Penetration depth and point-contact spectroscopy studies of exotic superconductivity in noncentrosymmetric half-Heusler YPtBi

Hyunsoo Kim, Steven Ziemak, Kefeng Wang, Halyna Hodovanets, Yasuyuki Nakajima, Johnpierre Paglione
Center for Nanophysics and Advanced Materials, Department of Physics, University of Maryland, College Park, MD, USA

Makariy Tanatar, Ruslan Prozorov
Ames Laboratory, Department of Physics and Astronomy, Iowa State University, Ames, IA, USA

Philip M. R. Brydon
Condensed Matter Theory Center, University of Maryland, College Park, MD, USA

Daniel F. Agterberg
Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI, U.S.A

Strong asymmetric spin-orbit coupling in a noncentrosymmetric superconductor allows mixing of even and odd parity of the pairing interactions. Such an exotic pairing interaction has been suggested in some Pt-based noncentrosymmetric superconductors such as CePt$_3$Si and Li$_2$Pt$_3$B. More recently, we reported superconductivity below 0.8 K in YPtBi, a half-Heusler compound that lacks inversion symmetry. Here we present our studies of the superconducting energy gap in YPtBi using soft point contact spectroscopy and superconducting penetration depth measurements via tunnel diode resonator technique. We will compare the morphology of our dI/dV energy gap spectra to previous theoretical and experimental results for triplet sp-wave materials, and review our analysis of London penetration depth and compare to various possible superconducting energy gap symmetries.