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The equilibrium shapes of fluid-phase phospholipid vesicles in an aqueous solution are controlled
by bending elasticity. The regime of nonvesiculated shapes at reduced volume v > 1/ v/2 involves the
interplay of five branches of distinct stationary shapes: pears, prolates, oblates, stomatocytes, plus
a branch of nonaxisymmetric shapes with the symmetry Dz,. We exploit a method for calculating
explicitly the stability of arbitrary axisymmetric shapes to map out in a numerically exact way
both the stable phases and the metastability of the low-lying shape branches. To obtain additional
required information about nonaxisymmetric shapes, we calculate these by numerical minimization

of the curvature energy on a triangulated surface.

Combining these two methods allows us to

construct the full (shape) phase diagram and the full stability diagram in this region. We provide
explicit results for values of the bending constants appropriate to stearoyl-oleoyl-phosphatidylcholine;

generalization to other values is straightforward.
PACS number(s): 87.10.+e, 68.10.—m, 82.70.—y

L. INTRODUCTION

Fluid-phase phospholipid bilayer vesicles of spherical
topology are observed to exhibit a variety of shapes [1-9].
Many shape classes were originally identified in a seminal
theoretical paper by Deuling and Helfrich [10], based on
the insight [11,12] that bilayer curvature energy is a key
component of the energy functional that controls vesi-
cle shape. Shape classes include elliptical shapes (both
prolate and oblate), exhibiting up-down (reflection) sym-
metry, and the corresponding shapes (usually referred to
as “pears” and “stomatocytes”) in which this symme-
try is broken. There are also regions of the phase dia-
gram in which nonaxisymmetric elliptical shapes of Dzp
symmetry [3,13] or even “starfish” with D,p symmetry
(including n = 7!) [14, 15] are known to be stable. Fi-
nally, there are regions where the lowest-energy shapes
are “vesiculated,” consisting of two or more of these ele-
mentary shapes attached at narrow necks [16, 17].

Shape transitions between these classes occur when the
overall energy minimum shifts from one shape class to
another as a function of some control parameter, such
as the overall area A or volume V of the vesicle. These
transitions are, in principle, only sharp at temperature
T = 0; nevertheless, for typical phospholipid systems,
the energy scale of the shape-energy “landscape” is ap-
preciably larger than kgT, so transitions are normally
sharp and well defined. Transitions may generically be of
two types: When the ground state bifurcates, the tran-
sition is “second order,” and the vesicle shape changes
continuously. When the transition occurs as a result of
the crossing of two distinct levels, it is “first order,” and
the vesicle shape changes discontinuously. Metastability
and hysteresis often occur at first-order transitions, be-
cause energy barriers are commonly appreciably larger
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than kgT. In this situation, the metastable shape will
continue to be locally stable well beyond the nominal
transition, up to a point where the energy barrier out of
the local minimum becomes comparable to kpT'. This oc-
curs at a “spinodal” bifurcation of the metastable state,
where a fluctuation mode becomes “soft” [9].

The “phase” diagram of vesicle shape is defined by the
locus of points where level crossings and bifurcations oc-
cur in the appropriate space of control parameters. Re-

~ gions of this phase diagram have been explored theoret-

ically over the last few years [3,7, 13,16, 18-20]. Other
regions, especially those at low reduced volumes, remain
difficult with our present theoretical and computational
capabilities.

It is the purpose of this paper to exhibit the most
complete and exact phase diagram yet available for vesi-
cles with parameters relevant to recent stearoyl-aleoyl-
phosphatidylcholine (SOPC) experiments [2, 8, 9] in the
context of the so-called area-difference-elasticity (ADE)
model [7,19-21]. In particular, we will describe the neigh-
borhood of the oblate-prolate transition and its connec-
tion to the region of nonaxisymmetric shapes (includ-
ing associated spinodal instability boundaries) more com-
pletely and more exactly than has previously been pos-
sible.

Based on a technique developed by one of us for the
treatment of Gaussian fluctuations subject to hard con-
straints [22], we have constructed a protocol [23] for test-
ing the stability of axisymmetric shapes to perturbations
of arbitrary symmetry. This allows us to establish cleanly
for the first time the loci of instability of both oblates
and prolates to nonaxisymmetric perturbations generally
and, in particular, to those of Dz, symmetry, which play
an important role around the point at which the prolate,
oblate, and nonaxisymmetric phases meet. The only pre-
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viously published work in this central region of the phase
diagram is the important paper of Heinrich, Svetina, and
Zeks [20], who expand in a basis of spherical harmonics
about the sphere and then use a variational procedure to
find stationary-energy shapes [24]. It was known on the
basis of work by Seifert, Berndl, and Lipowsky [13] that
there is a region of the phase diagram for which no ax-
isymmetric shapes are stable and, indeed, these authors
speculated that the shapes in this region were elliptical
with three unequal axes. However, Ref. [20] established
the existence of the low-lying D5y, branch and the manner
in which it bifurcates from the axisymmetric branches.
A stability analysis cannot provide any information
about the shape that replaces a locally unstable axisym-
metric shape (other than its symmetry in the case of a
continuous transition, as discussed below). At present,
there is no algorithm for integrating the shape equations
[25] for nonaxisymmetric shapes, and the only available
procedure is brute-force energy minimization over a tri-
angulated surface. The best version of this approach now
uses up to 4000 grid points and is capable of finding many

of the complex shapes that inhabit the regime of low re-

duced volume [26, 27]. However, the time required for
high-precision data is almost prohibitive. In the present
paper, we employ this method to calculate some selected
nonaxisymmetric Dsj shapes and the transitions involv-
ing these shapes. By using these data together with that
obtained from the stability approach, we obtain a de-
tailed quantitative phase diagram. o

In Sec. I, we remind the reader of the essential ingre-
dients of the ADE model [7, 19-21] and how it may be
solved for axisymmetric shapes. We include a brief dis-
cussion of the protocol for locating instabilities, which is
based on a complete calculation at the Gaussian level of
the static fluctuation spectrum of an arbitrary axisym-
metric shape subject to constraints [22, 23] of fixed over-
all volume V and area A. We also give a brief comment
on the shape-energy minimization routine that we used
to calculate the nonaxisymmetric shapes. Section III
presents our results for the phase diagram and its as-
sociated spinodals. It gives a careful discussion of the
relevant global structure of the space of stationary states,
including a description at the Landau-theory level of the
important bifuractions.
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| H=3(C1+Cy) @)

is the local mean curvature. The integral is over the

__entire vesicle surface. The second term represents the

elastic energy cost of forcing the actual area difference,

AA[S] = 2D f dAH(r), 3)

between the two leaves of the bilayer to differ from its
relaxed value [29] A4,. & is the so-called nonlocal bend-
ing modulus, and D is the thickness of the bilayer. %
and & have units of energy. They are generically of the
same order of magnitudé [7], and we denote their dimen-
sionless ratio, @ = &/k. The energy scales for changing
overall area and volume are much larger than the energy
scale k, so we consider only shapes S of given A and V.
Once A is fixed, it is convenient to define a length scale
R4 based on the definition 4 = 41er,_ and to reexpress
the problem in terms of dimensionless variables. Thus,

v=3V/4rRy, (4)

Co = RACO, (5)

m[S]= AA/2DR,4, (6)
and

mo = AA/2DR, (7)

are suitably reduced versions of the volume, spontaneous
curvature, area difference, and relaxed area difference,
respectively. In terms of these convenient variables, one

finds
WIS] = & (G181 + 5 (m[S] = mo)? + o)
where

G'[S] =

and

(8)

1

: f dA(2H)? ©)

Mg = g + 2co/ cx.

(10)

"~ The constant wp, which is independent of S, can be ig-

II. BACKGROUND

A. The ADE model
The ADE model is defined by a functional [7],

wis|== }{ dA[Cy(r) + Ca(r) — Co]?

nored in determining shapes. Note that ¢y and mg ap-
pear only in the combination 7%y, which we shall refer
to as the effective reduced area difference. At « fixed, v
and m7g are the axes of the vesicle-shape phase diagram.
Observe, finally, that G[S] and m[S] are invariant un-
der both Euclidean transformations and scale changes,
so shapes related by such transformations have the same

B
which expresses the dependence of the energy W of a
vesicle on its shape S [28]. The first term is the local
bending energy, which depends on the bending modulus
# and the spontaneous curvature Cp. Ci(r) and Ca(r)
are the two principal curvatures at each point r of the
surface, so that

energy in the context of the ADE model (at fixed n3o).
_ __Solving the shape problem now involves finding the

The variational problem,
SWI[S] = k {6G[S] + a(m[S] — mo)ém[S]} =0, (11)

at dv = 0, leads for axisymmetric geometries to a set
of nonlinear equations originally formulated by Deul-



ing and Helfrich [10]. In general, there are several
branches of solutions, which we distinguish where nec-
essary by a superscript n. Thus, the solutions will be a
set of shapes S (i, v, a) with corresponding energies
W™ (i, v, ). The stationary shape with lowest overall
energy is the appropriate thermodynamically stable state
at T = 0. Other shapes that are locally stable may be
observed in the lab as metastable states, provided that
the associated energy barriers are sufficiently high on the
scale of kpT. ’ :
In the form Eq. (11), the problem is evidently self-
consistent, in that the combination [30] a(m—m7,), which
enters the shape equations parametrically, depends on
m/[S], which, in turn, can only be calculated from the so-
lution S. In practice, this self-consistency can be circum-
vented by the following route [7]: G[S] is independent of
the control parameters o and mg. Thus, the overall vari-
ational problem (11) can be divided into two steps. In the
first step, we find the stationary solutions of §G[S] = 0
at fixed v and fixed m (simultaneously). This is the
so-called area-difference (AA) (or bilayer-couple) model
[13,19,21] We denote its stationary shapes T (m, a,v),
with corresponding values, G[T™] = G (m, a,v). We
have machinery in place [23] for finding these solutions
numerically for fixed o and v as functions of m. To com-
plete the program, we need only to make W[T(™)] sta-
tionary with respect to the parameter m, i.e., to solve

_ 1 0G™ (m)
mo(m) =m+ g

where we have suppressed functional dependence on the
nonvarying parameters « and v. Whenever there is a so-
lution mo(m) of Eq. (12), then the shape S(™(mo) =
T(™)(m) makes WI[S| stationary with W™ (m,) =
W[T™ (m)].

It will be important in what follows to understand the
stucture of Eq. (12). Characteristically, the stationary
shapes T'®)(m) exist only over some range of m values.
Over this range, the right side of Eq. (12) is single valued
and smooth. If the structure of the function G(™(m) is
such that the right side is monotonic, then any solution
nip(m) is unique, and there is at most a single station-
ary shape and a single energy W (™) (niig) for each value of
1Mg. On the other hand, if the right side is not monotonic,
then two or more values of m may correspond to the same
value of g, so that the function wn) (7o) becomes mul-
tiple valued. In such a situation, the turning point, where
§2G™ /8m? = —a, becomes a cusp in W) (1), as il-
lustrated in Fig. 1. When this happens, the lower part
of W) (i) in the associated “wing structure” is typi-
cally locally stable (for reasons that will become clear in
Sec. III), while the upper part is unstable. The cusp cor-
responds to a spinodal point, where a particular branch

- (12)

n goes from stable to unstable without symmetry change

[13].

In practice, we have determined the energies of rele-
vant axisymmetric stationary shapes by the procedure
outlined above. The program calculates the stationary
shapes T (m) of the AA model along with the corre-
sponding values of G (m) and 8G™ /dm [31]." Then,
Eq. (12) is solved for g, and Eq. (8) provides the ener-
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FIG. 1. Mechanism for the appearance of wing structure
in W (o). The occurrence of a local extremum on the right-
hand side of Eq. (12) produces a cusp in W (nio) at the corre-
sponding value of 779. The branch (n) changes stability at the
cusp, as explained in the text. Wing structures of this type
occur in pear, stomatocyte, and nonaxisymmetric branches.

gies W (™) (m2g). The full energy-level diagram for axisym-
metric branches is just the superposition of the energies
W) () for all distinct branches n. Any spinodal in-
stabilities along a given branch n (i.e., those that do not
involve a symmetry breaking) may be read off directly
from the wing structures, as explained above. Instabili-
ties involving the bifurcation of one axisymmetric branch
from another are also directly visible on the energy-level
diagram. What is missing at this point is all reference to
nonaxisymmetric branches.

B. The Gaussian fluctuation spectrum for a vesicle
of arbitrary shape subject to constraints

Vesicle-shape instabilities occur at soft-mode thresh-
olds, i.e., when the energy of one (or more) of the physical
fAuctuation modes goes to zero. We sketch a formalism
that we have developed [23] to calculate the fluctuation
spectrum for a vesicle of arbitrary shape. We formulate
the problem in general and comment briefly at the end on
a few details of the implementation [23]. The approach
taken here differs somewhat [32] from that taken in Ref.
[22] and is closer in spirit to an earlier approach used by
Peterson to determine the stability and fluctuations of
oblates for & = 0 and o = oo [33]. At the level of practi-
cal implementation, this approach and that of Ref. [22]
are, of course, identical.

Imagine that an equilibrium (T' = 0) vesicle shape is
given by [So] = Ro(s1, 82), where (81, 82) describes an ap-
propriate set of coordinates on the two-dimensional sur-
face. We represent an arbitrary small deformation of this
surface as

[S] = R(sl, 82) = Ro(sl, 32) + 5(31; 32)11(81, 32)a (13)
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where n(s;, s2) is the outward-pointing unit normal at
the position (sy, 82). It is convenient to imagine that the
magnitude of the displacement has been expanded in a
complete set of real basis functions, €;(sy, 32), so

E aie;i (s, 32

with a; real. The energy W{S] of the deformed shape
must be close to that of the equilibrium shape, so to
quadratic order,

81,82

W[S] - W[So] = Wia; + atWijaja (15)
where repeated-index summation will be understood
henceforth. Although the deformation €(s;,s3) is ar-
bitrary, physical fluctuations must preserve the volume
Vo = VI[So] and area A9 = A[S)] of the equilibrium
shape. It follows that for physical fluctuations the set of
coeflicients {a;} must obey two constraints, which may
be written, again, to quadratic order,

D?[S] — D¥[So] = 0 = Dfa; + %a,Dan, (i6)
where @ = 1 corresponds to the volume and @ = 2 to
the area. It will be convenient in what follows to think
of linear forms like u = w;a; as the elements of a vector
space. oo

Now, S, is a stationary shape, subject only to con-
traints on area and volume. Thus, the linear part of
Eq. (15) can only refer to directions “along” the con-
straints and must, therefore, be a linear combination,

W;a; = AQD?CL;, (17)
of the linear terms in the constraint equations (16). In-
deed, with the usual identifications of the inside/outside
pressure difference P [34],

WIS
v = —P, | (18)
and the surface tension X [34],
OW[s™)] '
A N S, R ]
94 ! (19)

for any branch n of equilibrium shapes, we find A(Y) =
—P and A\® = _3%. By substituting Eq. (17) into Eq.
(15), we arrive at a purely quadratic form of the energy
functional,
1
W[S] - W[So] = Ea;@,-jaj,

where ®;; = W;; + PV;; + XA;; is called the “stability
matrix” [34]. —

Equation (20) must, in principle, be used in connec-

tion with the full nonlinear equations (16), which serve

to project out deformations that violate the constraints. _

However, in finding the Gaussian fuctuation spectrum,
it suffices to deal with the constraints only at the lin-
ear level, since Eq. (20) is already quadratic. Thus, it
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will be useful to project out of the problem the two-
~ dimensional [35] subspace D spanned by the (linear) con-
straint vectors d* = Dfa;. The projection operator Pp
onto this subspace may be constructed explicitly by using

__the Gram-Schmidt procedure to produce an orthonormal

basis from the two vectors {d*}. We denote by Q the sub-
space (of codimension 2) of vectors orthogonal to the con-
straints, with its corresponding projection Py =1 — Pp.
The projected operator Po@Pg is in general real sym-
metric, if the original basis {¢;} has been chosen real.

" Thus, its eigenvectors, satisfying Po®Pov* = w®v®, may

be chosen to form a real orthogonal basis in . The set of
(real) eigenvalues, {w™}, are the energies of the physical
fluctuation modes. In this basis, we have by construction

(21)

Note that the six Euclidean operations automatically
comsérve area aid volume, so the small deformations cor-
responding to these operations are automatically con-
fined to the physical subspace Q. It follows that the
physical fluctuation spectrum {w*} will automatically in-
clude six zero eigenvalues (five for axisymmetric shapes
So). It will be useful to denote the corresponding eigen-
vectors {e*} and the six-dimensional (five-dimensional
-in the case of axisymmetric shapes) subspace that they

WIS] - W(So] =

1
iwa(ua)z.

. span E, with projection Pg. The eigenvectors belonging

to remaining eigenvalues, we denote { f*}. They define a
subspace F, with projection Pr (Pg = Pg + Pr). These
eigenvalues reflect the local stability of the stationary
shape So: If Sy is locally stable, all the eigenvalues in F'
~will be posxtlve If one (or more) of the eigenvalues in F
isv s+ "".e. "1 ) is locally unstable in the correspond-
ing . *v** '~ Alocally stable state becomes unstable
when one or more of the eigenvalues in F' goes to zero
as a function of the control parameters. Such a mode is
called “soft,” and its occurrence signals the onset of the
physical instability of the constrained system.
We have at this point all the background needed for
locating mechanical instabilities. It is worth noting, how-
-ever, that Eq. (21) is the starting point for studying the
~ statistics of Gaussian fluctuations about locally stable
stationary shapes Sy [22], i.e., those with w® > 0 for all &
in F. In particular, at the Gaussian level, it suffices to de-
fine the thermal ensemble by integrating, [], [ df*, over
the amplitudes {7} of the modes in F. The Euclidean
modes correspond to rigid-body motions: They are neu-
tral energetically and must be specifically excluded in
discussion of the pure shape problem. The Gaussian in-
tegrals give (f*) =0 and

kT

we s

(f"fﬂ )=

in the usual way. To return to the original variables, we
must reexpand,

Z cada + Z cafa

- a€D ax€EF

(22)

(23)

Note that the Euclidean modes have been explicity ex-
cluded from the sum [36] Now, thermal fluctuations



must satisfy the constraints, so, at lowest order in the
small parameters, (kpT/w®)'/2,

(@)=Y ¢#(d®) =0+ O(kpT/w) (24)

132
and

C’j - (a""a'.‘!) - Z cl

aecF
=kpT[(1 ~ Pp — Pg)®(1 — Pp — Pg)];".

kBT

(25)

At the next higher order, however, nonlinear terms in
the constraint equations come in, making (d*) # 0, in
general. Thus, taking the thermal average of Eq. (16)
leads to ’
= ——C 1 DE

D{as) = Y D (dP) (26)

BeD

which is of order kpT/w. Inverting the two-by-two ma-
trix, H*8 = D2c?, evaluates

i1

1 -
(@) =—5 > (HY)*AC,; D, (27)
BeD _
and, correspondingly,
(a,)_—— > HY)PCy DY, (28)

a,B€D

correcting Eq. (24) through order kpT/w. The signifi-
cance of Egs. (27) and (28) is that they show how the
constraints on V and A, in reducing the dimension of the
space of physically allowed deformations, force thermal
shifts into the problem, even at the Gaussian level [37].
In practice, for axisymmetric equilibrium shapes, the
spherical harmonics Y} ,,,(ms/s*,¢) are a convenient ba-
sis, where s is the arclength measured from one pole,
8* is the overall pole-to-pole arclength, and ¢ is the az-
imuthal angle. The functions Y} ,,, are not real but satisfy

Y = (=1)™Y},—m, so, in order to have a real basis, it

is necessary to form the linear combinations,

i) = (Yim + Vi) /V2
and
Mo = i(Yim — Vi) [ V2.

The deformations are then characterized by coefficients
{a;} with the composite index i = {m, +,1)} with m >0,
I > m, and (—) missing for m = 0. Because of the ax-
isymmetry, sectors with different m do not mix. Fur-
thermore, for given m, the (4+) and (—) sectors are in-
dependent and identical [except, of course, for m = 0
for which the (—) sector is absent]. Thus, for all m > 0
the spectrum of eigenvalues {w™} is twofold degenerate.
If, in addition, [Sp] has up-down symmetry, then each m
sector splits into subsectors of even and odd [.

The individual sectors now represent separate prob-
lems, and it is important to understand which sectors are
affected by the constraints and by the Euclidean modes.

(29)

(30)
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Perturbations with m # 0 enter the volume and area at
most quadratically, so the constraint projection D lives
entirely in the m = 0 sector [22]. The m > 0 sectors see
the effect of the constraints only through the quadratic
contributions, Dg — D%, to the stability matrix (20);

otherwise, they remam effectively unconstrained [22, 38].

For the five Euclidean modes, translation along the sym-
metry axis lives in the m = 0 sector; the two translation
modes in directions perpendicular to the symmetry axis
and the two rotation modes about such direction all live
in the m =1 sector [paired degenerately in (+) and (—)].
When up-down symmetry is also present, the Euclidean
modes are further localized: The m = 0 translation mode
is in the odd-I subsector; the m = 1 translation modes are

~ in the odd-l subsector; and, the m = 1 rotation modes

are in the even-/ subsector.
Because the m = 0 deformations are axisymmetric, the
stability information that this sector contains is in princi-

‘ple already available by looking at the “wing” structures

for the axisymmetric equilibrium shapes, as discussed at
the end of Sec. II A. The remaining stability information,
from the m > 0 sectors, does not involve the projection
D and sees the constraints only through the (quadratic)
contributions to the stability matrix, as discussed above.

C. Nonaxisymmetric shapes

Nonaxisymmetric shapes can be calculated by an ap-
proach developed by one of us [26, 27] based on a dis-
cretization of the curvature energy, mean curvature, area,
and volume on a triangulated surface. The constraints
are incorporated into the bending energy, Eq. (8), by
adding appropriate quadratic terms with large coeffi-
cients (i.e., inverse “compressibilities,” of the order of
~ 10%). The resulting total “energy” is then minimized
by a modified conjugate gradient algorithm. The result-
ing shape is a local energy minimum, which depends in
principle on the initial shape chosen. Since we know the
symmetry of the branches involved, this dependence on
the initial shape causes no problems in the high-volume
region considered here. Our algorithm differs from the
related public domain “Surface Evolver” package of com-

"puter programs [39] in several respects, such as the dis-

cretization of the bending energy, the treatment of the
constraints, and the minimization algorithm. In particu-
lar, we have taken special measures to prevent instabili-
ties associated with tangential motion of vertices. These
technical aspects will be discussed elsewhere [27].

We employ this algorithm to calculate axisymmet-
ric and nonaxisymmetric shapes at o = oo (in fact,
a ~ 10°%). Then, in a second step, we map the data to
a = 1.4, using the mapping described in Sec. IIA. The
advantage of this procedure is twofold: First, it turns
out that the relaxation times are typically significantly
smaller at @ = oo than at finite a of order one. Sec-
ond and more importantly, a direct minimization yields
only locally stable shapes but no stationary and unstable
shapes. Often, however, stationary unstable shapes are
the saddle points between locally stable shapes. Know-
ing these saddle points and their energy gives important
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information about the activation barrier and the degree
of hysteresis at a first-order transition. Since some of the
nonaxisymmetric shapes that are stable at o = oo turn
into saddle points at lower values of o, we gain informa-
tion on the activation barrier by calculating the corre-
sponding shapes at & = oo and then mapping to smaller
o. B S

III. RESULTS

The principal results of this paper are contained in
Figs. 2 and 3, the phase diagram and the stability dia-
gram, respectively, which are discussed in the first two
subsections below. A third subsection shows the results
of direct, numerical minimization at a selected value of
the reduced volume v. The final part of this section de-
scribes in some detail the bifurcation structures underly-
ing these results.
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FIG. 3. Stability diagram of the ADE model for o = 1.4
over the same region covered by Fig. 2. The textured areas
identified by the key indicate the regions of local stability of

_ the ﬁvp phases shown. The limiting lines L and the continuous

transitions C are the same as in Fig. 2. In addition, the
_spinodal lines M mark other limits of local stability. The

" various lines D are not shown; however, their location may

——Dbe inferred: Thus, DP***/P™ Jies in the region between MP™

0 ’ ) el

- and MP** emanating from T}; D**°/°"! lies in the analogous
__Tegion emanating from T3; DP™/°®! lies between M°"! and
,‘,M:,pfi,tg th,e,’;lght of CEP, and, _l)ﬂ“/ob1 lies in shaded nas

region.

A. The phase diagram

. x:The pglg.sgﬁd_ia,grgm plots the regions in (v,7%) over
" “which the lowest-energy, equilibrium shape belongs to

each stationary branch n. Figure 2 shows the phase dia-

FIG. 2. Phase diagram of the ADE model for o = 1.4.
Between the limiting lines LP*** and L**° and for reduced

gram of the ADE model for o = 1.4 with reduced volume
v in the range 0.6 < v < 1 and for effective area differ-

~ence nlg [Eq. (10)] near unity. Phase boundaries with

"1y > 4w have purposely not been shown for v < 0.7.

- This is because the line LP**" terminates at v — 1/v2in

--a special point E, at which the radii of the two coexisting
limiting spheres become equal. In the near neighborhood
of E, other phases are known to occur [7]. Likewise, the

volumes v > 1/+4/2, the only equilibrium shapes that appear
" are pears, prolates, oblates, stomatocytes, and elliptical non-
axisymmtric shapes (nas) with Das symmetry. Other phases
occur outside the limiting lines and for v < 1/4/2, i.e., in the
shaded region. Characteristic equilibrium shapes are illus-
trated for each phase and for the two limiting lines. First-
order, discontinuous transitions (D) are shown as dashed
lines; second-order, continuous transitions are shown as full
lines. At the special point E, the radii of the two spheres of
the limiting pear shape become equal. T; and T} are tricritical
points. The special critical end point CEP is discussed in the
text. In the limit v — oo, the boundaries LP*** apnd ppear/pro
go to plus infinity and the boundaries L**® and D**°/°! g5 to
minus infinity, as may be shown analytically [7,13]. Locations
of the special points are E (v = 1/v2), Th (v = 0.730), T
(v = 0.645), and CEP (v = 0.827). Note the narrow sector
where the Dy, phase is stable, to the left of CEP between
Dna:/pro and cnal/obl'

nonaxisymmetric region (nas) has not yet been carefully
studied below the cut at v = 0.7, which we have explored
numerically (see Sec. IIIC).

The choice of  corresponds to the measured value
for SOPC [7, 40]. Different lipids have different values
of a [e.g., o ~ 1.1 for di-myristoyl-phosphatidylcholine
(DMPC) [7]], so in this sense the choice is somewhat ar-
bitrary. On the other hand, the local structure of the
phase diagram remains generic over a range of «, until
the relevant bifurcation structures change. In any case,
this phase diagram represents both a useful example and
a feasibility proof, in that the methods outlined here
allow such diagrams to be constructed with reasonable
speed and facility, as would not have been true a few
years ago. The limiting lines LP®a* and L#*°, where the
pears and stomatocytes, respectively, attain their fully
budded shapes, bound the region where the phase dia-



gram is determined. The region outside these lines is
largely “terra incognita” at this time. Studies of the
spontaneous-curvature model (o = 0) [16] suggest that
fully “vesiculated” or “multiplet” shapes, in which two
(or more) smooth shapes are connected by one (or more)
narrow necks, appear frequently in this region. The re-
gion of the full phase diagram at lower reduced volume
is much more difficult (and in some sense more inter-
esting), since many other shape classes (including many
more nonaxisymmetric shapes) occur. Work is ongoing
to sort out this region [26, 27]; however, preliminary in-
dications suggest that it will be difficult with the tools
now available and, indeed, that there are many nearby
locally stable shapes, so that the usefulness of a theoreti-
cal phase diagram in analyzing experiment may turn out
in the end to be limited [41].

Above v = 1/+/2 and in the region between the limit-
ing lines LP*** and L**°, the phase diagram involves only
five distinct shape classes, the prolates (pro) and oblates
(obl) (axisymmetric and with up-down symmetry), the
pears (pear) and stomatocytes (sto) (axisymmetric but
without up-down symmetry) and a single nonaxisymmet-
ric shape (nas) with the symmetry (Dss) of a rectangu-
lar parallelapiped. Transitions between these classes are

either discontinuous (dotted lines, notated D) or contin-

uous (full lines, notated C). Three special points appear,
two tricritical points (T} and T%, where a first-order tran-
siton becomes second order) and a special kind of critical
endpoint (CEP, where a first-order transition disappears,
revealing a pair of transitions, one first order and one sec-
ond order, previously hidden beneath it). The notation
D2/B or C*/B ig intended to convey a boundary between
the two phases o and 8.

Some of the lines shown in Fig. 2 are new to the best of
our knowledge; some were previously known. DPear/pro
and CPe2/Pr were previously calculated by our group
(for « = 4) [7]. D®°/°bl and C**°/°Pl are new here,
as is the prolate/oblate boundary DP™/°l The tran-
sitions into and out of the Dy, phase were treated by
an approximate, variational method for reduced volume
v = 0.7 (only) in a recent paper by Heinrich, Svetina,
and Zeks [20]. Given here for the first time are exact cal-
culations of C**/°b! (based on the fluctuation analysis of
Sec. IIB) and of the full structure, including nonaxisym-
metric shapes, at v = 0.7 (based on the direct minimiza-
tion of Sec. IIC). Behavior in the vicinity of the critical
endpoint is also new. Because the energy of a small neck
tends to zero [16], the limiting lines LP*®* and L**° may
be easily found analytically, as was done for the pears in
Ref. [7].

All the continuous transitions C can be located, in
principle, by the stability analysis outlined in Sec. IIB.
In practice, however, when both phases are axisymmetric
(and the instability appears in the m = 0 sector), it is
easier to calculate the wing structures, although we have
often checked by doing both. The boundary C™2s/b! can
only be found via the stability analysis. It occurs in the
m = 2, even-] subsector. The discontinuous transitions
were all calculated by constructing the relevant curves
W) (n135) for each fixed v and then tracking the intersec-

tions as a function of v. This technique fails for D**/P™,
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since one of the two phases is nonaxisymmetric. This
boundary is drawn on the basis of knowing exactly the
point CEP {see Sec. IIID) and having numerical data
from our direct minimization approach at v = 0.7, as
explained in Sec. ITIC.

It is important to be clear at this point that our work
establishes the instability of the prolate and oblate phases
towards the Dy, shape in a numerically exact manner.
On the other hand, we cannot on the basis of the stability
analysis alone tell when this instability is a phase bound-
ary and when it is a spinodal. In identifying C™2%/°b! ag
a phase boundary but the prolate instability to Dy as
part of the spinodal MP™, we rely on our direct mini-
mization approach [42]. This identification confirms the
structure found by Heinrich, Svetina, and Zeks [20] in
their approximate calculation.

B. The stability diagram

The stability diagram plots the regions in (v, 7g) over
which each of the low-lying stationary branches n is
locally stable, i.e., the domains where all the physical
and non-Euclidean mode energies, {w®} for a € F, are
strictly positive. These regions, which in general over-
lap, represent the maximum domains of stability and
metastability for each branch and include, of course, the
corresponding regions of the phase diagram. How much
of each metastable region is accessible in the lab depends

on how high the energy barriers are that block escape

from the local energy minimum. As long as the barri-
ers remain appreciably larger than kg7, metastability
will persist. In the vesicle-shape problem, these barriers
are generically of order x, which (as we have discussed
in Sec. IT) is large on the scale of kpTioom for common
phospholipids. At the boundary of metastability the bar-
rier height shrinks to zero, so, for T > 0, a finite unstable
band just inside the spinodal boundary is expected.

Figure 3 plots the stability diagram for each of the five
stable phases shown in the phase diagram Fig. 2 and over
the same region of (v,17,). The overlapping regions of lo-
cal stability are distinguished by different textures. The
boundaries of these regions include the continuous tran-
sitions C*/# already shown in Fig. 2, the limiting lines
LPea* and L5°, and, in addition, a set of lines M*, which
mark the loci of first soft-mode instability bounding the
region where the phase o is metastable.

Every stable phase « is completely surrounded by a
stability boundary, which includes the continuous tran-
sitions C*/#, any limiting lines L, and the instability
lines M*. The lines M are of two types. First, there
are the spinodal lines arising from wing structures of the
type shown in Fig. 1, where the branch « becomes un-
stable without any nearby related stable structure. Each
spinodal line has been labeled in parentheses by the sec-
tor in which the first instability appears. In principle,
this sector label can change from one place to another
along M“, When the phase o is axisymmetric, this label
is m (plus the ! parity, when o has up-down symme-
try) [43]. Note that, when a becomes unstable at M*
and “falls” down to some other locally stable state, there
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is no guarantee that that state will be the equilibrium
phase immediately adjacent in the phase diagram [44] or
even that it will be the ground state appropriate to the
local point on the phase diagram (it might be some other
metastable state). Knowing what happens after the in-
stability would require doing properly the full dynamics,
which is not yet possible even for axisymmetric shapes.
The second possibility is that the metastable phase o
becomes unstable via a continuous bifurcation of some
other branch S of lower energy. We may label the lo-
cus of such a bifurcation structure M*/#, since it is just
the analogue of a continuous transition C®/#, only for a
non-ground-state branch. Indeed, if other energy barri-
ers are large, crossing out of the metastable o region via
a boundary M2/# will appear in the lab to be a smooth
shape transformation from branch o to branch 8, even
though neither « nor 3 is (strictly) an equilibrium phase
at this point.

All the continuous transitions C' in Fig. 2 also appear
in Fig. 3, as do the tricritical points, Ty and T3, and the
critical endpoint, CEP, which mark their ends. In ad-
dition, two lines, M and MP, emerge from the end of
each first-order line D*/#, Note that part of MP™ emerg-
ing from T is just a continuation of CP¢2*/P™_ gince in
both cases the prolate is becoming unstable to the same
m = 0, odd-l mode. The situation is slightly different
for MP®* since beyond T the pear shapes are no longer
up/down symmetric when the instability is reached, so
MPe¥ can be labeled only by m = 0 but no longer by an
{ parity.

All metastable boundaries M can in principle be found
by searching for soft modes; however, as for the phase
diagram, it was usually more convenient to find the
m = 0 instabilites by studying wing structure. The only
lines that cannot be found by the stability analysis are
Cm2%/°bl (1 = 2,1 even), the segment MP™(m = 2,1 even)
emerging from CEP to the left, and M™*. For the par-
ticular case of v = 0.7, we have determined the loca-
tion of these points by using direct energy minimization
(see Sec. III C). Previous to this work, the only spinodal
explicitly calculated was the segment of MP™ emerging
from T;.

C. Direct minimization for v = 0.7

In this section, we present results obtained by directly
minimizing the bending energy, Eq. (8), on a triangu-
lated surface, as described in Sec. II C. Since this method
is quite time comsuming if high precision is required,
we have chosen to calculate only one representative cut
through the phase diagram, at v = 0.7. Figure 4 shows
the energies of the oblate, prolate, and D, branches as
functions of the area difference mqg for o = 1.4.

As g is increased, the oblates undergo a continuous
transition C™#%/°P! to D, shapes at about /g = 1.08,
which should be compared with 7y = 1.079, as obtained
from the stability approach. Similarly, the prolate branch
becomes unstable at the spinodal MP™ at my = 1.10,
compared with the value /iy = 1.097 obtained from the
stability analysis. The nonaxisymmetric branch exhibits
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FIG. 4. Energies W™ of prolates (squares) oblates (dia-
monds), and nonaxisymmetric ellipsoids (crosses) as a func-
tion of area difference 7o at v = 0.7, as obtained from direct
minimization. Unstable oblates show up to the right of the bi-
furcation at 1 = 1.08, whereas unstable prolates show up to
the left of the bifurcation at mo = 1.10. Note the structures

corresponding to the special points MP™, M"®*, C**/°P! and
Dr2e /pro.

a wing structure, which leads to a first-order transition
Dres/Pr at 47y = 1.11. For the activation energy at the
transition, we find the small value 0.06x, which corre-
sponds roughly to kgT for SOPC near room tempera-
ture. The nonaxisymmetric branch becomes unstable at
the cusp, where Mo = 1.12. These numbers are in ex-
cellent agreement with those obtained by Heinrich et al.
in Ref. [24] (Fig. 7), suggesting that their approximate
calculation is quite accurate in this regime.

The numerical uncertainties in the values of 7o de-
rived from the mapping described in Sec. IL A are of the
order of 1072, They are mainly caused by uncertainty
inABG(") (m)/8m, which has to be calculated numerically
along the nonaxisymmetric branch from the results of the
minimization at o = co. Compared to that uncertainty,
the numerical error in m at the two bifurcations, which
is of the order of 1073, is negligible.

The fact that both the oblate and the prolate branches
are displayed beyond the bifurcation in Fig. 4 may look

__surprising, given the fact that such shapes are also un-

stable for @ = co. These shapes and their energies have
been obtained by using nearby locally stable axisymmet-
ric shapes to initialize the numerical minimization rou-
tine. The minimization will detect an unstable mode only
if the initial shape contains some minimum nonzero con-
tribution of that mode. It turns out that, for the axisym-
metric shapes beyond the bifurcation, this requirement in
practice is not fulfilled. Of course, if the axisymmetry is
broken by hand in the initial shape, the minimization will
find the true nonaxisymmetric minimum.

D. Bifurcation structures

The various phase transitions and spinodals in Figs. 2
and 3 arise from structures in the overall energy dia-



gram {W (™ (n)} for that set of stationary branches n
that have locally stable domains. A simple crossing of
distinct branches involving the lowest energy levels pro-
duces a first-order transition D; a tangent bifurcation
of the lowest level produces the continuous transitions
C; and, a spinodal line M can come from either a wing
structure like Fig. 1 or a bifurcation in a non-ground-
state level. What is more interesting is the interrelation
between these structures, which occurs in the neighbor-
hood of the tricritical points T' and the critical endpoint
CEP.

The points T = ((mo) 7, vr) lie on a boundary between
an up-down symmetric phase (the prolate or the oblate)
and a phase in which this symmetry has been broken
(while still maintaining axial symmetry). The bifurcation
structure around these two points is represented locally
by a Landau theory of the form

VIS~ Ws = ~5ré* — zodt + cud® (31)
The lowest energy of the functional V[¢] gives the free
energy of the equilibrium state near the point T'. Here, ¢
represents the amplitude of the principle physical (i.e.,
volume and area preserving) mode, which breaks the
up-down symmetry. Wpg is the “background” energy
coming from modes that are nonsingular at T, so it de-
pends smoothly on the phase-diagram variables (v, )
and gives the full ground-state energy at T and wherever
¢ = 0 at equilibrium. g and r are distances in the phase
diagram from the point-T' measured, respectively, along
the line C/D and perpendicularly to it. At lowest or-
der, they are both just appropriate linear combinations
of v—vy and 1o — (o). For the prolate-pear boundary,
as shown in Fig. 2, ¢ would be roughly proportional to
v —ur and r, to Mg — (7Mp)7; for the oblate-stomatocyte
boundary, the sign of » would be reversed. « depends on v
and 773y but is generically positive. In terms of these scal-
ing variables, it is easy to calculate explicity the phase
boundaries and spinodals, as shown in Fig. 5 (labeling
has been done to conform generically to the pear-prolate
boundary). Note that the DPear/pro  Afpro and pfrear
emerge from T parallel to one another and to the direc-
tion of CP=2*/P™_ Also sketched as insets in Fig. 5 are
representative curves (W — Wpg)(r) for typical values of
g < 0 and g > 0, showing the characteristic bifurcation
structure.

Figure 6 shows in blown-up form a semischematic view
of what goes on along the prolate-oblate phase boundary
and its continuation beyond the special point CEP to
lower reduced volumes, where a narrow wedge of nonax-
isymmetric equilibrium shapes (Dgy,) first appears. Cor-
responding constant-v sections through the full energy
diagram are sketched in Fig. 7 to illustrate the bifurca-
tion structures. The two roughly parabolic curves rep-
resent the energies of the prolate and oblate stationary
branches, which are always the equilibrium shapes at
sufficiently large m3p and sufficiently small g, respec-

tively. At high reduced volume (slice No. 1), these two.

curves simply cross, producing the first-order transition
Drro/obl The crucial feature of the structure, visible in
Fig. 7 and first discovered by Heinrich, Svetina, and Zeks
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FIG. 5. Phase diagram and stability diagram of the Lan-

"dau theory described by Eg. (31). Note the tricritical point

T separating the continuous transition C and the discontin-
uous transition D. The spinodal lines M mark the limits of
metastability of the corresponding phases. Note how the first-
order line D lies in the region in which both the coexisting
phases are locally stable. All boundaries are horizontal where
they meet at T in these (scaling) variables. Sections W(r) of

. the corresponding energy surface are shown below for g < 0

and g > 0. Stable (s) and unstable (u) branches are labeled.
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- FIG. 6. Schematic representation of the phase diagram
(filled symbols) and other structures (open symbols), includ-
ing the spinodals M, along the oblate-prolate boundary and in
the vicinity of the CEP. The symbols are keyed to the generic
energy diagrams displayed in Fig. 7. The axes here are not to
scale but the interconnections between the various lines are
given correctly. This region is shown in Figs. 2 and 3; but,
the scale there does not allow the interrelation between the
various lines to be seen. Note the crossing of M°® and MP*°,
which takes place to the left of the CEP at v = 0.684. In the
region between the two spinodals to the left of this point, no
axisymmetric shapes are locally stable.
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[20], is the presence of the low-lying branch of nonax-
isymmetric stationary shapes whichk bifurcates from and
smoothly connects the prolate and oblate branches. At
high enough v, this branch is entirely unstable; however,
below a certain reduced volume a wing structure devel-
ops at the point where this branch bifurcates from the
oblate branch, and the structure becomes that shown
in slice No. 2. All this occurs initially in nonequilib-
rium branches of the stationary energies, and the local
bifurcation structure is exactly as shown in Fig. 5, only
with various signs reversed. At the critical endpoint CEP
(slice No. 3), this bifuraction first emerges from beneath
the prolate energy and translates into a closely spaced
second-order transition (C"**/°"!) and first-order transi-
tion (D"##/P™) [45]. The crossing shown in Fig. 6 be-
tween the prolate and oblate spinodals occurs at slice
No. 5 but has no significance for the phase diagram, since
the prolate at this point is a high-energy branch. At re-
duced volumes lower than that of the CEP, the first-order
boundary D%/ lies between MP™(m = 2,1 even) (be-
low) and M™®* (above), as shown in our numerical data,
Fig. 4. It is conjectured that, beyond a certain reduced
volume (slice No. 9), the wing structure where the D
branch bifurcates from the prolate disappears, so that
Dres/pro and M™2* merge with MP™(m = 2,l even) at
another tricritical point and the nas/prolate instability

slice 1
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continues to lower reduced volume as C*2/P_ From our
direct-minimization work, we know that the reduced vol-
ume at which this could happen is bounded above by
v =0.7.

IV. SUMMARY

Between the limiting lines LP®** and L**°, which mark
vesiculation boundaries and in the region of relatively
high reduced volumes, v > 1/4/2, vesicle shapes are dom-
inated by five shape classes, four of which are axisym-
metric (pears, prolates, oblates, stomatocytes) and one
of which is not (D3p). This statement is true for values of
the parameter a = &/« (which measures the ratio of the
nonlocal and local bending constants) of order unity [46].

By exploiting our ability to calculate the energies and

stability of these axisymmetric shapes, we can explicitly
construct most (but not quite all) of the phase boundaries
and spinodal lines in this region. Additional required
information related to the nonaxisymmetric shapes has
been obtained by employing a direct minimization rou-
tine. The phase diagrams and metastability lines we have
produced (Figs. 2 and 3) refer to a value, a = 1.4, appro-
priate to SOPC; however, providing comparable informa-
tion for any other value would now be straightforward.
Many but by no means all interesting experiments and

FIG. 7. Schematic repre-

: sentation of the energies of
! the stationary-shape branches
along the cuts labeled in Fig. 6.

Stable (s) and unstable (u)

Olate - branches are labeled. The sym-
~-bols which mark the various

m, level crossings, wings, and bi-
furcations correspond to those
marking the curves in Fig. 6.
Stationary oblate and prolate
shapes occur along the two

“‘roughly parabolic intersecting
curves in each figure.  Bi-
furcating from these branches
and connecting them is the
D3p branch of nonaxisymmet-
ric (nas) stationary shapes. In

w .
y slice7

slice No. 1, all these nas shapes
are locally unstable; in slice No.
9, they are all locally stable.
Between these limits, the nas
_ branch displays a wing struc-
" “Yare ‘at which the local stabil-
" ity changes. The lowest-energy

shape at each value of (v,7%0) is
the (stable) equilibrium shape.
The CEP occurs at slice No. 3.
» At slice No. 5, the spinodals
M°®! and MP™ cross.
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applications lie in this region. We hope that the existence

of a theoretical framework which makes one-parameter'

() predictions [47] for locally stable vesicle shapes (and
thermal fluctuations around them) in this region will be
an incentive to experimentalists.

Many experimentally observable and conceptually in-
teresting shapes lie outside of this regime, at low reduced
volumes and in the vesiculated regions. These include a
wide range of branched, tubular, and multlplet struc-
tures. The theory will be harder to control in these sec-
tors, which are not dominated by simple axisymmetric
shapes. Some progress can be made by numerical meth-
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ods [26, 27]; but, convergence of theory and experiment in
this wider arena remains a significant challenge to both.
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