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Spinodal Fluctuations of Budding Vesicles
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We report the first systematic observations of precursor effects in shape transitions of phospholipid-
bilayer vesicles in aqueous solution. Vesicles change abruptly, as tempérasuraised, from a prolate
ellipsoidal shape to a “budded” shape consisting of two unequal spheres connected by a narrow neck.
On the lowT side of this transition, we see large thermal shape fluctuations (quasicritical fluctuations)
and long relaxation times (quasicritical slowing down), which may be interpreted, in the context of a
¢° Landau theory, as the fluctuations of a metastable state near its spinodal instability.

PACS numbers: 82.70.—y, 05.40.+j, 68.10.—-m

Fluid-phase phospholipid-bilayer vesicles in agueousVe observed an ensemble of shapes that preserves (to a
solution exhibit a variety of shapes [1-5]. As vesicle pa-good approximation) the up-down symmetry of the ellip-
rameters such as ardaand volumeV are smoothly varied soidal branch, not in the sense that each individual shape
(e.g., by controlling the ambient temperature), these shapéms this symmetry but in the sense that for each “up” fluctu-
evolve in an analytic manner except at special boundariestion there is an equivalent “down” fluctuation somewhere
At these “shape transitions,” changes in shape are eithém the time sequence; see Fig. 1. Our analysis focuses on
discontinuous (first order) or continuous but with a changehe lowest mode that breaks the up-down symmetry. Ap-
of symmetry class (second order). Hysteresis occurs gtroaching the transition, we document a striking growth in
first-order transitions, whenever (as is common) energypoth the static fluctuations of this mode and its dominant
barriers are larger than thermal energies. Even thougfoverdamped) relaxation time. Both these quantities ap-
thermal fluctuations (“flickering” [6]) of vesicle shape are pear to exhibit power-law behavior in an interval near the
commonly observed, bending-elastic energies are typicallyransition.
appreciably larger than room temperature, so that mean It is believed that the dependence of the endiggf a
shapes are reasonably well defined. Likewise, distincphospholipid-bilayer vesicle on its shagés described at
symmetry classes of shapes are normally readily identithe mesoscopic level by a functional [4,7,8]
fiable. Here, we will focus on the “budding” transition, at K %
which an up-down symmetric prolate ellipse transforms,E[S] = > fdA[Cl + C, — G + > (m[S] — myo)>.
asT is increased, to a shape consisting of two asymmet-
ric spheres joined at a narrow neck. This transition was 1)
studied earlier for DMPC vesicles [2] and was interpretedHere, C;(r) and C,(r) are the two principal curvatures at
as a second-order symmetry-breaking transition from théhe pointr of the vesicle surfacef is the spontaneous
ellipse to a pear shape, followed by a first-order transitiorcurvaturex is the bending rigidity; and the integral is over
to the final budded configuration, a sequence inconsistenihe entire vesicle surface. In the second tegris the non-
with extant theories [4,5]. We now believe [4] that bud- local bending modulus, and[S] = §dA(C; + C1)/2Rq4
ding is a hysteretic effect associated with a spinodal instameasures the area difference between the two leaves of
bility. We report in this Letter large-amplitude long-time the bilayer in a way that has been made dimensionless by
fluctuations near the budding threshold, which we interpretiividing out the area length scak, (A = 47R3). This
as the spinodal analog (at the mean-field level) of thermoterm measures the elastic energy cost of forcing the ac-
dynamic critical behavior. This is the first time that suchtual area difference to differ from its “relaxed” value (mea-
“quasicritical” behavior has been documented for a vesicu-
lar instability.

We report experiments on SOPC vesicles in which the
thermally induced shape fluctuations were dynamically im-
aged via phase-contrast video microscopy at a sequence of}
temperatures approaching the transition temperature from &
below. By parametrizing the projected vesicle-shape con-
tours in terms of Fourier-mode amplitudes, we were able

to monitor quantitatively both the static shape fluctuations=|G. 1. Snapshots of pear fluctuations of a prolate vesicle at
and the time-dependent mode-mode correlation functionseduced volumer = 0.912.
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sured bymy), which reflects the different number of lipid noise. A frame was grabbed evdh$ sec and processed

molecules in the two leaves. The ratio= k/x isof or- inrealtime. Atleast 1200 images were processed for each

der unity @ ~ 1.4 for SOPC [4,9]). The overall area and temperature to establish an ensemble. Each data set took

volume may be regarded as fixed. The whole problem caabout20 min to accumulate, including temperature ramp-

be expressed in terms of the energy scale 25k T oom ing and equilibration.

(SOPC L9]) and the dimensionless parameters,y = In these experiments, the vesicle shape was approxi-

3V /4w Ry (reduced volume)¢y = CoR, (reduced spon- mately prolate elliptical. We located a nominal princi-

taneous curvature), and,, of which the last three are in- pal axis by treating the contour as a uniform line density

dividually specific to each vesicle. and calculating the axes of the corresponding inertia ten-
Variation of Eq. (1) with respect to the shagdeads sor. We then parametrized the shape of each half contour

to a discrete sefn} of stationary shapes, (v, mg,co, @)  in terms of an arclength measured from one pole (the

with corresponding energids, (v, my, co, @) for each set pole-to-pole arc length is*) and the angles between the

of control parameters. The energi€s vary smoothly normal to the axis and the local tangent to the contour at

as functions of the control parameters, except at special It is convenient to describe each half contour via the

singular points. Only the lowest-energy shape is therscale-independent Fourier representation

modynamically stable; however, other low-lying locally

stable shapes are often seen in the Iaboratqry. _The con- W(s) = ms/s* + Z a, sinn(s/s*)r]. )

trol parameters vary with temperature, so,7ag raised, =

?eicgp\éizzl’enjilICC:)YVS).SO-In-]ﬁutSr?f ;trc:)rlét?rsohufphet?ﬁaf g?ﬂ;eT_he linear term_descripes: a half circle. _Nonzero coeffi-

lowest energy at low laboratory temperature may becomglents{an} describe deviations from the circle. Up-down

metastable a¥ increases, when the prolate branch crossedymmetric shapes pb%”““ = Ofor a,I,I - .

the pear branch. Now, Eg. (1) shows that energy barri- The mformat!on in each Sf!apShOt was coded In a set

ers are generically of order (>kgT); thus, metastability of shape amplitudega,}. Using the data for a single

will continue beyond the level-crossing temperature, until\’es'ICIe observed over a long period of time [11], we then

the energy barrier to escape from the local prolate miniponstructed_ensemble averages Ie,), Cr = <.Aa%>’
mum becomes comparablegT. Gaussian fluctuations WNe€re Adn = @, — {a,), and so forth. Likewise, we
about the metastable shape scalégE/e, wheree is a formed tlme-depen/dent rr)ode-amplltude correlations like
typical normal-mode energy, generically of order As C"(’) ~ (Aa,(r + I)Aa”(.t ) which depend only on the
the limit of metastability is approached, one (or more) ofime d|ff¢renca for a stationary ensemble. L
the modes becomes soft, signaling the onset of the insta- Dggp in the prolate phase, away from the .buddmg n-
bility (bifurcation). We argue that this soft-mode mecha—Stab'“ty' the mean ?mp“t“de@m are well defined gnd
nism is responsible for the large, slow fluctuations nea ecrease rapidly W.'th’ [12]. Thus, fo_r the particu-
the budding transition. We give below a Landau theor ar vesicle [11], which we shall study in detail below,
description of this bifurcation. we found, e.g., av = 0.931 * 0.002, that(a,) = 0.37,
Bilayer vesicles of SOPC were prepared [5] by swelling{@+) = 0:04, {as) = 0.001, and{az,+1) = 0.001. In this
dry lipid in 50 mMol sucrose solution and then suspendin egion, fluctuations were gmall, an.d we estimated the re-
in excess 48 mMol glucose solution, adjusted so that thguced_volume [5p by rotating eac.h Instantaneous contour
overall density of the vesicles was slightly greater than tha"f1IO0Ut Its symmetry axis, calculating the_enclosed volume,
of the surrounding aqueous solution. Thus, vesicles reste"i'f'd averaging over the ensemble. Figure 2. Sho"_VS the
against the bottom of the observation chamber, where they ean-square amplitude fluctuatiod, » = 1-6, in their

were observed from below via video phase-contrast mi ependence on reduced volume. Note that for evére

croscopy. With appropriate preparation and vesicle seIeJlucmatIonS are only Wgakly volume depende'n'F. By con-
tion [10], the target vesicle rested gently enough agains%ast ther =3 fluctuations .(an'd. at a less visible level
the bottom so that its shape was not detectably deforme ose forn = 1 [13]) grow _S|gn|f|cantly as the reduced
yet strongly enough so that full rotational diffusion of the volume approgches the point [14], = 0.878 = 0'.004’
vesicle was inhibited. Thus, a vesicle of prolate eIIipticaIat which _buddlng occurs. In fact, the= 3 mode is the
shape had its symmetry axis restricted effectively to thd2West-lying mode that breaks the up-down symmetry of

horizontal plane. The video camera, focused on the axialne prolate shapg. Figure 3 sh_ows directly the growth of
plane, recorded an image evenj30 séc then = 3 fluctuations as a function of reduced volume. A

A two-dimensional outline of the vesicle was preparedpower'law fit of the form
for each grabbed frame by a protocol that scans the grey Cs ~ A3/(v — vp)" 3)
scale pixel by pixel across the halo and locates a nominal
membrane point where the grey-scale profile crosses its Isuggests an exponent for the static fluctuations of=
cal background level. Finally, a local smoothing algorithm0.83-03}, the significance of which will become apparent

[5] was applied to these outline points in order to reducebelow.
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C There is a simple interpretation of these observations.
" 0.894 For the values ofm, of relevance here, the (up-down
0 symmetric) prolate is the lowest-energy shape for high
0.954 reduced volumesy = 1. As laboratory temperatur@
is increased, thus decreasing the valuevpthe system
first enters a metastable regime where the lowest-energy
shape is pearlike but the prolates remain stable against
local fluctuations [4]. Later, at a reduced volunog,
the prolates become locally unstable to a pear mode,
which eventually carries them over an energy barrier and
i “ll:;_,_,“: down to the asymmetric minimum-energy shape, which is
5,,»»’“ budded. At the Landau-theory level, we may characterize

' ' ' ' ' ' this sequence of events by an energy functional
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FIG. 2. Mean-square amplitudess) at four different reduced V(a) = K[%mﬂ - %ga“ + éua6], (4)

volumes approaching budding. Note the strong growth of

the modea; and the relative constancy of the even modes. . .

Uncertainties are shown; the lines are guides for the eye. wherex sets the overall energy scatejs the amplitude
of the mode that becomes soft &, and the remaining

) ) ) parameters,r, g > 0, and u > 0, are dimensionless.
The time-dependent correlations, (s) typically de-  The symmetrical (prolate) branch is metastable in the

cayed monotonlcall_y. It was convenient to fit this de- ranged < r < 3g2/16u; the limit of metastability occurs
cay to an exponential [1517, (1) ~ B, exp(—t/7,), and,  4q (v — v,) ~ r — 0*. The unstable mode can, in
thus, to define a characteristic dominant relaxation titne principle, be a mixture of all the odd modés,}. In
for each mode:. Well away from the budding instabil- ractice, the data suggest thattends to dominate. We
ity, the relaxation times weré-2 sec for the low modes, || yse the description Eg. (4) only near the prolate state
n =1,2,3,4, and shorter for higher modes. However, ;, — ) There is no suggestion that the eventual budded
the relaxation time for the = 3 mode increased signifi- shape should be described by a single amplitude.
cantly as the budding instability was approached. Thisin- giatic thermal fluctuations of the metastable prolate
crease, shown in Fig. 3, was obV|ous'|n the V|de_o plcturess,)hape are controlled by the part of the energy landscape
where we observed large, slow pearlike fluctuations aboyhsjge the metastability barrier, which for small is lo-
the elliptical average shape, first to one side and then t@aia( close ta? = r/g with heightkxr2/4g. Amplitude
the other; see Fig. 1. A crude fit of the power-law typefctyations are given at the Gaussian level (a§) =
gaver; ~ D3/(v — v,) with a dynamical exponents 1.7/, which is only expected to be valid whém®) <

of order 1 but with large uncertainty. r/g, so the non-Gaussian terms may be neglected. In-
deed, when this criterion is not satisfied, there is signifi-
G, Tgins cant probability of escape over the barrier. It follows that
0.008- 19 there is a range of reduced volumgsT/k < r? < 1,
' near but not too near the budding instability, for which the
L 10 static fluctuations are predicted to grow(as— v;,) !, as
is consistent with the observations, Eq. (3).
0.006- - 8 Discussion of the time dependence of the modes requires
a dynamical theory, which must in general contain infor-
- 6 mation about solvent properties [16]. For present the pur-
poses we shall simply assume that the soft mode obeys a
0.004+ - 4 dynamical equation of the purely dissipative type,
- 2 da/ot = —T'oV/da + ¢, (5)
0.002-, T T T 1

where ¢ is the usual noise term. Equation (5) simplifies
0.88 0.90 092 0.94 096V to da/dt = —T'kra + ¢ neara = 0, when the Gaussian
FIG. 3. Growth of static fluctuationsCg) in the modea;  term dominates. The kinetic coefficiehithas dimension
and the corresponding dominant relaxation time).( Both  sych thatl' ~! ~ time X energy. The dominant mecha-
quantities increase strongly near budding. Egrthe full curve  nism for dissipation is via the solvent viscosity the ap-
shows a two-parameter fit by Eg. (3) with the eXpe”mem"’llpropriate length scale for the unstable mode is the size
vy, giving y, as quoted in the text; the dotted curve forces . . c A
ys = 1 and findsv, = 0.871 = 0.003. Likewise the curve for scaler of the vesicle. Thus, dimensional analysis leads to

73 shows a fit withy, = 1 and givesv, = 0.897 = 0.005. I' = ¢/nR?, with a numerical factor that is generically
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of order unity. In the regime described above, where the[1] K. Berndl, J. Kas, R. Lipowsky, E. Sackmann, and
Gaussian term dominatés Eg. (5) predicts U. Seifert, Europhys. Letfl3, 659 (1990).
_ 2\ /T [2] J. Ké&s and E. Sackmann, Biophys.60, 825 (1991).
. <_a1(t)a(0)> <a_>le . ] ) (6) [3] R. Lipowsky, Nature (Londony49, 475 (1991).
with 7 = (Cxr)™" ~ (v — vp)~", which is consistent [4] L. Miao, U. Seifert, M. Wortis, and H.-G. Débereiner,
with the observations. Furthermore, inserting typical pa- Phys. Rev. E49, 5389 (1994), and references therein.

rameter valuesy = 1072 ergse¢cm®, R = 1073 cm, [5] H.-G. Débereiner, Ph.D. thesis, Simon Fraser University,
andx = 1072 erg, we estimate the typical (slowest) re- 1995 (unpublished). _

laxation time ag ~ 10/(v — v) sec, in good agreement [6] M.B. Schneider, J. T. Jenkins, and W.W. Webb, J. Phys.
with the observations. (Paris) 45, 1457 (1984); H. Engelhardt, H. Duwe, and

E. Sackmann, J. Phys. Le#t6, L395 (1985).

The Landau picture of the observed pretransitional be-
P P [7] W. Helfrich, Z. Naturforsch.28¢ 693 (1973); E. Evans,

havior suggests for the “spinodal exponenig’= vy, = Biophys. J.14, 923 (1974)30, 265 (1980).

1. We how understand that these. power laws” are at [8] S. Svetina, M. Brumen, and Eeks, Stud. Biophys110,
best valid near but not too near the instability. Neverthe- "~ ;- (1985).

less, if we accept these values, we can reanalyze the daty] £, Evans and D. Needham, J. Phys. Che3a, 4219
displayed in Fig. 3, treating the position of the spinodal (1987).
vy as unknown. This procedure leads to estimatgs=  [10] The gravitational effect is measured by the dimensionless

0.871 #= 0.003 from the static data and, = 0.90 * 0.01 combination gR*Ap/x, where g is the gravitational
from the relaxation-time data, in reasonable agreement accelerationR is a typical vesicle dimension, anllp is
with the observed point of budding. the density difference. Vesicles that are too small rotate

In the theory of phase transitions, a boundary that freely, while those that are too large are flattened against
describes the limit of stability of a metastable state or phase ~ the bottom of the experimental cell. See Ref. [5] and
(at the mean-field level) is referred to as a “spinodal.”. . M- Kraus, U. Seifert, and R. Lipowsky (to be published).
Behavior near such a spinodal is in some ways analogoJ%l] The datz?l tha_lt foII_ow are for one of the several vesicles

. o we studied in this manner. Data for the others were
to behavior near a secpnd—order phase transition [17].  similar but are not directly comparable, singg is not
In a true thermodynamic second-order transition, both 5 yariaple that can be selected in the laboratory. Practical
the characteristic fluctuation amplitude and the dominant djfficulties limit accumulation of more extensive data sets:
relaxation time ultimately diverge at the transition but (@) It is hard at this stage to predict when (or even
with exponents renormalized from their mean-field values  whether) a single vesicle chosen for observation will
by cooperative effects due to the many long-wavelength bud; (b) although thermal trajectories that do not bud are
degrees of freedom. For a spinodal, on the other hand, reversible (at least, on time scales that are not too long),
this divergence is never achieved because the fluctuating the transition in and out of the budded state is always to
state is globally unstable and decays when the fluctuations ~SOme extent irreversible, presumably because of the strong
reach a finite size. For a simple mechanical system short-range forces that come into play when the neck

like the vesicle there is onlv one unstable mode. so no closes down to molecular dimensions; and (c) significant
’ y ’ lipid degradation seems to occur on a scale of ca. 6 h.

renor.mal_ization occurs. ) . [12] This behavior is generic fay = 1. See Refs. [4] and [5].
This kind of mechanical instability produced by mode[13] Forv ~ 1, it is easy to show [5] that, ~ (a»)as, so that

softening is not uncommon. What is unusual is to have a = 4, remains small and tracks.
system in which the energy barrier in the metastable statg4] This experimental value ofy, is obtained from the

is only a few timeskg T, so that significant pretransitional observed temperature of budding, (= 45.8 + 0.2°C)
fluctuations can occur, and in which the height of the by extrapolating the d.ecrease of.due to phe the_rmal
barrier can be controlled delicately on the scalésif (as expansion of the vesicle along its budding trajectory.

is done here by controlling the temperature), so that these ~ Vesicle fluctuations were recorded dt=28.7, 32.7,
fluctuations can be accessed and explored in a systema[ic 37.8, ani24°C. ,
manner. 15] Near the instability, it was necessary to fit by a sum of

. . . . two exponentials in order to pick up additional, shorter
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