In one of the most celebrated examples of the theory of universal critical phenomena, the phase transition to the superfluid state of 4He belongs to the same three dimensional O(2) universality class as the onset of ferromagnetism in a lattice of classical spins with XY symmetry. Below the transition, the superfluid density ρ_s and superfluid velocity v_s increase as powerlaws of temperature described by a universal critical exponent constrained to be equal by scale invariance. As the dimensionality is reduced towards one dimension (1D), it is expected that enhanced thermal and quantum fluctuations preclude long-range order, thereby inhibiting superfluidity. We have measured the flow rate of liquid helium and deduced its superfluid velocity in a capillary flow experiment occurring in single 30 nm long nanopores with radii ranging down from 20 nm to 3 nm. As the pore size is reduced towards the 1D limit, we observe: i) a suppression of the pressure dependence of the superfluid velocity; ii) a temperature dependence of v_s that surprisingly can be well-fitted by a powerlaw with a single exponent over a broad range of temperatures; and iii) decreasing critical velocities as a function of decreasing radius for channel sizes below $R \simeq 20$ nm, in stark contrast with what is observed in micron sized channels. We interpret these deviations from bulk behavior as signaling the crossover to a quasi-1D state whereby the size of a critical topological defect is cut off by the channel radius.