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Spinodal Fluctuations of Budding Vesicles
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We report the first systematic observations of precursor effects in shape transitions of phospholipid-
bilayer vesicles in aqueous solution. Vesicles change abruptly, as temperatureT is raised, from a prolate
ellipsoidal shape to a “budded” shape consisting of two unequal spheres connected by a narrow neck.
On the low-T side of this transition, we see large thermal shape fluctuations (quasicritical fluctuations)
and long relaxation times (quasicritical slowing down), which may be interpreted, in the context of a
f6 Landau theory, as the fluctuations of a metastable state near its spinodal instability.

PACS numbers: 82.70.–y, 05.40.+j, 68.10.–m
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Fluid-phase phospholipid-bilayer vesicles in aque
solution exhibit a variety of shapes [1–5]. As vesicle
rameters such as areaA and volumeV are smoothly varied
(e.g., by controlling the ambient temperature), these sh
evolve in an analytic manner except at special bounda
At these “shape transitions,” changes in shape are e
discontinuous (first order) or continuous but with a cha
of symmetry class (second order). Hysteresis occu
first-order transitions, whenever (as is common) ene
barriers are larger than thermal energies. Even tho
thermal fluctuations (“flickering” [6]) of vesicle shape a
commonly observed, bending-elastic energies are typi
appreciably larger than room temperature, so that m
shapes are reasonably well defined. Likewise, dis
symmetry classes of shapes are normally readily ide
fiable. Here, we will focus on the “budding” transition,
which an up-down symmetric prolate ellipse transfor
asT is increased, to a shape consisting of two asymm
ric spheres joined at a narrow neck. This transition
studied earlier for DMPC vesicles [2] and was interpre
as a second-order symmetry-breaking transition from
ellipse to a pear shape, followed by a first-order transi
to the final budded configuration, a sequence inconsi
with extant theories [4,5]. We now believe [4] that bu
ding is a hysteretic effect associated with a spinodal in
bility. We report in this Letter large-amplitude long-tim
fluctuations near the budding threshold, which we inter
as the spinodal analog (at the mean-field level) of ther
dynamic critical behavior. This is the first time that su
“quasicritical” behavior has been documented for a ves
lar instability.

We report experiments on SOPC vesicles in which
thermally induced shape fluctuations were dynamically
aged via phase-contrast video microscopy at a sequen
temperatures approaching the transition temperature
below. By parametrizing the projected vesicle-shape
tours in terms of Fourier-mode amplitudes, we were a
to monitor quantitatively both the static shape fluctuati
and the time-dependent mode-mode correlation funct
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e observed an ensemble of shapes that preserves (to
ood approximation) the up-down symmetry of the ellip-
oidal branch, not in the sense that each individual shap
as this symmetry but in the sense that for each “up” fluctu-
tion there is an equivalent “down” fluctuation somewhere

n the time sequence; see Fig. 1. Our analysis focuses o
he lowest mode that breaks the up-down symmetry. Ap-
roaching the transition, we document a striking growth in
oth the static fluctuations of this mode and its dominant
overdamped) relaxation time. Both these quantities ap
ear to exhibit power-law behavior in an interval near the

ransition.
It is believed that the dependence of the energyE of a

hospholipid-bilayer vesicle on its shapeS is described at
he mesoscopic level by a functional [4,7,8]

EfSg ­
k

2

I
dAfC1 1 C2 2 C0g2 1

k̄

2
smfSg 2 m0d2.

(1)

ere,C1srd andC2srd are the two principal curvatures at
he pointr of the vesicle surface;C0 is the spontaneous
urvature;k is the bending rigidity; and the integral is over
he entire vesicle surface. In the second term,k̄ is the non-
ocal bending modulus, andmfSg ;

H
dAsC1 1 C1dy2RA

easures the area difference between the two leaves
he bilayer in a way that has been made dimensionless b
ividing out the area length scaleRA (A ; 4pR2

A). This
erm measures the elastic energy cost of forcing the ac
ual area difference to differ from its “relaxed” value (mea-

IG. 1. Snapshots of pear fluctuations of a prolate vesicle a
educed volumey ­ 0.912.
© 1995 The American Physical Society
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sured bym0), which reflects the different number of lipid
molecules in the two leaves. The ratioa ; k̄yk is of or-
der unity (a , 1.4 for SOPC [4,9]). The overall area an
volume may be regarded as fixed. The whole problem
be expressed in terms of the energy scalek , 25kBTroom

(SOPC [9]) and the dimensionless parameters,a, y ;
3Vy4pR3

A (reduced volume),c0 ­ C0RA (reduced spon-
taneous curvature), andm0, of which the last three are in
dividually specific to each vesicle.

Variation of Eq. (1) with respect to the shapeS leads
to a discrete sethnj of stationary shapesSnsy, m0, c0, ad
with corresponding energiesEnsy, m0, c0, ad for each set
of control parameters. The energiesEn vary smoothly
as functions of the control parameters, except at spe
singular points. Only the lowest-energy shape is th
modynamically stable; however, other low-lying local
stable shapes are often seen in the laboratory. The
trol parameters vary with temperature, so, asT is raised,
each vesicle follows some trajectory through the param
ter spacesy, m0, c0, ad. Thus, a prolate shape that is th
lowest energy at low laboratory temperature may beco
metastable asT increases, when the prolate branch cros
the pear branch. Now, Eq. (1) shows that energy ba
ers are generically of orderk (¿kBT ); thus, metastability
will continue beyond the level-crossing temperature, un
the energy barrier to escape from the local prolate m
mum becomes comparable tokBT . Gaussian fluctuations
about the metastable shape scale askBTye, wheree is a
typical normal-mode energy, generically of orderk. As
the limit of metastability is approached, one (or more)
the modes becomes soft, signaling the onset of the in
bility (bifurcation). We argue that this soft-mode mech
nism is responsible for the large, slow fluctuations ne
the budding transition. We give below a Landau theo
description of this bifurcation.

Bilayer vesicles of SOPC were prepared [5] by swelli
dry lipid in 50 mMol sucrose solution and then suspendi
in excess 48 mMol glucose solution, adjusted so that
overall density of the vesicles was slightly greater than t
of the surrounding aqueous solution. Thus, vesicles res
against the bottom of the observation chamber, where t
were observed from below via video phase-contrast
croscopy. With appropriate preparation and vesicle se
tion [10], the target vesicle rested gently enough aga
the bottom so that its shape was not detectably deform
yet strongly enough so that full rotational diffusion of th
vesicle was inhibited. Thus, a vesicle of prolate elliptic
shape had its symmetry axis restricted effectively to
horizontal plane. The video camera, focused on the a
plane, recorded an image every1y30 sec.

A two-dimensional outline of the vesicle was prepar
for each grabbed frame by a protocol that scans the g
scale pixel by pixel across the halo and locates a nom
membrane point where the grey-scale profile crosses its
cal background level. Finally, a local smoothing algorith
[5] was applied to these outline points in order to redu
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noise. A frame was grabbed every0.5 sec and processed
in real time. At least 1200 images were processed for eac
temperature to establish an ensemble. Each data set to
about20 min to accumulate, including temperature ramp
ing and equilibration.

In these experiments, the vesicle shape was approx
mately prolate elliptical. We located a nominal princi-
pal axis by treating the contour as a uniform line densit
and calculating the axes of the corresponding inertia ten
sor. We then parametrized the shape of each half conto
in terms of an arclengths measured from one pole (the
pole-to-pole arc length issp) and the anglec between the
normal to the axis and the local tangent to the contour a
s. It is convenient to describe each half contour via the
scale-independent Fourier representation

cssd ­ psysp 1
X
n­1

an sinfnssyspdpg . (2)

The linear term describes a half circle. Nonzero coeffi
cientshanj describe deviations from the circle. Up-down
symmetric shapes obeya2n11 ­ 0 for all n.

The information in each “snapshot” was coded in a se
of shape amplitudeshanj. Using the data for a single
vesicle observed over a long period of time [11], we then
constructed ensemble averages likekanl, Cn ; kDa2

nl,
where Dan ; an 2 kanl, and so forth. Likewise, we
formed time-dependent mode-amplitude correlations lik
Cnstd ; kDanst 1 t0dDanst0dl, which depend only on the
time differencet for a stationary ensemble.

Deep in the prolate phase, away from the budding in
stability, the mean amplitudeskanl are well defined and
decrease rapidly withn [12]. Thus, for the particu-
lar vesicle [11], which we shall study in detail below,
we found, e.g., aty ­ 0.931 6 0.002, that ka2l . 0.37,
ka4l . 0.04, ka6l . 0.001, andka2n11l # 0.001. In this
region, fluctuations were small, and we estimated the re
duced volume [5]y by rotating each instantaneous contour
about its symmetry axis, calculating the enclosed volume
and averaging over the ensemble. Figure 2 shows th
mean-square amplitude fluctuations,Cn, n ­ 1 6, in their
dependence on reduced volume. Note that for evenn the
fluctuations are only weakly volume dependent. By con
trast, then ­ 3 fluctuations (and at a less visible level
those forn ­ 1 [13]) grow significantly as the reduced
volume approaches the point [14],yb ­ 0.878 6 0.004,
at which budding occurs. In fact, then ­ 3 mode is the
lowest-lying mode that breaks the up-down symmetry o
the prolate shape. Figure 3 shows directly the growth o
then ­ 3 fluctuations as a function of reduced volume. A
power-law fit of the form

C3 , A3ysy 2 ybdgs (3)

suggests an exponent for the static fluctuations ofgs ­
0.8310.21

20.17, the significance of which will become apparent
below.
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FIG. 2. Mean-square amplitudes (C3) at four different reduced
volumes approaching budding. Note the strong growth
the modea3 and the relative constancy of the even mod
Uncertainties are shown; the lines are guides for the eye.

The time-dependent correlationsCnstd typically de-
cayed monotonically. It was convenient to fit this d
cay to an exponential [15],Cnstd , Bn exps2tytnd, and,
thus, to define a characteristic dominant relaxation timetn

for each moden. Well away from the budding instabil
ity, the relaxation times were1 2 sec for the low modes
n ­ 1, 2, 3, 4, and shorter for higher modes. Howeve
the relaxation time for then ­ 3 mode increased signifi-
cantly as the budding instability was approached. This
crease, shown in Fig. 3, was obvious in the video pictur
where we observed large, slow pearlike fluctuations ab
the elliptical average shape, first to one side and then
the other; see Fig. 1. A crude fit of the power-law typ
gavet3 , D3ysy 2 ybdgd with a dynamical exponentgd

of order 1 but with large uncertainty.

FIG. 3. Growth of static fluctuations (C3) in the modea3
and the corresponding dominant relaxation time (t3). Both
quantities increase strongly near budding. ForC3, the full curve
shows a two-parameter fit by Eq. (3) with the experimen
yb , giving gs as quoted in the text; the dotted curve forc
gs ­ 1 and findsyb ­ 0.871 6 0.003. Likewise the curve for
t3 shows a fit withgd ­ 1 and givesyb ­ 0.897 6 0.005.

3362
I E W L E T T E R S 30 OCTOBER1995

f
.

-

,

-
s,
ut
to

l
s

There is a simple interpretation of these observations
For the values ofm0 of relevance here, the (up-down
symmetric) prolate is the lowest-energy shape for high
reduced volumes,y . 1. As laboratory temperatureT
is increased, thus decreasing the value ofy, the system
first enters a metastable regime where the lowest-energ
shape is pearlike but the prolates remain stable agains
local fluctuations [4]. Later, at a reduced volumeyb ,
the prolates become locally unstable to a pear mode
which eventually carries them over an energy barrier and
down to the asymmetric minimum-energy shape, which is
budded. At the Landau-theory level, we may characterize
this sequence of events by an energy functional

V sad ­ kf 1
2 ra2 2

1
4 ga4 1

1
6 ua6g , (4)

wherek sets the overall energy scale,a is the amplitude
of the mode that becomes soft atyb, and the remaining
parameters,r, g . 0, and u . 0, are dimensionless.
The symmetrical (prolate) branch is metastable in the
range0 , r , 3g2y16u; the limit of metastability occurs
as sy 2 ybd , r ! 01. The unstable mode can, in
principle, be a mixture of all the odd modeshanj. In
practice, the data suggest thata3 tends to dominate. We
will use the description Eq. (4) only near the prolate state
(a , 0). There is no suggestion that the eventual budded
shape should be described by a single amplitude.

Static thermal fluctuations of the metastable prolate
shape are controlled by the part of the energy landscap
inside the metastability barrier, which forr small is lo-
cated close toa2 ­ ryg with heightkr2y4g. Amplitude
fluctuations are given at the Gaussian level byka2l ­
kBTykr , which is only expected to be valid whenka2l ø
ryg, so the non-Gaussian terms may be neglected. In
deed, when this criterion is not satisfied, there is signifi-
cant probability of escape over the barrier. It follows that
there is a range of reduced volume,gkBTyk ø r2 ø 1,
near but not too near the budding instability, for which the
static fluctuations are predicted to grow assy 2 ybd21, as
is consistent with the observations, Eq. (3).

Discussion of the time dependence of the modes require
a dynamical theory, which must in general contain infor-
mation about solvent properties [16]. For present the pur
poses we shall simply assume that the soft mode obeys
dynamical equation of the purely dissipative type,

≠ay≠t ­ 2G≠Vy≠a 1 z , (5)

wherez is the usual noise term. Equation (5) simplifies
to ≠ay≠t ­ 2Gkra 1 z neara ­ 0, when the Gaussian
term dominates. The kinetic coefficientG has dimension
such thatG21 , time 3 energy. The dominant mecha-
nism for dissipation is via the solvent viscosityh; the ap-
propriate length scale for the unstable mode is the size
scaleR of the vesicle. Thus, dimensional analysis leads to
G ­ cyhR3, with a numerical factorc that is generically
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of order unity. In the regime described above, where
Gaussian term dominatesV , Eq. (5) predicts

kastdas0dl ­ ka2le2tyt , (6)

with t ­ sGkrd21 , sy 2 ybd21, which is consistent
with the observations. Furthermore, inserting typical p
rameter values,h ­ 1022 erg secycm3, R ­ 1023 cm,
andk ­ 10212 erg, we estimate the typical (slowest) r
laxation time ast , 10ysy 2 ybd sec, in good agreemen
with the observations.

The Landau picture of the observed pretransitional
havior suggests for the “spinodal exponents”gs ­ gd ­
1. We now understand that these “power laws” are
best valid near but not too near the instability. Neverth
less, if we accept these values, we can reanalyze the
displayed in Fig. 3, treating the position of the spinod
yb as unknown. This procedure leads to estimatesyb ­
0.871 6 0.003 from the static data andyb ­ 0.90 6 0.01
from the relaxation-time data, in reasonable agreem
with the observed point of budding.

In the theory of phase transitions, a boundary th
describes the limit of stability of a metastable state or ph
(at the mean-field level) is referred to as a “spinoda
Behavior near such a spinodal is in some ways analog
to behavior near a second-order phase transition [1
In a true thermodynamic second-order transition, b
the characteristic fluctuation amplitude and the domin
relaxation time ultimately diverge at the transition b
with exponents renormalized from their mean-field valu
by cooperative effects due to the many long-wavelen
degrees of freedom. For a spinodal, on the other ha
this divergence is never achieved because the fluctua
state is globally unstable and decays when the fluctuati
reach a finite size. For a simple mechanical syst
like the vesicle, there is only one unstable mode, so
renormalization occurs.

This kind of mechanical instability produced by mod
softening is not uncommon. What is unusual is to hav
system in which the energy barrier in the metastable s
is only a few timeskBT , so that significant pretransitiona
fluctuations can occur, and in which the height of t
barrier can be controlled delicately on the scale ofkBT (as
is done here by controlling the temperature), so that th
fluctuations can be accessed and explored in a system
manner.
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A. Leung, M. Nikolić, J. Käs, and E. Sackmann. M. W
is grateful for the hopitality of the Max-Planck-Institut fü
Kolloid- und Grenzflächenforschung, where this man
script was written. This work was supported in part
a Natural Sciences and Engineering Research Counc
Canada grant (M. W.) and a Medical Research Counci
Canada grant (E. E.).
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