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Mapping vesicle shapes into the phase diagram: A comparison of experiment and theory
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Phase-contrast microscopy is used to monitor the shapes of micron-scale fluid-phase phospholipid-bilayer
vesicles in an aqueous solution. At fixed temperature, each vesicle undergoes thermal shape fluctuations. We
are able, experimentally, to characterize the thermal shape ensemble by digitizing the vesicle outline in real
time and storing the time sequence of images. Analysis of this ensemble using the area-difference-elasticity
~ADE! model of vesicle shapes allows us to associate~map! each time sequence to a point in the zero-
temperature~shape! phase diagram. Changing the laboratory temperature modifies the control parameters~area,
volume, etc.! of each vesicle, so it sweeps out a trajectory across the theoretical phase diagram. It is a nontrivial
test of the ADE model to check that these trajectories remain confined to regions of the phase diagram where
the corresponding shapes are locally stable. In particular, we study the thermal trajectories of three prolate
vesicles which, upon heating, experienced a mechanical instability leading to budding. We verify that the
position of the observed instability and the geometry of the budded shape are in reasonable accord with the
theoretical predictions. The inability of previous experiments to detect the ‘‘hidden’’ control parameters~re-
laxed area difference and spontaneous curvature! make this the first direct quantitative confrontation between
vesicle-shape theory and experiment.@S1063-651X~97!11604-X#

PACS number~s!: 68.10.2m, 82.70.2y, 07.60.Pb, 62.20.Dc
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I. INTRODUCTION

Micrometer-scale fluid-phase lipid-bilayer vesicles ha
been observed in recent years under controlled labora
conditions @1–11# to exhibit many amusing and divers
shapes. At the same time, there is now a one-param
theory of vesicle shapes, the so-called area-differen
elasticity ~ADE! model @12–15#, which appears to be quali
tatively consistent with available experimental observatio
It would be nice, however, to have a vesicle with an ac
rately measured shape and known parameters, to plug t
parameters into the theory, to predict a shape, and to c
pare with the measured one. Up to this time, this has
been possible, and, indeed, there have been few~if any! di-
rect quantitative confrontations between theory and exp
ment.

The reasons for this unsatisfactory state of affairs h
their origins in both theory and experiment. On the theor
ical side, the principal models which have been propose
describe vesicle shapes@12,16–18# all have in common the
same catalog of stationary-energy shapes. Thus, simple
servation of a vesicle whose shape can be found in the c
log, while evidence for the general validity of bendin
energy models, does not distinguish one variant fr
another. In order to test the model, it is necessary to st
more indirect and/or delicate issues such as stability~abso-
lute and relative! or shape-change systematics under a va
tion of control parameters. This has not often been done@19#
for fundamental experimental reasons: First, there are
important vesicle parameters which can be modified syst
atically in the lab but are not subject to direct measurem
One of these is the spontaneous curvatureC0, which mea-
sures the preferred radius of curvature of the relaxed bila
based on the different lipid composition of the two consti
551063-651X/97/55~4!/4458~17!/$10.00
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ent monolayer leaves and/or the different aqueous envi
ments inside and outside the vesicle. This parameter is
sumably the same for all vesicles in a single homogene
suspension. The other is the relaxed area differenceDA0
between the two leaves, based on the different numbe
lipid molecules which they contain@20#, and the long relax-
ation time for lipid exchange between them@21,22#. This
parameter will, in general, vary from one vesicle to anoth
in the same suspension, based on the~unknown! manner in
which vesicle closure occurred during preparation and
any interleaf ‘‘flip-flop’’ or intercalation events which ma
have occurred subsequently. In addition, the vesicle sh
itself is a significantly ambiguous quantity. At laborato
temperatures, all nonspherical vesicles undergo signific
and unavoidable thermal fluctuations. Thus, at any nonz
temperatureT, the experiment must characterize a therm
shape ensemble. A single ‘‘snapshot,’’ such as has o
been exhibited in the previous literature, cannot do this.
nally, experiments have not in practice probed the full, thr
dimensional vesicle shape but at best a two-dimensional
through it at the focal plane of the observing apparatus.

It is the aim of this paper to show how to deal with a
these problems in a serious manner. Using video phase
trast microscopy, we recorded for each vesicle and at e
temperature long time sequences of two-dimensional ves
contours. We parametrized these images in terms of a s
shape amplitudes. We used the shape-amplitude time
quences to construct a thermal ensemble, from which
extracted a set of thermal expectation values. Using this d
we show below how to associate each vesicle with a part
lar point in the phase diagram. In principle, information
left over after the mapping, so that a nontrivial confrontati
between theory and experiment is possible. In practice, av
able resolution limits what we can do; nevertheless, n
trivial checks are possible.
4458 © 1997 The American Physical Society



w
-
r
e
ili

b

n
cl
ri
n
e
ng
le
n
e
ita
m

p
v-
ti
na
as
e
e

o-

c
er
or
ita
of
m

er
m
is

p

g

pa
s

ar

ce
e

, on

es
the
ime
ssing
-

s
r
local

sn-

t
,
-
r-

ntly

ies

ra-
rm

of
ll

ced

ane-
r-

55 4459MAPPING VESICLE SHAPES INTO THE PHASE . . .
Overall, the results are encouraging. The vesicles that
have located in~‘‘mapped into’’! the theoretical phase dia
gram do, generally, end up in regions where they are p
dicted to be locally stable and to have low energies. Furth
more, observed thermal trajectories exhibit shape instab
close to~if not always exactly at! positions predicted by the
theory. Finally, after the instability the shape is in reasona
agreement with theoretical expectations.

Gravitational effects play an important role experime
tally. In order to record long time sequences of vesi
shapes, it is convenient to adjust the density of the exte
solution so that the vesicles have a small negative buoya
and collect at the floor of the experimental cell, where th
remain within the focal plane of the microscope for lo
periods. In addition, gravity orients the long axis of vesic
of prolate shape so that it stays in or near the focal pla
These are practical issues. On the conceptual side, when
it has non-neutral buoyancy, a vesicle is subject to grav
tional shape deformations. The importance of these defor
tions has only recently been recognized@23# and was not
considered in the analysis of earlier experiments. In this
per, we first perform the full analysis without including gra
ity. Then, we devote a separate section to the considera
of gravitational corrections. The upshot is that gravitatio
effects can be significant; however, in the region of the ph
diagram upon which we focus attention, there is no chang
the qualitatively good agreement between theory and exp
ment.

The layout of the paper is as follows. Section II intr
duces the theoretical background necessary to analyze
experiments. Section III describes the experimental pro
dures. Section IV explains how the analysis of the exp
mental shape contours was carried out. Section V sets f
our results using a pure ADE mapping and ignoring grav
tional effects. Finally, in Sec. VI, we explore the effects
gravity. Section VII provides a final assessment and su
mary.

II. BACKGROUND

A. The area-difference-elasticity model

In order to have a language for discussing the exp
ments, it will be useful to present here a summary of so
principal features of the ADE model. Additional material
available elsewhere@12–15,18,24,25#. At mesoscopic length
scales, larger than molecular sizes but smaller than the
sistence length, the shapeS of a fluid-bilayer vesicle is con-
trolled by an energy functionalW@S# consisting of two parts.
The first, due to Helfrich@26#, measures the overall bendin
energy and is scaled by the bending modulusk. The second
requires a brief explanation: Assuming a fixed bilayer se
rationD, the actual area difference between the two leave
the bilayer is

DA@S#52D R dA H~r !, ~1!

whereH(r ) is the local mean curvature at the pointr of the
vesicle surface and the integral runs over the~closed! vesicle
surface. On the other hand, the preferred or relaxed
difference,
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DA05~Nout2Nin!a0~T!, ~2!

of the two leaves is determined by the differen
(Nout2Nin) between the number of lipid molecules in th
outer and inner leaves. The relaxed areaa0(T) per lipid mol-
ecule is a material parameter but can depend, of course
the temperatureT. Once the vesicle has closed,DA0 can
only change due to lipid flip-flop between the two leav
and/or lipid interchange with the aqueous environment of
vesicle, processes which are believed to be slow on the t
scale of the mechanical shape changes we shall be discu
@21,22#. The second contribution toW@S# measures the elas
tic energy necessary to forceDA@S# to differ from DA0,
when the vesicle assumes the shapeS. Because the vesicle i
fluid, this ~local! elastic strain is distributed uniformly ove
the vesicle surface and appears as an apparently non
term controlled by a so-called nonlocal bending modulusk̄.
The modulik and k̄ are both of orderKD2, whereK is the
area stretching modulus of the bilayer@12#, so the ratio,

a[k̄/k, ~3!

is generically of order unity. The material parametersk and
k̄ can be measured directly. For 1-stearoyl-2-oleoyl-
glycero-3-phosphatidylcholine~SOPC!, it is believed that
k;(0.9060.06)310219 J @27#. It has been estimated tha
a;1.4 @12#. @A somewhat higher value
k;(1.2060.17)310219 J, and a comparable but quite un
certain value ofa have been recently observed in tethe
pulling experiments@28#.# The energy scalek is much
smaller than the energies necessary to change significa
the areaA and volumeV of the vesicle@29#, so these quan-
tities may be regarded as fixed in comparing the energ
W@S# of different shapes.

Combining the two terms described in the preceding pa
graph~and dropping an irrelevant, shape-independent te!
leads to,

W@S#5kFG@S#1
a

2
~m@S#2m̄0!

2G , ~4!

where

G@S#5
1

2 R dA~2H !2, ~5!

which is the starting point of our theoretical discussion
shapes. In writing Eq.~4!, we have chosen to rescale a
lengths in terms of an ‘‘area length’’RA defined by
A[4pRA

2 . Thus, the area difference appears in the redu
form,

m@S#5DA/2DRA , ~6!

and the relaxed area difference combines with the spont
ous curvatureC0 into a single effective reduced area diffe
ence,

m̄05m012c0 /a, ~7!

wherem05DA0/2DRA andc0[C0RA is the reduced value
of the spontaneous curvature. BecauseC0 andDA0 appear
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4460 55DÖBEREINER, EVANS, KRAUS, SEIFERT, AND WORTIS
only in the combinationm̄0, it is impossible in principle to
detect either one separately by a single shape measurem
Note that the bracketed terms in Eq.~4! are all dimensionless
ratios of lengths, invariant under a scale change of the sh
S, provided that at the same timeC0 is changed to keepc0
fixed. In this sense,W@S# depends on the shape ofS but not
its overall size. An appropriate scale-independent volu
measure is the reduced volumev[3V/4pRA

3 , which lies in
the interval@0,1#.

To be a mechanically viable shape for a vesicle w
givenA andV, Smust make the energy~4! stationary at the
corresponding values ofv andm̄0 @30#, i.e., it must satisfy

dW505k„dG@S#2a~m̄02m@S# !dm@S#…. ~8!

In general, there are several distinct branches of station
shapes, which we labelS(n)(v,m̄0), with corresponding en-
ergiesW(n)(v,m̄0). To be a candidate for observation in th
lab, a shapeS(n)(v,m̄0) must, in addition, be locally stable t
small shape perturbations@31#. The lowest-energy branc
~which must, of course, be stable! defines the ground stat
and should, in principle, be observed at sufficiently lo
times when the temperature is low. However, when ene
barriers are large on the scale ofkBT, other low-lying locally
stable branches may remain metastable for long periods.
SOPC,k;20 kBTroom @27#, so metastability is expected t
be common.

Finally, we shall need below an important connection b
tween the ADE-model shapes and those of the so-ca
spontaneous curvature~SC! model @26,32#, defined by the
energy functional,

WSC@S#5
k

2 R dA~2H2C̄0!
2

5k„G@S#22c̄0m@S#1const…, ~9!

which describes a model without differential area elastic
and having a spontaneous curvatureC̄0 ( c̄0 is the corre-
sponding reduced spontaneous curvature!. The variation of
Eq. ~9! gives a condition which has the same form as Eq.~8!
only with the replacement,

2c̄0[a~m̄02m@S~n!# !. ~10!

It follows that any stationary shapeS(n) of the ADE model
~4! is also a stationary shape of a spontaneous curva
model ~9! with the c̄0 defined by Eq.~10!, which we shall
henceforth refer to as the effective reduced spontaneous
vature for the ADE shapeS(n). Notice that the control pa
rameters enter the variational shape equation~8! entirely via
the coefficient of the second term. It follows that the statio
ary shapeS(n) is specified completely and in a way that
independent ofa by giving v and c̄0. For this reason, it will
sometimes be convenient in what follows to think of t
stationary shapes asS(n)(v,c̄0) rather than asS(n)(v,m̄0),
which still depends implicitly ona. The variation~8! may be
thought of as proceeding in two steps: First makeG@S# sta-
tionary at fixedm, thus defining a functionG(n)(v,m), then
subsequently carry out the variation with respect tom. It
follows from Eq.~8! that c̄0 can be evaluated as
ent.
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2c̄05
]G~n!~v,m!

]m
52c01a~m02m@S~n!# !. ~11!

B. T50 phase diagram and the stability of prolate shapes

The map in the (v,m̄0) plane of the regions where variou
branches provide the lowest energy shape constitutes
T50 ~shape! phase diagram for the ADE model. This pha
diagram, which depends ona, can now be constructed rathe
easily numerically, at least, forv not too small and when
m̄0/4p is not too far from unity@12,33,34#. The experiments
described in this paper deal with a branch of axisymme
shapes, called ‘‘prolates,’’ because they have up-down s
metry and resemble prolate ellipses when they have redu
volume not too much below unity. The region of the AD
phase diagram in which these prolates appear is show
Fig. 1. It is bounded below by oblate axisymmetric shap
and by a region of nonaxisymmetric shapes, which need
concern us further here@35#. Above the prolates lies a regio
of pear shapes, for which axisymmetry remains but the
down symmetry has been broken. This pear region is, in tu
bounded above by a lineLpearof fully ‘‘vesiculated’’ limiting
shapes, consisting of two spheres joined by a narrow n
The region aboveLpearis incompletely explored but believe
to be dominated by additional interconnected vesicula

FIG. 1. ADE phase diagram fora51.4, prolate region. First-
order boundaries (D) are indicated by solid lines; second-ord
boundaries (C), by dashed lines; and, spinodals (M ), by dotted
lines. Lowest-energy shapes are illustrated for each region.
symmetry axes are vertical as indicated for the prolate. Pro
shapes are locally stable between the upper spinodal lineM (0,2)

pro and
the lower spinodal lineM (2,1)

pro . The lines Dpro-pear, Cpro-pear,
Dpro-obl, andDpro-nasbound the region where prolates are the lowe
energy shapes. In the region immediately aboveDpro-pear lowest-
energy shapes are pearlike.Lpear, is the limiting line at which the
neck of the pear shape shrinks to zero radius producing a ves
lated shape, as indicated. The lowest-energy states aboveLpear are
dominated by vesiculated shapes. In the region immediately be
the prolates, oblate and nonaxisymmetric~nas! shapes have lowes
energy@34#. The pointT on the prolate-pear phase boundary is
tricritical point, separating first-order and second-order behav
CEP labels a critical end point, where a second-order bound
Cnas-obl ~not shown, since it is very close toDpro-nas) disappears
underneath the lower prolate boundary. Note for future refere
that the limiting lineLpearcrosses the upper spinodal lineM (0,2)

pro of
the prolate phase atv50.875 fora51.4.
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55 4461MAPPING VESICLE SHAPES INTO THE PHASE . . .
shapes. The boundary between the prolates and pears at
tively high reduced volume involves a discontinuous sha
change~corresponding to a simple crossing of the ene
branchesWpear andWpro) along the lineDpro-pearbut a con-
tinuous shape change~corresponding to a bifurcation o
Wpear away fromWpro) along the line labeledCpro-pear, for
lower reduced volumes beyond the tricritical pointT. Both
transitions are often called ‘‘budding.’’

It is important to emphasize that the prolate shape bra
continues to exist outside of the ‘‘prolate region’’ of th
phase diagram. Indeed, within the context of the ADE mo
and in the region of reduced volume shown in Fig. 1
stationary prolate shape exists for every value ofm̄0 @36#.
These shapes can only be observed, of course, when the
locally stable. The region oflocal prolate stability includes
the ‘‘prolate region’’ of the phase diagram but extends b
yond it into metastable regions, where the true ground s
has some other shape. It is a crucial test of the theory
prolate shapes observed in the lab should, indeed, map t
region of predicted prolate~local! stability.

Metastability boundaries are marked by the first appe
ance of a soft mode, i.e., a family of fluctuations which low
the overall energy. The region of Fig. 1 within which pr
lates are predicted by the ADE model to be locally stable
bounded above by the lineM0,2

pro and below by the line
M2,1

pro . These lines are calculated by an analysis of c
strained Gaussian fluctuations about the calculated statio
shape@34#. The subscripts label the rotation modeumu and
~even or odd! parity of the sector where the first instabilit
occurs. It is an important result of this theory@37# that insta-
bilities in sectors which break the symmetry are a property
the shapeS(n) alone, while those in nonsymmetry-breakin
sectors depend in addition independently ona. For the pro-
late shapes, the boundariesCpro-pearandM0,2

pro in Fig. 1 both
reflect instability in the symmetry-breaking sect
(umu50, odd parity). These boundaries are, thus, indep
dent ofa in a (v,c̄0) representation of the phase diagram,
in the usual (v,m̄0) representation, they shift witha accord-
ing to

m̄05m@Spro~v,c̄0!#1
2c̄0
a

. ~12!

These lines of shape instability@and not the actual shap
~phase! boundaries# are the experimentally relevant~observ-
able! ones.

Strictly speaking, the above picture holds only in the lo
temperature limit, since forT.0 sharp phase boundaries d
not exist, because the vesicle is a finite system with fin
energy and always explores its full phase space. Never
less, in practice, as long as the prolate branch remains loc
stable and surrounded by energy barriers appreciably la
than kBT, thermally fluctuating prolate shapes are read
seen in the lab. In the prolate region of the phase diagr
these fluctuating shapes constitute a true, stationary, equ
rium ensemble. In regions which are only metastable, the
of prolate shapes should be regarded as a restricted
semble, which may, however, be quasistationary for app
ciable periods of time. In practice, metastability is expec
to break down slightly inside the boundariesMpro, when the
metastability barrier becomes comparable tokBT.
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C. Prolate shapes for reduced volumes near unity:
The hierarchy and the mapping

We briefly review here what is known theoretically abo
theT50 stationary shapesSpro(v,c̄0) for the relatively high
reduced volumes which will be relevant for the experime
@12,34#.

Prolate shapes are axisymmetric. Therefore, they are c
pletely described by the curve made by their intersect
with any plane which includes the symmetry axis. This cur
may be written in terms of an arclengths which starts at the
north pole (s50) and ends at the south pole (s5s* ). We
take the direction of the polar axis to beŷ and the perpen-
dicular direction to bex̂. A representation which will be
convenient for our purposes is

c~s!5p
s

s*
1 (

n51

`

an
~0!sinS np

s

s* D , ~13!

wherec(s) is the angle betweenŷ and the outward-pointing
normal to the curve. The overall length scale is set bys* .
Note thatc(0)50 andc(s* )5p. The first term on the right
describes a semicircular arc, i.e., a spherical vesicle sh
The coefficients $an

(0)% parametrize deviations from th
sphere. For shapes like prolates, which are up-down symm
ric, the odd-n coefficients vanish. We note, as an aside, t
the coefficients$an

(0)% cannot be set independently, since cl
sure of the curve at the south pole requires that

x~s* !5E
0

s*
ds cosc~s!50 . ~14!

This places a complicated nonlinear condition on the
$an

(0)%, which for any real vesicle shape will automatically b
satisfied.

The stationary shapes of the prolate branch are given
the coefficientsa2n

(0)(v,c̄0). It is clear that, whenv is near
unity, the coefficientsa2n

(0) will all be small. It is a conse-
quence of the stationarity condition~8! that these nonvanish
ing coefficients have the structure of a well-defined hierarc
@25#,

a2
~0!5A2~12v !1/21B2~ c̄0!~12v !1O„~12v !3/2… ,

a4
~0!5 B4~ c̄0!~12v !1O„~12v !3/2… , ~15!

a6
~0!5 O„~12v !3/2… ,

where A25(135/64)1/2.1.45 and the coefficientsB2 and
B4 are linear functions ofc̄0 with coefficients of order unity.
These results follow from Refs.@12# and @24#. It is a conse-
quence of this structure that forv near unity
a2
(0)@a4

(0)@a6
(0)@•••, a hierarchy which reflects the fac

that modes of highern correspond to shorter wavelength
and cost more bending energy.a2

(0) is independent ofc̄0 at
lowest order, because this is the only contribution of ord
(12v)1/2 and is, therefore, entirely determined by the co
straint on the reduced volumev.

Figure 2, which was calculated by numerically solving t
variational equation~8!, illustrates the dependence ofa4

(0) on
v andc̄0 for the prolate branch nearv51. It is clear that for
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v,0.95 the terms of order (12v)3/2 and higher have an
appreciable effect. Note that, except near the anoma
point @38# v.0.85, knowledge ofa4

(0) andv uniquely deter-
minesc̄0.

This brings us, finally, to the issue of the ‘‘mapping,’’ i.e
of associating an experimentally observedT50 prolate
vesicle shape with a point in the ADE phase diagram, Fig
Knowing the vesicle shape means that we have direct exp
mental access to ‘‘geometrical’’ quantities such asv and
m, through the shape coefficientsa2n

(0) . The abscissav, of the
phase diagram, is geometrical; however, the ordinatem̄0 Eq.
~7!, encodes information about the initial area differen
DA0 and the spontaneous curvatureC0, which are neither
geometric nor directly observable in any other way. The
lution to this apparent impasse is to usea4 and Fig. 2 to infer
a value ofc̄0(v,a4

(0)), the effective reduced spontaneous c
vature, which is not observable, and to combine this with
then~theoretically! fixedm(v,c̄0) to calculatem̄0 @Eq. ~10!#.
Note that, in principle, any of the nonzero coefficien
$a2n

(0)% could be used to produce such a mappin
c̄0(v,a2n

(0)). In practice, however, as the hierarchy~15!
shows,a2

(0) is very insensitive toc̄0 ~becauseA2 is indepen-
dent ofc̄0 andB2 is only weakly dependent on it! anda6

(0) is
sufficiently small so that experimental noise makes it a p
candidate.

This framework is still incomplete in three senses. Fir
what the experiment observes is not a singleT50 shape but
an ensemble of thermally fluctuating shapes. Second,
mapping as described above simply takes an experime
point and associates it in a one-to-one manner with a poin
the theoretical phase diagram. It does not yet in any obvi
way test the correspondence between theory and experim
Third, effects of gravity should be taken into account. W

FIG. 2. The shape coefficienta4
(0) as a function of reduced vol

umev for various values of the effective reduced spontaneous
vaturec̄0, as indicated on the curves. These curves allow us to i
a value ofc̄0, if a4

(0) is known at givenv. This is the basis of the
mapping procedure discussed in Sec. II C. All the curves p
througha4

(0)50 at the sphere,v51. Althougha4
(0) is almost inde-

pendent ofc̄0 at v50.85, there is no common crossing point.
us
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discuss these important points in Secs. IV, V, and VI, resp
tively. But, before doing so, we turn to the experiments.

III. EXPERIMENTAL TECHNIQUES

A. Materials and preparation

For all experiments, vesicles were prepared from the co
mon phospholipids 1-stearoyl-2-oleoyl-sn-glycero-
phosphatidylcholine~SOPC! or 1,2-dimyristoyl-sn-glycero-
3-phosphatidylcholine~DMPC!. These lipids have their main
phase transitions at 5 °C and 23 °C, respectively@39#. They
were purchased in powder form~Avanti Polar Lipids, Bir-
mingham, AL, USA! and stored dissolved in chloroform
:methanol~2:1! in special chemically inert glass vials~Fisher
Scientific! below215 °C.

Preparation was done using standard techniq
@25,40,41#: A few drops~30m l! of lipid solution ~10 mg per
ml chloroform:methanol! are spread with a syringe needle o
a roughened Teflon disk. The solvent is evaporated i
vacuum chamber overnight. The disk with the dried lipid
placed in a glass beaker~50 ml! and prehydrated with a
stream of argon saturated with water vapor for about 20 m
Then, the desired solution for vesicle swelling is added a
the beaker is covered with Parafilm and placed in the ov
To avoid heat shock, the solution and the beaker with
Teflon disk are heated separately to the swelling tempera
prior to incubation. Swelling was done with 50 mMol su
crose solution at a temperature of 36 °C.

Successful vesicle development is indicated by whit
streaks in the swelling solution. These streaks are collec
into an Eppendorf tube with cleaned glass pipettes and in
bated at the swelling temperature. Excess glucose solu
~48 mMol! is then added to obtain the desired density for
vesicles in the observation chamber. The end result of
procedure is a vesicle suspension with an interior sucr
solution and an exterior glucose solution~with a slight ad-
mixture of sucrose!. The excess density of the interior rela
tive to the exterior sugar solution is approximately 3.3 g
This is needed in order that the vesicles sink gently to
bottom of the experimental cell, as discussed further bel
Vesicles were stored at the swelling temperature and u
within a few days.

B. Experimental setup and data acquisition

For observation, vesicles are placed in a specially
signed microchamber, tightly sealed with glass plates ab
and below to prevent evaporation@25#. Temperature is moni-
tored by a thermocouple inserted into the observation ch
ber. A water bath, incorporated integrally into the chamb
provides temperature uniformity and control at the level
60.1 °C. Because their density is slightly higher than th
of the surrounding solution, the suspended vesicles fal
the bottom of the cell, where they rest gently against
lower plate and are observed from below via video pha
contrast microscopy. We use a standard inverted Leitz
croscope equipped with phase contrast~Leitz Phaco 40/
0.65!, capable of an overall magnification of 500 times a
incorporating annular illumination and a phase ring. T
light source was a Hg arclamp powered by a high-volta
transformer. A permanent green filter and various gray filt
were used to minimize degradation of the lipids. The vid
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camera was positioned above the eye piece in such a wa
to gain a resolution of 86 nm per pixel in a 4803480 frame.

The visible phospholipid structures@42# which collect at
the bottom of the observation chamber in the microscop
focal plane are typically very diverse@4,7#, including topo-
logically complex and multilamellar structures, sma
vesicles included within larger ones, vesicles connected
one another by submicroscopic tethers or tubes, vesicles
obvious adhesions, etc. For a detailed observation, we tr
select simple, topologically spherical, unilamellar structur
without identifiable microscopic connections or adhesions
addition, we monitor the fluctuations of each candid
vesicle for some time prior to data acquisition in order
reject those with obviously ‘‘abnormal’’ behavior, e.g., tho
exhibiting unexplainable asymmetry or sudden changes
apparent area or volume. The final fraction of usable vesi
is less than 1%.

Images of selected vesicles are simultaneously displa
on the video monitor, saved to tape~U-Matic, Sony!, and
processed in real time, as will be described in Sec. III C.
sample at a fixed temperature a single thermal ‘‘shape
semble’’ takes about 20 min. Recording a thermal shape
jectory requires data at several different temperatures for
same vesicle. The chamber is allowed to equilibrate fo
least 5 min after each temperature change. Temperatu
recorded with a precision of60.1 °C. The total amount o
data gathered consists of over 80 h of video tape of m
than 150 vesicles, including a wide range of shapes. Budd
is an ubiquitous process, which we observed at least 15 ti
in a controlled fashion. It is important to get long runs a
each fixed temperature in order to properly sample the
thermal shape ensemble. On the other hand, therm
trajectory runs which extend over more than a few ho
appear to be contaminated by systematic drifts, presum
due to lipid degradation and/or flip-flop between bilay
leaves, which establishes intrinsic limits on sampling den
and run time.

In this paper we restrict analysis to three particular SO
vesicles (A, B, andC), which have in common that the
started with prolate elliptical shapes and, on heating, eve
ally underwent budding transitions, as illustrated in Fi
3–6. Qualitatively, other vesicles monitored behaved si
larly, although they followed different trajectories, some e
hibiting sharp shape transitions and others not. The rea
for selecting the budding trajectories is that the location
the budding instability provides a particularly stringent te
of the theory, as we shall discuss in Sec. V.

C. Processing the video image

In order to analyze the data, it is necessary to reduce
video image to a time sequence of digitized shape conto
This was done by using a frame grabber~Matrox, Dorval,
Quebec, Canada! to capture each image, computer proce
ing the image in real time, storing the digitized contour po
in memory, and then grabbing a new image. The image p
cessing algorithm~described below! requires between 0.4
and 0.6 s~depending on vesicle size! on a personal compute
with a 486 DX CPU and a 66 MHz clock speed. Thus, fo
video frequency of 30 frames/s, we are processing every 1
frame. This is relatively slow compared to processing tim
as
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on the order of 0.1 s, which have been reported in the lite
ture@5,43#. However, in contrast to these fast procedures,
algorithm has a better-than-pixel accuracy in finding the c
tour @44#. This high resolution turns out to be critical to th
success of our experiments, since we shall need to res
small changes in mean shape in tracking the thermal tra
tory @45#.

In phase-contrast microscopy the image of the ves
edge exhibits a ‘‘halo,’’ with a light band~intensity maxi-

FIG. 3. Time sequence of phase-contrast video images
vesicleA at v50.954. The images are ordered in time from t
upper left to the lower right. The elapsed time between image
6.3 s. The length of the long vesicle axis is approximately
mm. The vesicle fluctuates about an axisymmetric prolate sha
however, each particular contour is different and, in general, n
axisymmetric.

FIG. 4. Time sequence of phase-contrast video images
vesicleA at v50.912. Times and scale are as in Fig. 3. The ves
is now more elongated than it was in Fig. 3. Strong pearlike fl
tuations in each direction are now clearly visible.
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4464 55DÖBEREINER, EVANS, KRAUS, SEIFERT, AND WORTIS
mum! just outside the vesicle and a dark band~intensity
minimum! just inside. Typically, the intensity profile crosse
the gray value of the local background at its steepest po
and we have taken this point to be the nominal position
the vesicle boundary@46#.

The contour-digitizing algorithm is fully described in Re
@25#. The algorithm works on the~integer! pixel grid
(nx ,ny) and requires initialization by hand to the vicinity o
the outline of the particular vesicle to be studied~there are
ordinarily several vesicles in the field of view!. Suppose that
a scan innx at fixedny5ny

(0) intersects the halo. By averag
ing the gray values in the vicinity of the halo, we establish
local background intensity. The profile of intensity vers
nx crosses this background value at a pointx ~generally non-
integer! which may be determined by linear interpolatio
The point (x,ny

(0)) is then stored as a contour point, and t
algorithm stepsny→ny11 and starts again. Note that th
interpolation procedure allows determination of thex coor-
dinate of the contour point with better-than-pixel precisio
Whenever the contour profile becomes steeper when sca
in they direction rather than in thex direction, the algorithm
automatically switches to scanningny at fixednx , and vice
versa. Each contour is terminated at closure. Motion of
vesicle between successive frames is normally small eno
so that each subsequent frame can be started where the
lier one terminated, so the initialization step needs to be

FIG. 5. Time sequence of phase-contrast video images
vesicleA (RA59.2 mm) atv.0.878, illustrating the budding pro
cess. The scale is as in Figs. 3 and 4. The time elapsed bet
images here is 1.2 s. A pearlike fluctuation, much like those vis
in Fig. 4, now carries the vesicle over the metastable barrier to
budded state. The pear shaped contours correspond totransient
shapes and arenot stable. Note that the ratio of the vesicle size
the satellite size after budding is roughly 2.8.

FIG. 6. Time sequence of phase-contrast video images
vesicleB (RA55.5 mm) atv.0.945, illustrating the budding pro
cess for a smaller size vesicle. The time elapsed between imag
the same as in Fig. 5. Here, the transition from the prolate via
transient pear to the budded state happens much more quickly
for vesicleA, due to the smaller hydrodynamic radius.
t,
f

a

.
ed

e
gh
ear-
r-

ried out only at the beginning of each run@47#.
The digitized contours exhibit noise at the pixel level~1

pixel586 nm!. This behavior presumably reflects the intri
sic noise of the original optical signal, the pixelation stat
tics, the digitization of the gray scale, and other factors.
remove some of this microscopic noise before data analy
it is convenient to smooth the observed contours. This w
done by applying a tenth-order binomial filter@48# to thex
andy contour coordinates, thus averaging over an effect
width of about 5 pixels. The distribution of deviations of th
original data points from the smoothed contour is Gauss
with a typical full width at half maximum of about 0.7 pix
els, thus giving an effective local lateral resolution of abo
30 nm ~compared to a typical vesicle size of several m
crons!. This resolution, well below the nominal optical res
lution given by the wavelength of light, illustrates the de
cate line-shape discrimination achievable via phase con
@49# and is more than adequate for quantifying the ove
vesicle shape and the low-lying fluctuation modes.

The result of this process is a time sequence of sev
thousand digitized contours, illustrating the shape ensem
of each vesicle at each temperature. The relationship of th
two-dimensional contours to the three-dimensional ves
shape requires a brief discussion. The ‘‘general wisdo
seems to be that what is seen in phase contrast microsco
a cut through the vesicle in the focal plane@5,43,50–53#.
However, this is an oversimplification. Phase contrast is p
ticularly sensitive to edges, so vesicle boundaries wh
‘‘overhang’’ the focal plane~relative to the optical axis! may
contribute to the image to a greater or lesser extent dep
ing on the focal depth and the amplitude of the edge contr
Following the practice of the literature, we shall ignore su
effects in what follows. We wish only to point out that the
are substantive issues here which deserve to be addre
more fully in future work.

In collecting data, the microscope is focused on the ma
mal cross section of the vesicle under observation, and
focal plane does not change over time. For vesicles suc
A, B, andC which are~on the average! prolate and axisym-
metric, gravity tends to orient the symmetry axis horizo
tally, i.e., to bring it into the focal plane. Thus, the contou
~such as those based on Figs. 3–6!, which constitute our raw
data, may be thought of as an ensemble of cuts through
mean symmetry axis of the fluctuating vesicle. Fluctuatio
of the symmetry axis out of the horizontal plane modify th
simple picture: If the focal plane no longer includes the sy
metry axis, then the depth of focus and the edge enha
ment mentioned in the previous paragraph probably give
resulting image the character of a projected outline of
tilted vesicle. In principle, this projected shape is differe
from a true axial section. In practice, the stabilizing effect
gravity is large enough so that these out-of-plane fluctua
effects are almost always small~except near the spinodal lin
of the budding transition!, so we will treat the two-
dimensional contours as if they represent axial sections. N
that there is a balance here. In order to keep the theore
analysis simple, we would like to ignore the effects of gra
ity on the vesicle shape. On the other hand, in order to p
form the experiment conveniently, we use gravity to local
the vesicle in the bottom of the chamber and to orient
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symmetry axis~of prolate vesicles! to the horizontal plane
~see further discussion at the end of Sec. V!.

IV. ANALYSIS OF THE TWO-DIMENSIONAL
SHAPE CONTOURS

This section describes how we parametrize the individ
digitized two-dimensional shape contours discussed in S
III, how we average the shape parameters over each the
ensemble, and how we inferT50 three-dimensional shap
information from these averaged parameters.

A. Thermal fluctuations of the vesicle shape:
General discussion

Varying the temperature has two effects. On the one ha
it modifies, through ordinary thermal expansion, t
temperature-dependent control parameters,A(T), V(T), and
DA0(T), as well as the material control parameters,k, k̄,
andC0, which appear in the Hamiltonian~4!. These effects
produce the so-called ‘‘thermal trajectories,’’ which we sh
discuss in Sec. V. On the other hand, even if all these
rameters were temperature independent, there would sti
ordinary thermal fluctuations. It is, for the moment, the
purely thermal fluctuations to which we direct our attentio

There is, in principle, no way of taking a single fluctua
ing shape contour and inferring the correspondingT50
shape. At best, we must take a full thermal shape ensem
and use theory to infer theT50 shape of the vesiclewith the
same control parameters. When the fluctuations are large
even this is beyond present theoretical capability. Howe
when fluctuations are small enough so that they may
treated at the Gaussian level, progress can be made.

The upshot of a recent study of Gaussian fluctuations
vesicles of arbitrary axisymmetric shapes@37,34,54# may be
summarized as follows: Any typical fluctuating shape m
be regarded as aT50 shape appropriately translated a
rotated ~the so-called Euclidean modes! plus an area- and
volume-conserving normal~i.e., perpendicular! displacement
u(r ) at each pointr of the surface. It is a special feature
these fluctuations that~because of the strict area and volum
constraints! both the average displacement^u(r )& and the
mean-square fluctuations^u2(r …& are generically of the orde
kBT/v, wherev is a typical static fluctuation-mode energ
@55#. Note that the rms fluctuations are always larger than
shift when the fluctuations are small. In the analysis wh
follows, we shall assume that the Gaussian regime holds
we shall ignore the mean shifts. Ordinarily, the fluctuatio
mode energiesv are of the orderk. For our vesicles
k/kBT.20, so for most regions of the phase diagram, thi
an excellent approximation. There is, however, an import
exception. At the instability boundaries~Fig. 1! one of the
modes becomes soft. Thus, near enough such boundarie
Gaussian treatment fails, and we may expect difficulties~see
Sec. V!.

B. Parametrization of the two-dimensional shape contours

We interpret the measured two-dimensional contours
being sections which include the principal symmetry axis
the vesicle~Sec. III C!. Thus, in the spirit of the last para
graph and up to corrections which are normally of ord
l
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kBT/k, the center of mass is located in~i.e., near! the focal
plane at~i.e., near! the point which is the center of mass o
the digitized contour. We determine this point numerica
for each contour. We then find the~approximate! principal
~long! vesicle axis by calculating the two-dimension
moment-of-inertia tensor with respect to the center of m
and diagonalizing. This determines the~nominal! principal
axis of each vesicle shape and identifies the north and s
poles. We call the direction of the principal axisŷ and the
corresponding perpendicular directionx̂ ~which is, of course,
not necessarily a principal axis of the three-dimensio
vesicle!. Thus each experimental contour is reduced to a
of points$xi ,yi%. In what follows, we treat each half-contou
separately~each image has two half-contours! and take
xi>0.

It is convenient to represent each half-contour in the an
arclengthc(s) representation of Sec. II C by calculating

c i52arctanS yi112yi21

xi112xi21
D , ~16!

where the arctangent is defined on its Riemann surface,
c(s) is continuous at the equator. The arclengths is mea-
sured from the north pole. The parametrization parallels
~13!,

c~s!5p
s

s*
1 (

n51

`

ansinS np
s

s* D . ~17!

The coefficients$an% are obtained by a numerical integratio
using the trapezoidal rule,

an5~21!n
2

n
1(

i51

M Fc isinS np
si
s* D

1c i11sinS np
si11

s* D Gsi112si
s*

, ~18!

and, henceforth, they replace the points$xi ,yi% in represent-
ing the half-contour. (M is the number of digitized points in
the half-contour.! Note that the contours here are not u
down symmetric, so the odd-n coefficients do not in genera
vanish, as they did for theT50 prolate shapes. Similarly
c(0) andc(s* ) are normally nonzero.

C. Thermal ensembles andT50 shapes

For each half-contour of each video image, we calcul
the shape coefficients$an% plus the nominal~‘‘effective’’ !
vesicle area and volume,

Ae5p(
i51

M

~xi1xi11!~si112si ! ~19!

and

Ve52
p

2(i51

M

~xi
21xi11

2 !~yi112yi !. ~20!

In a similar spirit, we compute an effective reduced volum
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ve5
Ve

4p

3 S Ae

4p D 3/2 . ~21!

For axisymmetric vesicle shapes, these equations would
culate the true area, volume, and reduced volume, res
tively. Since each image is only a snapshot of a sec
through a fluctuating vesicle,ve is only approximately equa
to the true reduced volumev. Note thatve fluctuates in time
for successive images of a given vesicle at a fixed temp
ture, whilev is in principle constant, since the true area a
volume are conserved during the shape fluctuation.

The several thousand images which constitute a typ
experimental run with a given vesicle at a fixed temperat
lead to characteristic time series for the quantities$an% and
ve , as illustrated by Figs. 7 and 8. Although the series
noisy, we expect to see memory effects between succes
images, as long as there are any characteristic physical re
ation times longer than the 0.5 s between successive gra
images. We have estimated elsewhere@10# the typical relax-
ation times expected for these vesicles. Away from instab
ties, the characteristic times are expected to be at most
eral seconds, which is consistent with direct visu

FIG. 7. Typical time series for the amplitudesa3 anda4 and for
the effective reduced volumeve for vesicleA at reduced volume
^ve&50.954. The dashed line corresponds to the mean ampli
^an&, which is close to zero fora3 @59#. According to Eq.~22!, the
mean valueŝ ve& and ^a4& correspond to the zero-temperatu
quantitiesv anda4

(0) , respectively, which are the basis for the ma
ping.
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observations of the optical image. As the vesicle approac
an instability ~which occurred atv50.878 for vesicleA),
one sees rapidly increasing relaxation times, correspond
to a spinodal slowing down@10#. This tendency is clearly
visible when comparing Figs. 7 and 8. As long as the data
spans a time interval much larger than the longest relaxa
time, we may expect that the time sequence samples an
fective stationary ensemble@56#. In this sense, the therma
ensemble of fluctuating shapes is characterized by the s
ensemble averages^an&, ^aman&, ^ve&, ^ve

2&, etc. Indeed, the
distribution functionsP(an), P(ve), etc., are typically a
Gaussian form in shape@25#.

In order to proceed with the mapping, we now need
procedure for inferring the zero-temperature quantitiesv and
$an

(0)% from the thermal data. We do this in the crudest wa
by simply making the identifications,

v5^ve& and an
~0!5^an&. ~22!

As explained above~Sec. IV A!, the justification for these
identifications is that the averaging process suppresses
rms fluctuations, which are of orderAkBT/v. This leaves the
thermal shifts plus the terms of order^u2&, both of which
scale askBT/v, which we ignore in first approximation@57#.
These values ofv anda4

(0) allow us ~Sec. II C! to infer c̄0
~and, thereby,m̄0) from Fig. 2, and, thus, to complete th
mapping.

de

FIG. 8. Same data as in Fig. 7 but for reduced volum
^ve&50.912. Note the longer time scales for fluctuations in thea3
mode as the shape instability~spinodal! is approached.
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It is hard to give any meaningful estimate of the re
uncertainty in the derived quantitiesv andan

(0) . For a truly
stationary ensemble, the purely statistical~sampling! uncer-
tainties in the average quantities should decrease as the
semble sampling becomes denser. In practice, our runs
necessarily of finite length~Sec. III B!. Indeed, if we divide
the data set into two parts, corresponding to earlier and l
times, we typically see a spread of values correspond
typically to 6 0.001 for v and 6 0.002 for the$an

(0)% ’s
~and somewhat larger near the budding instability!. It is this
measure which we adopt as an estimate of the statistica
certainties. Of course, there are also systematic errors,
as the thermal shifts~which we have neglected!, the failure
of the Gaussian picture~where fluctuations are large!, the
sampling error~when the relaxation times are long!, the fluc-
tuations of the major axis out of the focal plane, and
effects of gravity~Sec. VI!. The upshot is that well away
from the instability boundary the statistical uncertainties
probably realistic, except for the systematic influence
gravitational effects. Near the instabilities, the situation
less well defined. These statistical uncertainties translate~via
Fig. 2! into uncertainties inc̄0, as we shall illustrate in Sec
V.

V. RESULTS „WITHOUT GRAVITATIONAL
CORRECTIONS…

Each of the three budding vesicles,A, B, andC, started at
a relatively low temperature with a nearly spherical sha
~i.e., v'1). As the temperature was raised, the reduced
ume decreased, until at a certain temperature~different for
the different vesicles! a ‘‘budding’’ instability occurred~see
Figs. 5 and 6!, i.e., the vesicle suddenly necked down an
over a time interval of 1–10 s, developed a small qua
spherical satellite.~This time range is due to the differen
vesicle sizes, since typical relaxation times scale with
third power of the vesicle radius@10#.! Up to the budding
threshold, the thermally induced changes in the fluctua
ensemble are reversible to within experimental precisi
The budding process, itself, is a mechanical instability@10#.
In fact, the budding can be reversed, but only by cooling t
temperature significantly below the budding temperat

TABLE I. Experimental results for vesiclesA, B, andC. At
each temperatureT, the values of̂ ve&, and ^a4& are shown. The
final budding temperature is also given, along with the~for A and
B extrapolated! reduced volume at budding.

Vesicle T (°C! ^ve& ^a4&

28.760.1 0.95460.001 20.003760.0011
32.760.1 0.93260.001 0.005460.0013

A 37.860.1 0.91260.001 0.003860.0022
42.460.1 0.89460.001 0.009260.001

45.860.01 budding 0.87860.002 N/A

32.960.1 0.97060.001 0.00560.001
B 40.360.1 0.95060.001 0.01660.001

42.060.1 budding 0.94560.002 N/A

C 27.060.1 budding 0.98360.001 0.00860.002
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@58#. The size of the fluctuations and the scale of the long
relaxation time increases dramatically as the temperature
proaches the budding temperature~see Figs. 3, 4, 7, and 8!.
These effects have been interpreted in terms of a simple L
dau theory@10#.

Our results for the three budding vesicles,A, B, andC,
are summarized in Table I. The average amplitudes^an&
were generally very small for oddn, as expected in the pro
late phase@59#. The even coefficientŝa6& and above were
too small to distinguish from zero, presumably because
the hierarchy~15!. The valuevb of the reduced volume a
budding was determined by extrapolating the experime
temperature dependencev(T) to the observed budding tem
peratureTb .

Figure 9 shows the result of mapping this data into
theoretical (v,c̄0) diagram by usinĝve&, ^a4&, and Fig. 2, as
explained in Sec. II C. The instability linesMpear andMobl

are just the appropriately mapped versions of the correspo
ing spinodal lines of Fig. 1. The advantage of this repres
tation is that it is completely independent of the value
a, as explained after Eq.~10! @60#. Theory predicts that the
prolate shapes are locally stable only between the two s
odals. With the exception of the highest-temperature poin
the trajectory of vesicleA, we see that the mapped shapes

FIG. 9. Experimental trajectories without~Sec. V, open sym-
bols! and with~Sec. VI, filled symbols! gravitational corrections in
the (v,c̄0) diagram for vesiclesA, B, andC. Corrected and uncor-
rected data points are joined by a thin line. As explained in the t
the vesicle follows a path from lower right to upper left, as it
heated. VesiclesA andB underwent a budding instability after th
upper-leftmost point of the trajectory, vesicleC budded from the
point shown. The spinodal linesMpro are the same as those show
in Fig. 1 and mark the upper and lower boundaries of the reg
predicted by theory to be locally stable for prolate shapes. Thus
full consistency, the trajectories must terminate below the up
spinodal. VesiclesB andC satisfy this criterion. The final raw-data
point on the trajectory of vesicleA is inconsistent with stability.
Including gravitational effects moves the thermal trajectories
smaller reduced volume. Forg52.2 ~appropriate only for vesicle
A), the instability boundaries are shifted by gravity, as shown. T
final point on the vesicleA trajectory becomes consistent wit
theory, only when, in addition to gravitational effects on the ma
ping, the gravitational tipping of the fluctuating pearlike shapes
incorporated by excluding a cluster of data points~square symbols!,
as discussed at the end of Sec. V. Uncertainties are generally
near the spinodal lines and close to the sphere, where fluctua
become important.
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lie in this region. Figure 10 shows the same data plotted
the (v,m̄0) phase diagram, Fig. 1. The required relation b
tween c̄0 and m̄0 is based on Eq.~10!. In order to evaluate
m@S(n)#, we solve the variational shape equations deriv
from energy functional Eq.~9! for the given values ofv and
c̄0. We have takena51.4 in making this transformation
@28,32#. Since the spinodal boundaries map right along w
the data points, there is no change in the predicted stab

The fact that, with a single exception, the mapped d
points lie neatly sandwiched in the region of predicted~local!
stability is a stringent quantitative test of the theory and c
stitutes the single most important result of this work. W
emphasize again~see Sec. II B! that the shapes mapped b
Fig. 2 are variationally stationary~by construction! but not
necessarily locally stable, so that an arbitrary shape co
end up anywhere in the phase diagram.

It is worth pointing out that the fact that the values
c̄0 derived from the data points are all of order unity~as
expected on the basis of the theory! is also an important test
Figure 2 shows thatc̄0 values between25 and 10 are asso
ciated with values ofa4

(0) in the narrow range betwee
20.02 and 0.02. If the theory were significantly in error,
would be quite easy to have produced very large or v
small values ofc̄0 .

Indeed, in a certain sense, our ability reliably to dist
guish shape changes corresponding to differences of o
unity in c̄0 is, in itself, surprising. Consider that, for a vesic
of radius 10mm at a reduced volumev50.9, a difference in
c̄0 of 61 corresponds to a change in shape which modi
the pole-to-pole contour lengths* by only 20 nm. This num-
ber ~the smallness of which is a direct consequence of
hierarchy! is below thelocal lateral resolution of the contour
How is this possible? First, one has to realize that one d
not measure a single distance only. Rather, the amplitu

FIG. 10. Experimental trajectories without~Sec. V, open sym-
bols! and with~Sec. VI, filled symbols! gravitational corrections in
the (v,m̄0) phase diagram for vesiclesA, B, andC usinga51.4
~see Fig. 9 for a legend!. The stability of data points does no
depend ona and mirrors Fig. 9. As for Fig. 9, the last point of th
vesicleA trajectory becomes consistent with the theoretically c
culated stability when corrected for gravitational effects~including
the cluster exclusion, as discussed in the text!. A theoretical thermal
trajectory ~with the simple formm̄0v5 const) is shown for com-
parison. Although Figs. 9 and 10 look similar, they arenot con-
nected by a simple rescaling of the vertical axis.
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are calculatedglobally from an integral@see Eq.~18!# over
about 600 contour points, each of which deviates from
reference shape. Second, one is interested in a low m
which is insensitive to local perturbations in the membra
And, third, the amplitudes are averaged over typically s
eral thousand contours, giving an effective sample size
the order of 105. Thus shape differences on the 10 nm sc
are detectable@49#.

The ‘‘thermal trajectories’’ corresponding to each vesic
encode the effect of the experimental control parameter~tem-
perature! on the quantitiesv and c̄0 ~or m̄0), defined in Sec.
II A. These quantities, in turn, depend on the volumeV, area
A, relaxed area differenceDA0 of the vesicle, on the thick-
nessD and spontaneous curvatureC0 of the membrane, and
on the ratioa of elastic constants. All these quantities are,
principle, temperature dependent, and, if these depende
were known, we could calculate the thermal trajectory a
compare it with that found in Figs. 9 and 10. The volum
thermal expansion coefficient (bV'331024/K for water! is
known to be small compared to the area thermal expan
coefficient (bA'331023/K for SOPC @61#!. It is also
known @62# that the total bilayer volumeAD is only weakly
temperature dependent. A simple model is to assume
only A andD are temperature dependent. WhenC050, as is
reasonable for a symmetric bilayer, this assumption lead
the simple result that the productvm̄0 is temperature inde-
pendent@16,25#. This hypothesis predicts trajectories of th
general shape and scale shown in Figs. 9 and 10 but sig
cantly less steep than those observed. It is not hard to m
more refined models consistent with the data, for exam
by using a nonzero spontaneous curvatureC0 and/or a dif-
ferential thermal expansion for the two leaves of the bila
@16,25#. Unfortunately, direct measurements of these qua
ties are not available, so no useful conclusions can be dr
at this stage.

Another set of evidence bearing on the consistency of
observations with the theory is the relative size and shap
the main vesicle and the bud which forms at the instabil
At the crudest level, theory predicts that the final state a
budding will be pear shaped~rather than fully vesiculated
with a microscopically narrow neck! when the budding oc-
curs for reduced volumes less thanvc50.875, where the
spinodal crosses the limiting-pear lineLpear ~see Fig. 1!. As
a increases, this crossing point moves to higher values
v, so the observation that vesicleA buds to a fully vesicu-
lated state would be inconsistent with a value ofa larger
than 1.4. This observation places an upper bound ona. On
the other hand,a has to be larger then zero since we do fi
a large variety of shapes~corresponding to different sponta
neous curvaturesc̄0) within the same preparation, eve
within the same chamber. Fora50, the effective spontane
ous curvaturec̄0 would be fixed by the solution asymmetr
to a particular value foreveryvesicle. Only a finitea larger
than zero allows for a dependence ofc̄0 on the difference in
the number of molecules between the outer and the in
monolayer of the membrane which is varying from vesicle
vesicle. Thus we find 0,a,1.4. In fact, we expecta to be
of order unity since values much smaller than one wo
imply an unreasonably large difference in the number
molecules between the inner and outer monolayers in o
to obtain the observed large variety of shapes.
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Another qualitative prediction is that the ratior of the bud
radius to the radius of the remaining main vesicle sho
increase as the reduced volume at budding decreases.
r should be largest for vesicleA and smallest for vesicle
C, as is, indeed, observed. On the other hand, on the limi
line Lpear, the vesiculated configuration consists of tw
spheres, so there is a simple relation between the ratior and
reduced volumev @32,63#. In particular, close examinatio
of Fig. 5 provides a value ofr close to 2.8~pure geometry,
since the shape is very close to being two spheres!. This
corresponds tov(r )50.873. Indeed, budding is observed
vb50.87860.002 for vesicleA.

Overall, the agreement of theory and experiment is r
sonable with the exception of the last point of the therm
trajectory of vesicleA, which lies distinctly above the theo
retical spinodal boundaryMpro ~Figs. 9 and 10!. This last
point is worrying. Indeed, even below the spinodal line, th
should be a~fuzzy! unstable region where the energy barr
out of the metastable state is of orderkBT. ~The fact that
vesiclesB andC appear to bud increasingly belowMpro for
higher reduced volume suggests that there may be some
tematic effect at work which is distorting the locus of inst
bility.! We have considered three possible reasons for
discrepancy.

First, our identification~22! involves the assumptions tha
~a! the fluctuations are small enough to be treated at
Gaussian level and~b! the ~Gaussian! thermal shifts and rms
fluctuations~of orderkBT/v) can be neglected. At the spin
odal, fluctuations diverge@10#, so neither of these assump
tions is valid, and the identification~22! is expected to fail. It
is entirely plausible that these assumptions are already br
ing down near the spinodal, at the last stable point. Beca
the effects of fluctuations beyond the Gaussian level have
to be calculated, we cannot, at this stage, assess the im
that such corrections might have on the near-spinodal po
of trajectoryA.

Second, we have assumed that the major prolate ax
~effectively! in the focal plane of the microscope. If this ax
is appreciably out of the focal plane, then the digitized i
ages cannot be thought of as sampling axial sections of
three-dimensional fluctuating shape, and the whole anal
of these images would have to be redone. As long as fl
tuations are small, it is reasonable to assume that gravity
to keep the prolate axis aligned. But, near the spinodal l
there are large, slow pearlike fluctuations@10#, which are not
‘‘up-down’’ symmetric ~i.e., which break the symmetry be
tween the north and south poles!. In this situation, gravity
may be expected to systematically reorient the small en
the pear towards the bottom of the chamber, thus tipping
effective symmetry axis away from the horizontal. On
tipped, the symmetry axis is inhibited by gravity from retur
ing to the horizontal, so one expects long intervals of asy
metric, pearlike data to appear in the near-spinodal time
quences. In fact, the data for the last point of the vesicleA
trajectory do show an ‘‘anomalous’’ cluster of frames wi
simultaneously largea3 anda4, and these frames exhibit
fuzzy contour profile near the small end of the pear, indic
ing an overhang of the vesicle membrane beyond the fo
plane. The effect of excluding this segment of the time
quence is to lower̂a4& nearly to the spinodal, thereby im
proving agreement between theory and experiment.
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Finally, we have so far treated the effect of gravity as on
something which positions the vesicles at the bottom of
chamber and aligns~prolate! axes in the horizontal plane. In
fact, it will also modify the zero-gravity shape analys
which has been, up to this point, the basis of our mapp
procedure. What effect do gravitational shape changes h
on the analysis and can they explain the observed discre
cies? This is the subject of Sec. VI.

VI. GRAVITATIONAL EFFECTS

A. Qualitative considerations

When the density of the solution which fills the vesic
interior is greater than that of the exterior solvent, the ves
will fall to the bottom of the container and, once in conta
with the bottom, will deform in such a way as to decrease
gravitational potential energy of the interior, higher-dens
material. The overall shape involves a balance between
previous bending energy~4! and a new gravitational energy

Wgrav@S#5g0DrE z dV , ~23!

whereg0 is the local acceleration due to gravity,Dr is the
excess mass density of the interior solution,z measures
height above the bottom of the chamber, and the integra
over the interior volume of the vesicle.

The ratio of the energy scaleg0DrRA
4 of this gravitational

term to the scalek of the bending energy defines a dime
sionless parameter,

g[
g0 Dr RA

4

k
, ~24!

which measures the relative size of gravitational and bend
energies@23#. Wheng is very small, we may expect shape
which are not significantly deformed relative to the gravit
free case. Wheng is very large, gravitational energy dom
nates and vesicles will tend towards circular pancakes@64#,
squashed against the chamber bottom, insofar as constr
on area and volume allow.~Of course, if v51, then the
vesicle can only be spherical.!

Experimental values for our vesiclesA, B, andC were
nominally g52.2, 0.3, and 1.9, respectively@65#. Here, we
use a value ofk50.9310219 J for our estimation@4#. We
may, thus, expect gravitational corrections to be apprecia
for vesiclesA andC but relatively less important for vesicl
B. The qualitative effect of gravity on the mapping is n
hard to see. Roughly speaking, a ‘‘pancake’’ deformat
will make the focal-plane section of a prolate rounder a
larger in area than it would otherwise be. Therefore, grav
tional corrections will lead to larger values ofve . Although
the coefficientsan must approach zero for largeg, it is not
obvious where the asymptotic regime sets in, so the sign
the gravitational shift ina4 cannot be inferreda priori. In
order to estimate these effects quantitatively, we need to
able to calculate vesicle shapes in the presence of gravi
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B. T50 shapes in the presence of gravity

The only previous calculation of vesicle shapes includ
gravitational effects was done by Kraus, Seifert, and L
owsky @23#. These authors found a gravity-induced prola
oblate transition for values ofg similar to those encountere
in our experiments. Following this work, we use a polyhed
discretization of the vesicle surface and employ the prog
SURFACE EVOLVER @66# to search iteratively for the shape
energy minimum. Numerical minimization in the presence
a hard-wall constraint for the chamber floor leads to spe
problems in stability. For this reason, we replaced the h
wall by a soft substrate potential,Vw(z)5V0wexp(2z/z0),
with V0w55k and z050.1RA . These parameters seem
provide a good compromise between numerical stability~fa-
vored by a softer potential! and a deformation of the shap
caused by the soft tail of the potential which is as small
possible@23#. Constraints on area and volume are respec
The energy is minimized by moving the vertices in the
rection of the energy gradient or, alternatively, by a con
gate gradient method. Symmetries such as mirror planes
be exploited. For most of this work, only a vertically c
quarter section of the vesicle was actually computed. It tu
out that the results for the final shape and energy are v
sensitively dependent on the triangulation in a way that
cannot completely control. We have tried to overcome t
problem by fitting a linear interpolation to a grid of da
points, as described in Sec. VI B below. This procedure
erages out random fluctuations from one point to another
cannot address any subtle systematic dependence on
size which might be hidden beneath the fluctuations~we did
check directly for such a grid-size effect, and none is app
ent at the level of accuracy we can achieve!. In the absence
of a more reliable measure, we have simply used the de
tion of the computed data points from the smoothed inter
lation to give an estimate of the error introduced by the
angulation.

Finally, we point out that, not only does gravity influen
the shape and energy of a vesicle at givenv and c̄0, but it
also changes the relative energy of different shape branc
thus shifting phase boundaries and stability boundaries in
phase diagram. Thus, in looking for gravitational correctio
to the experiments, we also need to compute the gravitat
ally shifted spinodal lineMpro. We have done this in the
(v,c̄0) representation~Sec. II A! for g52.2, in which now
@cf., Eq. ~11!#

2c̄05
]G~v,m!

]m
1
1

k

]Wgrav~v,m!

]m
52c01a~m02m@S~n!# !.

~25!

This involves two numerical fits toSURFACE EVOLVERdata,
first for the computation ofm(Mpro) and then for the deriva
tive which evaluatesc̄0. As a consequence, the quality of th
results is rather poor. As shown in Fig. 9, the result for o
experiments is a shift of the upper spinodal upward inc̄0 by
about one unit; but, the numerical uncertainties are unfo
nately comparable in size to the shift. More detailed cal
lations would require finer triangulations and much long
relaxation times. Since the computational investment is
ready appreciable and experimental uncertainties are alr
large near the spinodal, additional investment at this ti
g
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does not seem wise. We did not compute the location of
full lower spinodal including gravity; however, forc̄050
~andg52.2), we do know@23# that the prolate-oblate tran
sition occurs atv50.94 ~as plotted!, which also corresponds
to a small upward shift.

C. Gravitational corrections to the mapping

We estimated gravitational effects by running t
SURFACE EVOLVERprogram forv between 0.875 and 0.97
in steps of 0.025 and forc̄0 between 2.5 and 10.0 in steps
2.5. For each pair of these parameters, we computed sh
over a range of smallg values. For each shape, we took
maximal horizontal section and computed effective values
ve , a2, anda4 using formulas~18! and ~21!. These values
varied in a roughly linear way withg, only with some super-
imposed fluctuations which we attributed to the triangulat
sensitivity mentioned in the previous subsection. We th
assigned effective values ofve(g), a2(g), anda4(g) for the
gravitationally distorted shapes by making a straight-line
to these computed points passing through the values pr
ously computed forg50. For the values ofg, v, and c̄0
relevant to the experiments, the gravitational shift ofa4 is
comparable to the numerical errors. On the other hand,
difference betweenve(g) and the actual reduced volumev
~see Fig. 11! does lead to a noticeable correction in the v
ues of c̄0 inferred from the experimental data for vesicl
A andC.

This family of lines may then be used to calculate gra
tational corrections to the experimental data. Sinceg is
known, it is only necessary to take the measured value
ve anda4, which belong~presumably! to shapes which are
gravitationally distorted, and to infer the corresponding v
ues ofv andc̄0. Figure 11 shows, for example, the calculat
gravitational shift in the apparent volume, (ve2v), at
g52.2 ~appropriate for vesicleA) for representative value
of v and c̄0. Note that theve is always larger thanv, in
agreement with the qualitative argument of Sec. VI A,
that gravitational correction always shifts the data points

FIG. 11. Computed gravitational corrections to the effective
duced volumeve atg52.2, as is appropriate for vesicleA. The shift
(ve2v) is shown vertically as a function ofc̄0 andv. The dashed
line corresponds to the prolate-oblate transition. All shifts meet
line with a slope different from21, as explained in the text. Th
shaded region (ve.1) is unphysical.
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55 4471MAPPING VESICLE SHAPES INTO THE PHASE . . .
the left in Fig. 9. The corrections increase for values ofc̄0
close to the prolate-oblate transition, i.e., for smallc̄0, where
increasing the volume of a prolate vesicle at fixedc̄0 leads
eventually to a transition to an oblate shape with a vert
symmetry axis, thus producing a circular focal-plane sect
~i.e., ve51). The behavior of the shift of the apparent vo
ume near this prolate-oblate transition can be understoo
follows: Above the transition, forv.vc( c̄0 ,g), the focal cut
of the oblate vesicle is circular, independent of (c0 ,g), i.e.,

ve2v512v, v.vc. ~26!

For v,vc , we find from geometry
ve512(64/135)a2

2 1 O(a2
4 ,a4

2 , . . . ). Furthermore, the
amplitudea2 is given bya2'c(vc2v)1/2, where the coeffi-
cientc depends on bothc̄0 andg. Thus, immediately below
the transition, we have

ve2v.12
64

135
c2vc1S 64135c221D v, v&vc. ~27!

This equation implies that all the shifts in the apparent
duced volume for differentc̄0 meet the curveve2v512v
with a slope,@(64/135)c221#, larger than21. Inspection of
Fig. 11 suggests that the slope is, in fact, positive for sm
c̄0.
Figures 9 and 10 show the gravitationally correct

~phase! diagrams with the corrected data points for vesic
A andC. The uncertainties of the gravitationally correct
points include both the original experimental uncertaint
and the numerical uncertainties of the gravitational sha
energy calculations. Note that the data points are shifte
the left in v, as expected qualitatively. All experiment
points are in the~metastable! prolate phase, except th
‘‘bad’’ point which still remains above the upper spinoda
unless the ‘‘anomalous’’ cluster is removed, as discusse
Sec. V. Accepting this somewhatad hocprocedure, one may
argue that this last stable point atv50.890 lies within error
bars inside the prolate phase after the gravitational cor
tions have been performed. We note, however, that the ac
point of budding atvb50.878, which must, in principle, be
beneath the spinodal, would still appear to lie slightly in t
unstable region, even after gravitational and tipping corr
tions. We may speculate that this apparent inconsistenc
due to thermal shifts~neglected so far in our treatment!,
which could be appreciable near the spinodal.

So far, we have discussed stability of vesicleA only with
respect to the upper~pear-mode! spinodal. We have also
checked that the data points of vesicleA fall above the lower
limit of stability of the prolates, which is an instability to
wards the oblate phase. In fact, the first point of vesicleA is
located ~including the gravity correction! at
(v50.937,c̄051.6). The location of the prolate-oblate tra
sition at the same volume~andg52.2) is known to occur at
c̄050 ~see the preceding section!, which is comfortably be-
low our data point. Thus, the vesicleA trajectory does~prop-
erly! start in the stable-prolate region. On the other hand,
first point still appears somewhat out of line with the rema
ing three points of the trajectory~see Fig. 10!, which ~after
gravity corrections! fit quite well to the simple form@12#,
l
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m̄0v5const. We may speculate that thermal shifts play a r
here, too, near the lower spinodal@67#.

A few comments are in order concerning gravitation
corrections to the vesicleC data. The reduced volume o
vesicleC is shifted to the left, as expected. Unfortunate
the effective spontaneous curvaturec̄0 is not well deter-
mined, due to the large experimental and numerical err
~We remind the reader that vesicleC did bud at this location
and, thus, exhibited large spinodal fluctuations.! This data
point appears to be located appreciably below the spino
line. This could be an artifact created by effects not includ
in the mapping~see the discussion at the end of Sec.!
and/or it could be due to a low activation energy for buddi
near the sphere.

The upshot of this exploration of gravitational correctio
is that gravity does, indeed, have a substantial numer
effect, as might be anticipated from the fact that the dim
sionless parameterg is around 2 for vesiclesA andC. How-
ever, the qualitative~and generally encouraging! conclusions
of the gravity-free analysis are not changed.

VII. CONCLUSION

Previous experiments~e.g., Ref.@6#! have compared ex
periment with theory by, in effect, exhibiting a set of contr
parameters (v, c0, m0, a) which lead to theoretical shape
similar to those observed in the laboratory. It is importa
that this exercise can be successfully carried through; but
various reasons, it constitutes far less than a full test of
theory.

The first problem is that different variants of the theor
ranging from the SC model (a50) to the DA ~bilayer-
couple! model (a5`), all share the same set of stationa
shapes, so that observation of a shape which can be sui
parametrized only distinguishes models in which the shap
stable from those in which it is not. One would like to b
able to measure all the control parameters for a given ves
and then to verify that a vesicle with those control para
eters does, indeed, have the observed shape. The difficu
that, whilev anda are measurable,c0 andm0 ~which enter
the shape problem in the combinationm̄0) are not. We have
surmounted this problem by concentrating on the equiva
variablec̄0 ~which incorporatesc0, m0, anda) and inferring
this variable directly from the shape data (a4). Although the
inference process uses theory, there are nontrivial checks
over. Local stability is still an important check, as we ha
argued. In particular, the observed~reasonable! agreement of
the experimental budding boundary with the calculated t
oretical spinodal is encouraging, as is the qualitative agr
ment of the postbudding shape with that predicted by
theory. Once the mapping is done, observation of other sh
coefficients (a2, a6, etc., for the prolates! provides, in prin-
ciple, a further test of agreement between theory and exp
ment. Unfortunately, at the level of precision we have be
able to achieve here,a2 is too weakly dependent onc̄0 to be
useful, anda6 is too small.

The second and, in many ways, more important adva
which our experiment makes over previous ones is in
monitoring and analysis of the full thermal shape ensem
Previous workers have certainly observed the shape fluc
tions; however, shape comparisons between theory and
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4472 55DÖBEREINER, EVANS, KRAUS, SEIFERT, AND WORTIS
periment have, heretofore, relied on comparison of a sin
judiciously selected image with a theoretically calculat
shape. When fluctuations are appreciable~which they cer-
tainly become near any instability boundary!, this process is
clearly unacceptable. We have illustrated how to monitor a
to analyze the full shape ensemble, and we have shown
to relate the ensemble data to the correspondingT50 theo-
retical shapes, at least in situations where fluctuations are
too large. Treatment of larger fluctuations, which are co
mon near instabilities and will certainly be increasingly im
portant at lowv ~where mechanical modes will tend to b
softer!, will require a new theoretical approach capable
going beyond the Gaussian level.

Finally, at a somewhat technical level, we have illustra
that the effects of gravity, which have been ignored in ear
works, are quantitatively important. And, we have sho
how to adjust for them in comparing theory and experime

In summary, our work provides, in principle, a quantit
tive test of the ADE model of vesicle shapes. Agreem
between theory and experiment~including suitable correc-
us

m

rt,

k-

s

tt.

s.
.

a,
le

d
w

ot
-

f

d
r

t.

t

tions! is crude but satisfactory. It is important at this poi
~and entirely feasible! to carry out similar analyzes in othe
parts of the phase diagram. When more precision beco
available in future experiments, more consistency che
will be possible~e.g., by looking at̂ a2& and ^a6&), and it
will be worthwhile to include in the analysis the correctio
of order kBT/v, which we have ignored herein. It is clea
that gravitational corrections will have to be included a
that non-Gaussian effects will be important near instabiliti
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@14# S. Svetina and B. Zˇekš, Biomed. Biochim. Acta42, S86

~1983!; 44, 979 ~1985!.
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