Acid-base titrations (Ch. 12-1 to 12-4)

- Titration of strong acid with strong base
- Titration of weak acid with strong base
- Titration of weak base with strong acid
- Titrations in diprotic systems

Titration of strong acid with strong base	
Titration of 50.00 mL of 0.02000 M KOH with 0.1000 M HBr .	
There are 3 different regions. 1. Before EP (e.g. v $=3.00 \mathrm{~mL}$)	
new volume $=0.05000 \mathrm{~L}+0.00300 \mathrm{~L}=0.05300 \mathrm{~L}$	
excess moles of $\mathrm{OH}^{-}=0.02000 \mathrm{M} \times 0.05000 \mathrm{~L}-0.1000 \mathrm{M} \times 0.00300 \mathrm{~L}=0.00070$	
$\left[O H^{-}\right]=\frac{0.0007}{0.05300 L}=0.0132 \mathrm{M} \quad \mathrm{pOH}=-\log (0.01321)=1.88 \quad \mathrm{pH}=14.00-1.88=12.12$	
2. At EP (i.e. $\mathrm{v}_{\mathrm{e}}=10.00 \mathrm{~mL}$)	
$0.1000 \mathrm{M} \times \mathrm{v}_{\mathrm{e}}=0.02000 \mathrm{M} \times 0.05000 \mathrm{~L} \quad \mathrm{v}_{\mathrm{e}}=0.01000 \mathrm{~L}$	
There is no excess OH^{-}from KOH and no excess H^{+}from HBr , and Br is a strong conjugate base without hydrolysis. Therefore, only the dissociation of $\mathrm{H}_{2} \mathrm{O}$ is considered.	
$\left[H^{+}\right]=\sqrt{1.00 \times 10^{-14}}=1.00 \times 10^{-7} \mathrm{M}$	
Note that $\mathrm{pH}=7.00$ at EP is only valid in a strong acid-strong base titration.	
Chem215/P.Li/Acid-Base Titrations/P 2	

Titration of weak acid with strong base

Titration of weak base with strong acid	
The titration of a weak base with a strong acid is just like the reverse of the titration of a weak acid with a strong base. There are 4 different regions. 1. Before acid is added (i.e. $v=0$) This is a calculation of a weak base	
2. Before EP	This is a buffer containing B \& BH^{+}.
3. At EP	This is a solution of weak acid BH^{+}.
4. After EP	There is an excess of H^{+}.
Note that the pH at EP is below 7.00 because the solution contains the weak acid BH^{+}.	
Chem215/PLL/AAcid-Base Titrations/P 7	

Titrations in diprotic systems
Titration of 10.0 mL of 0.100 M of base B with a strong acid $(0.100 \mathrm{M} \mathrm{HCl})$ base B is a weak diprotic base with $\mathrm{pK}_{\mathrm{b} 1}=4.00$ and $\mathrm{pK}_{\mathrm{b} 2}=9.00$.
There are 6 different regions.

1. Point A $($ i.e. $v=0) \quad$ This is a solution of weak base B.
$\frac{x^{2}}{0.100-x}=10^{-4.00}$
$\left[\mathrm{OH}^{-}\right]=x=3.1_{1} \times 10^{-3} \mathrm{M}$
$p H=14.00-p O H=14.00+\log \left(3.1_{1} \times 10^{-3}\right)=11.49$
We assume that the second association of B (I.e. from BH^{+}to $\mathrm{BH}_{2}{ }^{2+}$) is negligible.
2. Point B', before 1st $E P$ (e.g. $v=1.5 \mathrm{~mL}$)

This is a buffer solution containing B and BH^{+}.
$\quad c_{B}=\frac{0.100 M \times 0.0100 L-0.100 M \times 0.0015 L}{(0.0100+0.0015) L} \quad c_{B H^{+}}=\frac{0.100 M \times 0.0015 L}{(0.0100+0.0015) L} \quad \therefore \frac{c_{B}}{c_{B H^{*}}}=\frac{8.5}{1.5}$
$\therefore p H=p K_{2}+\log \frac{[B]}{\left[B H^{+}\right]} \approx(14.00-4.00)+\log \frac{8.5}{1.5}=10.75$

Note that, at point $\mathrm{B}, \mathrm{pH}=\mathrm{pK}_{2}$ when $[\mathrm{B}]=[\mathrm{BH}+] \quad$ Chem215/P.Li/Acid-Base Titrations/P 8
or when $\mathrm{v}=5.0 \mathrm{~mL}$.

Titrations in diprotic systems

3. Point C , at 1 st EP (e.g. $\left.\mathrm{v}_{\mathrm{e} 1}=10.0 \mathrm{~mL}\right)$

This is a solution with all B converted to the intermediate form: BH^{+}

$$
\left[H^{+}\right]=\sqrt{\frac{K_{1} K_{2}[H L]+K_{1} K_{W}}{K_{1}+[H L]}} \approx \sqrt{\frac{K_{1} K_{2} F_{H L}+K_{1} K_{W}}{K_{1}+F_{H L}}}
$$

$F_{B H^{+}}=0.100 \mathrm{M} \times \frac{0.0100 L}{(0.0100+0.0100) L}=0.050 \mathrm{M} \quad K_{1}=\frac{K_{\mathrm{w}}}{K_{b_{2}}}=\frac{10^{-1400}}{10^{-9.000}}=10^{-5.50} \quad K_{2}=\frac{K_{\mathrm{w}}}{K_{b_{1}}}=\frac{10^{-14000}}{10^{-4.00}}=10^{-1000}$
$\therefore\left[H^{+}\right] \approx \sqrt{\frac{10^{-5.00} 10^{-10.00}(0.050)+10^{-5.00} 10^{-14.00}}{10^{-5.00}+0.050}}=3.16_{6} \times 10^{-8} \mathrm{M}$

$$
\therefore p H=7.50=\frac{1}{2}\left(p K_{1}+p K_{2}\right)
$$

Note that point C is the least-buffered point on the whole titration curve (see Fig. 12-4). The intermediate form of a diprotic acid or base is a worst choice of a buffer

Fig. 12-4: Titration of 2 weak diprotic bases with a strong acid. Chem215/P.Li/Acid-Base Titrations/P 10

Titrations in diprotic systems

4. Point D', between EP1 and EP2 (e.g. v $=17.2 \mathrm{~mL}$)

This is a buffer containing BH^{+}and $\mathrm{BH}_{2}{ }^{2+}$.
$c_{B H^{+}}=\frac{0.100 M \times 0.0100 L-0.100 M \times 0.0072 L}{}$
Note that 10.0 mL HCl has been used to form $0.100 \times 0.0100 \mathrm{~mole}$ of BH^{+}at $\mathrm{EP1}$

$$
c_{B H_{2}^{2+}}=\frac{0.100 M \times 0.0072 L}{(0.0100+0.0172) L} \quad \therefore \frac{c_{B H^{+}}}{c_{B H_{2}^{2+}}}=\frac{2.8}{7.2}
$$

$\therefore p H=p K_{1}+\log \frac{\left[B H^{+}\right]}{\left[B H_{2}^{2+}\right]} \approx(14.00-9.00)+\log \frac{2.8}{7.2}=4.59$
Note that, at point $\mathrm{D}, \mathrm{pH}=\mathrm{pK}_{1}$ when $\left[\mathrm{BH}^{+}\right]=\left[\mathrm{BH}_{2}{ }^{2+}\right]$ or when $\mathrm{v}=15.0 \mathrm{~mL}$.

Titrations in diprotic systems
5. Point E, at EP2 (i.e. $\mathrm{v}_{\mathrm{e} 2}=20.0 \mathrm{~mL}$)

This is a solution with all BH^{+}converted to the weak acid $\mathrm{BH}_{2}{ }^{2+}$.
$F_{\mathrm{BH}_{2}^{2+}}=0.100 \mathrm{M} \times \frac{0.0100 \mathrm{~L}}{(0.0100+0.0200) \mathrm{L}}=0.033 \mathrm{M}$
$\frac{x^{2}}{0.033-x}=10^{-5.00} \quad\left[H^{+}\right]=x=5.7_{2} \times 10^{-4} M \quad p H=3.24$
We assume that the second dissociation of BH_{2}^{2+} (I.e. from BH^{+}to B) is negligible
6. Point F, after EP2 (e.g. $v=25.0 \mathrm{~mL}$) There is an excess of 5.0 mL of HCl .
$\left[H^{+}\right]=0.100 M \times \frac{0.0050 L}{(0.0100+0.0250) L}=1.4_{3} \times 10^{-2} M \quad p H=1.85$
Note that there is no perceptible transition at EP when pH is too low or too high or when pK_{a} values are too close together.

Summary: Acid-base titrations

- To determine the points on a curve for the titration of strong acid with strong base (Do Exercise 12-2)
- To determine the points on a curve for the titration of weak acid with strong base (Do Exercise 12-6)
- To determine the points on a curve for the titration of weak base with strong acid (Do Exercise 12-12)
- To determine the points on a curve for the titrations in diprotic systems (Do Exercise 12-25)

Summary: Acid-base titrations
Backpage figure 1: titration curve for a weak acid with a strong base
Chem215/P.Li/Acid-Base Titrations/P 15

Summary: Acid-base titrations

