polydisperse sam-
ple, g~1!~t! can no longer be represented as a single
xponential and must be represented as a sum or an
ntegral over a distribution of decay rates G~G! by

g~1!~t! 5 *
0

`

G~G!exp~2Gt!dG, (5)

here G~G! is normalized so that

*
0

`

G~G!dG 5 1. (6)

B. Method of Cumulants

Finding the precise functional form for the distribu-
tion of decay rates G~G! is problematic because the
correlation function is measured discretely only over
an incomplete range of t and there is always noise
associated with the data.3 There are several ways of

sing DLS data to characterize G~G!,3 but one of the
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simplest is the method of cumulants first proposed by
Koppel.1 This method is based on two relations:
one between g~1!~t! and the moment-generating func-
tion of the distribution, and one between the loga-
rithm of g~1!~t! and the cumulant-generating function
of the distribution. It is appropriate only for use in
cases in which G~G! is monomodal.

In fact, as was discussed by Koppel,1 the form of
g~1!~t! as given in Eq. ~5! is equivalent to the definition
f the moment-generating function M~2t, G! of the
istribution G~G! ~Ref. 7!:

M~2t, G! 5 *
0

`

G~G!exp~2Gt!dG ; g~1!~t!. (7)

The mth moment of the distribution mm~G! is given by
the mth derivative of M~2t, G! with respect to t:

mm~G! 5
dmM~2t, G!

d~2t!m U
2t50

5 *
0

`

G~G!Gm exp~2Gt!dGu2t50. (8)

Similarly, the logarithm of the field-correlation func-
tion is equivalent to the definition of the cumulant-
generating function7 K~2t, G!

K~2t, G! 5 ln@M~2t, G!# ; ln@ g~1!~t!#, (9)

where the mth cumulant of the distribution km~G! is
iven by the mth derivative of K~2t, G!:

km~G! 5
dmK~2t, G!

d~2t!m U
2t50

. (10)

By making use of the fact that the cumulants, except
for the first, are invariant under a change of origin,
one can write the cumulants in terms of the moments
about the mean as

k1~G! 5 *
0

`

G~G!GdG ; G# , (11)

k2~G! 5 m2, (12)

k3~G! 5 m3, (13)

k4~G! 5 m4 2 3~m2!
2 . . . , (14)

where mm are the moments about the mean, as de-
fined by

mm 5 *
0

`

G~G!~G 2 G# !mdG. (15)

The first cumulant describes the average decay rate
of the distribution. The second and the third cumu-
lants correspond directly to the appropriate moments
about the mean: The second moment corresponds to
the variance, and the third moment provides a mea-
sure of the skewness or asymmetry of the distribu-
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tion. The first two cumulants must be positive, but
the third cumulant can be positive or negative.

The basis of the cumulant expansion that is usually
used in the analysis of DLS data lies in expanding
the logarithm of g~1! in terms of the cumulants of the
distribution. This relation follows from the fact that
the mth cumulant is the coefficient of ~2t!mym! in the
Taylor expansion of K~2t, G! about t 5 0, as given by

ln@ g~1!~t!# ; K~2t, G!

5 2G# t 1
k2

2!
t2 2

k3

3!
t3 1

k4

4!
t4 . . . . (16)

To take advantage of this form and use linear least-
squares methods to fit this function to the data re-
quires that a key assumption be made about the data:
The baseline must be assumed to be exactly one.
Then a fit can be made to

ln@ g~2!~t! 2 1# 5 ln
b

2
2 G# t 1

k2t
2

2!
2

k3t
3

3!
1 . . . .

(17)

Equation ~17! is the traditional fitting function that is
described in many DLS texts.3–5

Although most modern correlators do an excellent
job of measuring the baseline, small amounts of noise
can lead to small deviations from unity. Nonlinear
fitting routines permit the possibility of fitting the
data to g~2! directly. From Eq. ~17!, we obtain

g~2! 5 B 1 b expS22G# t 1 k2t
2 2

k3

3
t3 . . . D . (18)

Using the form of Eq. ~18! makes it possible to deter-
mine B from the data.

One can also express the field-correlation function
in terms of the moments about the mean by first
rewriting exp~2Gt! in terms of its mean value:

exp~2Gt! 5 exp~2G# t!exp@2~G 2 G# !t#. (19)

By substituting Eq. ~19! into Eq. ~5!, we obtain

g~1!~t! 5 exp~2Gt! *
0

`

G~G!exp@2~G 2 G# !t#dG. (20)

The exponential function inside the integral in Eq.
~20! can be expressed as a series expansion:

g~1!~t! 5 exp~2G# t! *
0

`

G~G!F1 2 ~G 2 G# !t

1
~G 2 G# !2

2!
t2 2

~G 2 G# !3

3!
t3 1 . . . GdG.

(21)

his expansion is exact as long as all terms in the
xpansion are included. After integration the corre-
ation function can be expressed in terms of the mo-
ents about the mean, as defined in Eq. ~15!:

g~1!~t! 5 exp~2G# t!S1 1
m2

2!
t2 2

m3

3!
t3 1 . . . D .

(22)

Expression ~22! was derived by Pusey et al.,8 but they
ent on to expand the logarithm of Eq. ~22! to obtain
function for ln@g~1!~t!#. This expansion adds an

extra approximation to the derivation that is unnec-
essary. Instead, the moment-based expression for
g~1! @Eq. ~22!# and the Seigert relation @Eq. ~2!# can be

sed directly to derive a third expression for g~2!:

g~2! 5 B 1 b exp~22G# t!S1 1
m2

2!
t2 2

m3

3!
t3 . . . D2

.

(23)

he form of Eq. ~23! also permits the direct fitting of
and has the advantage that it eliminates stability

roblems that are inherent to Eq. ~18! at large t.

3. Testing the Model Functions

The three model functions of Eqs. ~17!, ~18!, and ~23!
ith terms up to the second moment about the mean
2 were fitted to data measured from palmitoyl-oleoyl

phosphatidylcholine ~POPC! vesicles formed by ex-
trusion through polycarbonate membranes with
200-nm pores at an extrusion pressure of 35 psi
~2.4 3 105 Pa!.9 The apparatus used for the light-
scattering experiments was a Model ALV DLSySLS-
5000 ~ALV-Laser GmbH, Langen, Germany! that
used a He–Ne laser as the light source. Figure 1
shows results of a measurement in which light scat-
tered by the sample was collected at 90° from the
transmitted beam. The model functions were fitted
to the data by use of nonlinear fitting routines;
weights were calculated from standard deviations
provided by the ALV-Laser software. Fits were

Fig. 1. Sample data taken for POPC vesicles formed by extrusion
through polycarbonate membranes. The curve through the data
is a fit of Eq. ~23! to the data. The dashed curve shows the
weighted residuals: the difference of the fit from the data divided
by the uncertainty in each point.
20 August 2001 y Vol. 40, No. 24 y APPLIED OPTICS 4089
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made to data corresponding to delay times of 6.4 ms to
maximum times ranging from 0.31 to 200 ms. It is
traditional to fit the cumulant function to data to the
point at which the amplitude has fallen to 10% of the
original amplitude, which would be 1.84 ms for these
data. The fit shown in Fig. 1 is a fit of Eq. ~23! to
data from t 5 6.4 ms–13.1 ms. The correlation time
of t# 5 1yG# for these data is approximately 1.23 ms.

The results for the traditional fitting function, as
given by Eq. ~17!, are shown in Table 1. Results for
the three parameters b, G, and k2 5 m2 are not stable
in the sense that the parameters vary as the number
of data points included in the fit is changed. The
standard error in the parameters is shown as a sub-
script in the appropriate decimal place. The table
also includes results for the usual goodness-of-fit pa-
rameter x2, defined by

x2 5
1

N 2 m (
i51

N ~ yi 2 fi!
2

si
2 , (24)

where N is the number of data points, m is the num-
ber of parameters, and yi, fi, and si are the data, the
fit, and the uncertainty in the data, respectively, at a
given delay time ti.

The results for the second model function, as given
in Eq. ~18!, are shown in Table 2. This function is
difficult to fit at small delay times because B is not
pecified, and it is difficult to fit at large delay times
ecause the positive term in the exponential that is
ncreasing as t2 makes the function unstable for large
. In the region in which a fit is obtained the pa-
ameters vary as more data points are fitted so that

through 200-nm Poresa

tmax

~ms! b x2
G

~1yms!
m2

~1yms2!

0.20 2.64 0.37533 0.921 0.21

0.41 2.22 0.37502 0.9134 0.112

0.82 2.29 0.37501 0.9082 0.0855

1.64 12.6 0.37403 0.9002 0.0702

3.27 620 0.3702 0.8605 0.0233

aThe subscripts refer to the error in the final digit of the param-
ter. The parameter B is assumed equal to 1. The fit was made
o data ranging from 6.4 ms to a maximum delay time tmax.

Table 2. Fit of Eq. ~18! to DLS Data for POPC Vesicles Extruded
through 200-nm Poresa

tmax

~ms! x2 B b
G

~1yms!
m2

~1yms2!

1.64 0.227 0.9962 0.3792 0.9033 0.122

3.28 0.213 0.99843 0.37704 0.9062 0.1015

6.55 0.284 0.99961 0.37542 0.9051 0.0824

13.11 0.308 0.99981 0.37511 0.9001 0.0763

26.2 0.486 1.00011 0.37452 0.9001 0.063

52.8 Unstable Unstable Unstable Unstable Unstable

aThe subscripts refer to the error in the final digit of the param-
ter. The fit was made to data ranging from 6.4 ms to a maximum
elay time tmax.
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no satisfactory determination of the polydispersity, in
particular, can be made.

The results for the third model function, as given in
Eq. ~23!, are shown in Table 3. Again, the function
s hard to fit at small delay times, but as soon as the

aximum delay time is greater than a time corre-
ponding to several correlation times the parameters
re well determined with minimal variation as the
umber of data points fitted increases. As well as
oing a better job of determining the parameters, the
hird model function is also much more robust; bad
uesses of the initial parameters still lead to quick
onvergence to the solution. Table 4 compares the
umber of iterations required for convergence from
ifferent starting parameters by use of Eqs. ~18! and
23!.

The difference in effectiveness among the fitting
unctions is due to the different expansions used.
ne derives the expansion in terms of cumulants, Eq.

16!, by making an expansion about t 5 0. Thus Eq.
16! is accurate only near t 5 0, not very useful if one
ishes to fit the whole data set to obtain as much

nformation from it as possible. In contrast, one de-
ives the expansion in terms of moments about the
ean, Eq. ~22!, by making an expansion about G# .
quation ~22! should be most accurate near G# ; this
eems a more appropriate point of expansion when
rying to determine the distribution function.

through 200-nm Poresa

tmax

~ms! x2 B b
G

~1yms!
m2

~1yms2!

1.64 0.227 0.9981 0.3781 0.9072 0.121

3.28 0.211 0.99912 0.37603 0.9081 0.0995

6.55 0.253 0.99981 0.37532 0.9071 0.0874

13.11 0.265 0.99991 0.37512 0.9071 0.0834

26.2 0.379 1.000077 0.37502 0.9072 0.0804

52.8 0.421 1.000046 0.37502 0.9072 0.0814

105.3 0.525 1.000015 0.37502 0.9072 0.0825

aThe subscripts refer to the error in the final digit of the param-
ter. The fit was made to data ranging from 6.4 ms to a maximum
elay time tmax.

Table 4. Comparison of the Robustness of the Fits of Model Function
2 @Eq. ~18!# and Model Function 3 @Eq. ~23!# to DLS Data for POPC

Vesicles Extruded through 200-nm Poresa

Model
Function

Number of Iterations
Required for
Convergence

Initial G
~1yms!

Initial m2

~1yms2!

2 3 1 0.1
2 20 2 0.1
2 16 1 0.2
2 8 1 0.01
3 3 1 0.1
3 6 2 0.1
3 3 1 0.2
3 3 1 0.01

aInitial values of B 5 1.0 and b 5 0.4 were used in all cases.
The fits were made to data ranging from 6.4 ms to 6.55 ms.
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In principle, a fit that uses Eq. ~23! could include
m3. For the vesicle data, including m3 sometimes
decreases x2 but sometimes increases it; this param-
eter does not seem to be significant for these data.
Furthermore, use of m3 does not change the values of
the other parameters significantly in these fits.

4. Conclusions

Data from polydisperse samples as measured in DLS
experiments can be analyzed in terms of the moments
about the mean of the distribution function that de-
scribes the polydispersity of the sample. The tradi-
tional fitting function, as derived from the cumulants
of the distribution, has several problems associated
with it: It results in parameter values that depend
on the number of data points fitted, and it does not
permit an independent fit of the baseline B. This
paper has demonstrated how a more robust fitting
function can be obtained by the avoidance of the log-
arithm of g~1!~t! and the direct expansion of g~1!~t! in
terms of the moments about the mean. The function
can be fitted to the entire data set, gives consistent
results for fitting parameters when different num-
bers of points are fitted, is more robust to bad guesses
of the initial parameters, and permits an indepen-
dent fit of the baseline B.
The author gratefully acknowledges helpful discus-
sions with Art Bailey.
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